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ABSTRACT. Coalgebra is an abstract framework for the uniform study of different kinds of dynam-
ical systems. An endofunctor F determines both the type of systems (F-coalgebras) and a notion of
behavioral equivalence (∼F) amongst them. Many types of transition systems and their equivalences
can be captured by a functor F. For example, for deterministic automata the derived equivalence is
language equivalence, while for non-deterministic automata it is ordinary bisimilarity. The powerset
construction is a standard method for converting a nondeterministic automaton into an equivalent
deterministic one as far as language is concerned. In this paper, we lift the powerset construction
on automata to the more general framework of coalgebras with structured state spaces. Examples of
applications include partial Mealy machines, (structured) Moore automata, and Rabin probabilistic
automata.

1 Introduction
Coalgebra is by now a well established general framework for the study of the behaviour
of large classes of dynamical systems, including various kinds of automata (deterministic,
probabilistic etc.) and infinite data types (streams, trees and the like). For a functor F : Set→
Set, an F-coalgebra is a pair (X, f ), consisting of a set X of states and a function f : X →
F(X) defining the observations and transitions of the states. Coalgebras generally come
equipped with a standard notion of (behavioural) equivalence called F-bisimilarity that is
fully determined by their (functor) type F. Moreover, for most functors F there exists a final
coalgebra into which any F-coalgebra is mapped by a unique homomorphism that identifies
all F-bisimilar states.

Much of the coalgebraic approach can be nicely illustrated with deterministic automata
(DA), which are coalgebras of the functor D(X) = 2× XA. In a DA, two states are D-
bisimilar precisely when they accept the same language. The set 2A∗ of all formal languages
constitutes a final D-coalgebra, into which every DA is mapped by a homomorphism that
sends any state to the language it accepts.

∗This work was carried out during the second author’s tenure of an ERCIM “Alain Bensoussan” Fellowship
Programme. The fourth author is partially supported by the Fundação para a Ciência e a Tecnologia, Portugal,
under grant number SFRH/BD/27482/2006
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2 GENERALIZING THE POWERSET CONSTRUCTION, COALGEBRAICALLY

It is well-known that non-deterministic automata (NDA) often provide more efficient
(smaller) representations of formal languages than DA’s. Language acceptance of NDA’s is
typically defined by turning them into DA’s via the powerset construction. Coalgebraically
this works as follows. NDA’s are coalgebras of the functor N(X) = 2×Pω(X)A, where Pω

is the finite powerset. An N-coalgebra (X, f : X → 2× Pω(X)A) is determinized by trans-
forming it into a D-coalgebra (Pω(X), f ] : Pω(X)→ 2×Pω(X)A) (for details see Section 3).
Then, the language accepted by a state s in the NDA (X, f ) is defined as the language ac-
cepted by the state {s} in the DA (Pω(X), f ]).

For a second variation on DA’s, we look at partial automata (PA): coalgebras of the
functor P(X) = 2 × (1 + X)A, where for certain input letters transitions may be unde-
fined. Again, one is often interested in the DA-behaviour (i.e., language acceptance) of
PA’s. This can be obtained by turning them into DA’s using totalization. Coalgebraically,
this amounts to the transformation of a P-coalgebra (X, f : X → 2× (1 + X)A) into a D-
coalgebra (1 + X, f ] : 1 + X → 2× (1 + X)A).

Although the two examples above may seem very different, they are both instances of
one and the same phenomenon, which it is the goal of the present paper to describe at a
general level. Both with NDA’s and PA’s, two things happen at the same time: (i) more
(or, more generally, different types of) transitions are allowed, as a consequence of changing
the functor type by replacing X by Pω(X) and (1 + X), respectively; and (ii) the behaviour
of NDA’s and PA’s is still given in terms of the behaviour of the original DA’s (language
acceptance).

For a large family of F-coalgebras, both (i) and (ii) can be captured simultaneously
with the help of the categorical notion of monad, which generalizes the notion of algebraic
theory. The structuring of the state space X can be expressed as a change of functor type
from F(X) to F(T(X)). In our examples above, both the functors T1(X) = Pω(X) and
T2(X) = 1 + X are monads, and NDA’s and PA’s are obtained from DA’s by changing the
original functor type D(X) into N(X) = D(T1(X)) and P(X) = D(T2(X)). Regarding (ii),
one assigns F-semantics to an FT-coalgebra (X, f ) by transforming it into an F-coalgebra
(T(X), f ]), again using the monad T. In our examples above, the determinization of NDA’s
and the totalization of PA’s consists of the transformation of N- and P-coalgebras (X, f ) into
D-coalgebras (T1(X), f ]) and (T2(X), f ]), respectively.

We shall investigate general conditions on the functor types under which the above
constructions can be applied: for one thing, one has to ensure that the FT-coalgebra map
f induces a suitable F-coalgebra map f ]. Our results will lead to a uniform treatment of
all kinds of existing and new variations of automata, that is, FT-coalgebras, by an algebraic
structuring of their state space through a monad T. Furthermore, we shall prove a number
of general properties that hold in all situations similar to the ones above. For instance, there
is the notion of N-bisimilarity with which NDA’s, being N-coalgebras, come equipped. It
coincides with the well-known notion of Park-Milner bisimilarity from process algebra. A
general observation is that if two states in an NDA are N-bisimilar then they are also D- (that
is, language-) equivalent. For PA’s, a similar statement holds. One further contribution
of this paper is a proof of these statements, once and for all for all FT-coalgebras under
consideration.

Coalgebras of type FT were studied in [16, 2, 12]. In [2, 12] the main concern was def-
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initions by coinduction, whereas in [16] a proof principle was also presented. All in all,
the present paper can be seen as the understanding of the aforementioned papers from a
new perspective, presenting a uniform view on various automata constructions and equiv-
alences.

The structure of the paper is as follows. After preliminaries (Section 2) and the details
of the motivating examples above (Section 3), Section 4 presents the general construction as
well as many more examples. In Section 5, a large family of automata (technically: functors)
is characterized to which the constructions above can be applied. Section 6 discusses related
work and presents pointers to future work. In Appendix A, we further prove the expressiv-
ity of our framework by showing that it can subsume many behavioural equivalences from
the so called linear-time branching-time spectrum [7].

2 Background
In this section we introduce the preliminaries on coalgebras and algebras. First, we fix

some notation on sets. We will denote sets by capital letters X, Y, . . . and functions by lower
case letters f , g, . . . Given sets X and Y, X × Y is the cartesian product of X and Y (with
the usual projection maps π1 and π2), X + Y is the disjoint union (with injection maps κ1
and κ2) and XY is the set of functions f :Y → X. The collection of finite subsets of X is
denoted by Pω(X), while the collection of full-probability distributions with finite support
is Dω(X) = { f : X → [0, 1] | f finite support and ∑x∈X f (x) = 1}. For a set of letters
A, A∗ denotes the set of all words over A; ε the empty word; and w1 · w2 (and w1w2) the
concatenation of words w1, w2 ∈ A∗.

Coalgebras A coalgebra is a pair (X, f : X → F(X)), where X is a set of states and F : Set→
Set is a functor. The functor F, together with the function f , determines the transition struc-
ture (or dynamics) of the F-coalgebra [23].

An F-homomorphism from an F-coalgebra (X, f ) to an F-coalgebra (Y, g) is a function
h: X → Y preserving the transition structure, i.e., g ◦ h = F(h) ◦ f .

An F-coalgebra (Ω, ω) is said to be final if for any F-coalgebra (X, f ) there exists a
unique F-homomorphism [[−]]X : X → Ω. All the functors considered in examples in this
paper have a final coalgebra.

Let (X, f ) and (Y, g) be two F-coalgebras. We say that the states x ∈ X and y ∈ Y are
bisimilar, written x ∼F y, if and only if they are mapped into the same element in the final
coalgebra, that is [[x]]X = [[y]]Y†.

Algebras Monads can be thought of as a generalization of algebraic theories. A monad T =
(T, µ, η) is a triple consisting of an endofunctor T on Set and two natural transformations:
a unit η : Id ⇒ T mapping a set X to its free algebra T(X), and a multiplication µ : T2 ⇒ T.
They satisfy the following commutative laws

µ ◦ ηT = idT = µ ◦ Tη and µ ◦ µT = µ ◦ Tµ.

†Bisimilarity is usually defined in the literature in a slight different way. The definition we present here
is often called behavioural equivalence. For most functors both notions coincide and we choose the notion of
equivalence which is more convenient for presenting our story.
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Sometimes it is more convenient to represent a monad T, equivalently, as a Kleisli triple
(T, ( )], η) [18], where T assigns a set T(X) to each set X, the unit η assigns a function
ηX : X → T(X) to each set X, and the extension operation ( )] assigns to each f : X → T(Y)
a function f ] : T(X)→ T(Y), such that,

f ] ◦ ηX = f (ηX)] = idT(X) (g] ◦ f )] = g] ◦ f ] ,

for g : Y → T(Z). Monads are frequently referred to as computational types [19]. We list now
a few examples. In what follows, f : X → T(Y) and c ∈ T(X).

Nondeterminism T(X) = Pω(X); ηX is the singleton map x 7→ {x}; f ](c) =
⋃

x∈c f (x).
Partiality T(X) = 1 + X where 1 = {∗} represents a terminating (or diverging) com-
putation; ηX is the injection map κ2 : X → 1 + X; f ](κ1(∗)) = κ1(∗) and f ](κ2(x)) =
f (x).

Further examples of monads include: exceptions (T(X) = E + X), side-effects (T(X) = (S×
X)S), interactive output (T(X) = µv.X + (O× v) ∼= O∗ × X) and full-probability (T(X) =
Dω(X)). We will use all these monads in our examples and we will define ηX and f ] for
each later in Section 4.1.

A T-algebra of a monad T is a pair (X, h) consisting of a set X, called carrier, and a
function h : T(X) → X such that h ◦ µX = h ◦ Th and h ◦ ηX = idX. A T-homomorphism
between two T-algebras (X, h) and (Y, k) is a function f : X → Y such that f ◦ h = k ◦ T f . T-
algebras and their homomorphisms form the so-called Eilenberg-Moore category SetT. There
is a forgetful functor UT : SetT → Set defined by

UT((X, h)) = X and UT( f : (X, h)→ (Y, k)) = f : X → Y .

The forgetful functor UT has left adjoint X 7→ (T(X), µX : TT(X) → T(X)), map-
ping a set X to its free T-algebra. If f : X → Y with (Y, h) a T-algebra, the unique T-
homomorphism f ] : (T(X), µX)→ (Y, h) with f ] ◦ ηX = f is given by

f ] : T(X)
T f // T(Y) h // Y .

The function f ] : (T(X), µX) → (T(Y), µY) coincides with function extension for a
Kleisli triple. For the monad Pω the associated Eilenberg-Moore category is the category
of join semi-lattices, whereas for the monad 1 +− is the category of pointed sets.

3 Motivating examples
In this section, we introduce two motivating examples. We will present two constructions,

the determinization of a non-deterministic automaton and the totalization of a partial au-
tomaton, which we will later show to be an instance of the same, more general, construction.

3.1 Non-deterministic automata

A deterministic automaton (DA) over the input alphabet A is a pair (X, 〈o, t〉), where X is
a set of states and 〈o, t〉 : X → 2 × XA is a function with two components: o, the output
function, determines if a state x is final (o(x) = 1) or not (o(x) = 0); and t, the transition
function, returns for each input letter a the next state. DA’s are coalgebras for the functor
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2× IdA. The final coalgebra of this functor is (2A∗ , 〈ε, (−)a〉) where 2A∗ is the set of languages
over A and 〈ε, (−)a〉, given a language L, determines whether or not the empty word is in
the language (ε(L) = 1 or ε(L) = 0, resp.) and, for each input letter a, returns the derivative
of L: La = {w ∈ 2A∗ | aw ∈ L}. From any DA, there is a unique map l into 2A∗ which assigns
to each state its behaviour (that is, the language that the state recognizes).

X
l //_________

〈o,t〉 ��

2A∗

〈ε,(−)a〉��

2× XA
id×lA

//______ 2× (2A∗)A

A non-deterministic automaton (NDA) is similar to a DA but the transition function gives a
set of next-states for each input letter instead of a single state. Thus, an NDA over the input
alphabet A is a pair (X, 〈o, δ〉), where X is a set of states and 〈o, δ〉 : X → 2× (Pω(X))A is
a pair of functions with o as before and where δ determines for each input letter a a set of
possible next states. In order to compute the language recognized by a state x of an NDAA,
it is usual to first determinize it, constructing a DA det(A) where the state space is Pω(X),
and then compute the language recognized by the state {x} of det(A). Next, we describe
in coalgebraic terms how to construct the automaton det(A).

Given an NDA A = (X, 〈o, δ〉), we construct det(A) = (Pω(X), 〈o, t〉), where, for all
Y ∈ Pω(X), a ∈ A, the functions o : Pω(X)→ 2 and t : Pω(X)→ Pω(X)A are

o(Y) =

{
1 ∃y∈Yo(y) = 1

0 otherwise
t(Y)(a) =

⋃
y∈Y

δ(y)(a).

The automaton det(A) is such that the language l({x}) recognized by {x} is the same as
the one recognized by x in the original NDAA (more generally, the language recognized by
state X of det(A) is the union of the languages recognized by each state x of A).

We summarize the situation above with the following commuting diagram:

X
〈o,δ〉
��

{·} // Pω(X)

〈o,t〉vvmmmmmmmm

l //_____ 2A∗

〈ε,(−)a〉��
2×Pω(X)A

id×lA
//_________ 2× (2A∗)A

We note that the language semantics of NDA’s, presented in the above diagram, can also be
obtained as an instance of the abstract definition scheme of λ-coinduction [2, 12].

3.2 Partial automata

A partial automaton (PA) over the input alphabet A is a pair (X, 〈o, ∂〉) consisting of a set
of states X and a pair of functions 〈o, ∂〉 : X → 2× (1 + X)A, with o : X → 2 as for DA and
∂ : X → (1 + X)A a transition function, which for any input letter a is either undefined (no a-
labelled transition takes place) or specifies the next state that is reached. PA’s are coalgebras
for the functor 2× (1 + Id)A. Given a PAA, we can construct a total (deterministic) automa-
ton tot(A) by adding an extra sink state to the state space: every undefined a-transition from
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a state x is then replaced by a a-labelled transition from x to the sink state. More precisely,
given a PA A = (X, 〈o, ∂〉), we construct tot(A) = (1 + X, 〈o, t〉), where

o(κ1(∗)) = 0
o(κ2(x)) = o(x)

t(κ1(∗))(a) = κ1(∗)
t(κ2(x))(a) = ∂(x)(a)

The language l(x) recognized by a state x will be precisely the language recognized by x in
the original partial automaton. Moreover, the new sink state recognizes the empty language.
Again we summarize the situation above with the help of following commuting diagram,
which illustrates the similarities between both constructions:

X
〈o,∂〉
��

κ2 // 1 + X

〈o,t〉vvllllllll
l //_____ 2A∗

〈ε,(−)a〉��
2× (1 + X)A

id×lA
//_________ 2× (2A∗)A

4 Algebraically structured coalgebras
In this section we present a general framework where both motivating examples can be em-
bedded and uniformly studied. We will consider coalgebras for which the functor type FT
can be decomposed into a transition type F specifying the relevant dynamics of a system
and a monad T providing the state space with an algebraic structure. For simplicity, we fix
our base category to be Set, but all results below can be generalized to an arbitrary category
C with enough limits.

We will study coalgebras f : X → FT(X) for a functor F and a monad T such that
FT(X) is a T-algebra, that is FT(X) is the carrier of a T-algebra (FT(X), h). In the motivating
examples, F would be instantiated to 2× IdA (in both) and T to Pω, for NDAs, and to 1 +−
for PAs. The condition that FT(X) is a T-algebra would amount to require that 2×Pω(X)A

is a join-semilattice, for NDAs, and that 2× (1 + X)A is a pointed set, for PAs. This is indeed
the case, since the set 2 can be regarded both as a join-semilattice (2 ∼= Pω(1)) or as a pointed
set (2 ∼= 1 + 1) and, moreover, products and exponentials preserve the algebra structure.

The inter-play between the transition type F and the computational type T (more pre-
cisely, the fact that FT(X) is a T-algebra) will allow each coalgebra f : X → FT(X) to be
extended uniquely to a T-algebra morphism f ] : (T(X), µX)→ (FT(X), h) which makes the
following diagram commute.

X
f
��

ηX // T(X)

f ]xxppppppp

FT(X)

f ] ◦ ηX = f

Intuitively, ηX : X → T(X) is the inclusion of the state space of the coalgebra f : X → FT(X)
into the structured state space T(X), and f ] : T(X) → FT(X) is the extension of the coalge-
bra f to T(X).

Next, we will study the behaviour of a given state or, more generally, we would like to
say when two states x1 and x2 are equivalent. The obvious choice for an equivalence would
be bisimilarity, which arises from the functor determining the type of the coalgebra – FT.
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However, this equivalence is not exactly what we are looking for. In the motivating exam-
ple of non-deterministic automata we wanted two states to be equivalent if they recognize
the same language. If we would take the equivalence arising from the functor 2× Pω(Id)
we would be distinguishing states that recognize the same language but have difference
branching types, as in the following example.

•
a��

• a
""FFFFa

||xxxx

c
""FFFFb

||xxxx
b �� c��

• • • •

We now define a new equivalence, which will absorb the effect of the monad T.
We say that two elements x1 and x2 in X are F-equivalent with respect to a monad T,

written x1 ≈T
F x2, if and only if ηX(x1) ∼F ηX(x2). The equivalence ∼F is just bisimilarity

for the F-coalgebra f ] : T(X)→ FT(X).
If the functor F has a final coalgebra (Ω, ω) , we can capture the semantic equivalence

above in the following commuting diagram

X
f
��

ηX // T(X)

f ]xxrrrrrrr

[[−]] //____ Ω
ω
��

FT(X)
F[[−]] //________ F(Ω)

(1)

Back to our first example, two states x1 and x2 of a NDA (in which T is instantiated to Pω

and F to 2× IdA) would satisfy x1 ≈T
F x2 if and only if they recognize the same language

(recall that the final coalgebra of the functor 2× IdA is 2A∗).
It is also interesting to remark the difference between the two equivalences in the case

of partial automata. The coalgebraic semantics of PAs [25] is given in terms of pairs of
prefix-closed languages 〈V, W〉 where V contains the words that are accepted (that is, are
the label of a path leading to a final state) and W contains all words that label any path (that
is all that are in V plus the words labeling paths leading to non-final states). We exemplify
what V and W would be in the following examples for state s0 and q0.

W = c∗ + c∗b + c∗ab∗

V = c∗ab∗
s0

b   
AAA

a //

c
�� GFED@ABC?>=<89:;s1

b

TT

s2

q0
a //

c
�� GFED@ABC?>=<89:;q1

b
UU

W = c∗ + c∗ab∗

V = c∗ab∗

Thus, state s0 and q0 would be distinguished by FT-bisimilarity (for F = 2× IdA and T =
1 +−) but they are equivalent with respect to the monad 1 +−, s0 ≈T

F q0, since they accept
the same language.

We will show in Section 5 that the equivalence ∼FT is contained in ≈T
F .

4.1 Examples

In this section we show more examples of applications of the framework above.

Partial Mealy machines A partial Mealy machine is a set of states X together with a func-
tion t : X → (B× (1 + X))A, where A is a set of inputs and B is a set of output values (with
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a distinguished value ⊥). For each state s and for each input a the automaton produces an
output value and either terminates or continues to a next state. Applying the framework
above we will be totalizing the automaton, similarly to what happened in the example of
partial automata, by adding an extra state to the state space which will act as a sink state.
The behaviour of the totalized automaton is given by the set of causal functions from Aω

(infinite sequences of A) to Bω, which we denote by Γ(Aω, Bω) [24]. A function f : Aω → Bω

is causal if, for σ ∈ Aω, the n-th value of the output stream f (σ) depends only on the first n
values of the input stream σ.

X

t
��

// 1 + X

t]xxrrrrrrrrrrrrr

[[−]] //___________

[[κ1(∗)]](σ) = (⊥,⊥, . . .)
[[κ2(s)]](a:σ) = b:([[n]](σ))

where 〈b, n〉 = t(s)(a)

Γ(Aω, Bω)

��
(B× (1 + X))A //_______________ (B× Γ(Aω, Bω))A

Structured Moore automata In the following examples we look at the functor F(X) =
T(B)× XA, for B and A arbitrary sets and T = (T, η, (−)]) an arbitrary monad. This rep-
resents Moore automata with outputs in T(B) and inputs in A. For any set X, FT(X) has a
T-algebra lifting and the final coalgebra of F is T(B)A∗ . The final map [[−]] : T(X)→ T(B)A∗

is defined below.

X
〈o,t〉
��

ηX // T(X)
[[m]](ε) = o](m)
[[m]](aw) = [[t](m)(a)]](w)〈o,t〉]vvmmmmmmmmmm

[[−]] //____________ T(B)A∗

〈ε,(−)a〉��
T(B)× (T(X))A //______________ T(B)× (T(T(B)A∗))A

Moore automata with exceptions. Consider T(X) = E + X, with E a set of exceptions,
η(x) = κ2(x) and, for a function f : X → T(Y), f ] : T(X)→ T(Y) is defined as f ] = [id, f ].

An FT-coalgebra 〈o, t〉 : X → (E + B)× (E + X)A will associate with every state s an
output value (either in B or an exception in E) and, for each input a, a next state or an
exception. The behaviour of a state x, given by [[η(x)]], will be a formal power series over A
with output values in E + B (that is, a function from A∗ to E + B), defined as follows.

[[κ1(e)]](w) = κ1(e) [[κ2(s)]](ε) = o(s) [[κ2(s)]](aw) = [[t(s)(a)]](w)

Moore automata with side effects. Consider T(X) = (S × X)S, with S a set of side-
effects, η(x) = λs.〈s, x〉 and, for a function f : X → T(Y), f ] : T(X) → T(Y) is defined as
f ](g)(s) = f (x)(s′) where 〈s′, x〉 = g(s).

Take now an FT-coalgebra 〈o, t〉 : X → (B× S)S × ((S× X)S)A and let us explain the
intuition behind this automaton type. Let S be the set of side effects (for instance, one could
take S = VL, functions associating memory locations to values). The set S × X can be
interpreted as the configurations of the automaton, where S contains information about the
state of the system and X about the control of the system. Then, we can think of o : X →
(S× B)S as a function that for each configuration S×X provides an output and the new state
of the system (note that X → (S× B)S ∼= S× X → S× B). The transition function t : X →
((S×X)S)A gives a new configuration for each input letter and current configuration (again
we use the fact that X → ((S× X)S)A ∼= S× X → (S× X)A).
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The behaviour of a state x will be given by [[η(x)]], defined below, and it will be a
function that for each configuration and for each sequence of actions returns an output value
and a side effect.

[[g]](ε)(s) = o(x)(s′) where 〈s′, x〉 = g(s)
[[g]](aw1) = [[λs.t(s)(a)(s′)]](w1) where 〈s′, x〉 = g(s)

Moore automata with interactive output. Consider T(X) = µv.X + (O × v) ∼= O∗ × X,
with O a set of outputs, η(x) = 〈ε, x〉 and, for f : X → T(Y), f ] : T(X) → T(Y) is given by
f ](〈w, x〉) = 〈ww′, x′〉 where 〈w′, x′〉 = f (x). Take an FT-coalgebra 〈o, t〉 : X → (O∗ × B)×
(O∗ × X)A. For B = 1, this coincides with a (total) subsequential transducer [9]: o : X → O∗ is
the terminal output function; t : X → (O∗ × X)A is the pairing of the output function and
the next state-function.

The behaviour of a state x will be given by [[η(x)]] = [[〈ε, x〉]], where, for every 〈w, x〉 ∈
O∗ × X, [[〈w, x〉]] : A∗ → B∗, is given by

[[〈w, x〉]](ε) = w · o(x) [[〈w, x〉]](aw1) = w · ([[t(x)(a)]](w1))

Probabilistic Moore automata. Take T(X) = Dω(X), η the Dirac distribution (defined
below) and, for f : X → T(Y), f ] : T(X)→ T(Y) is given by

f ](c) = λy. ∑
d∈Dω(Y)

 ∑
x∈ f−1(d)

c(x)

× d(y) η(x) = λx′.

{
1 x = x′

0 otherwise

Take an FT-coalgebra 〈o, t〉 : X → Dω(B)×Dω(X)A. For B = 2 (note that Dω(2) ∼= [0, 1])
this gives rise to a (Rabin) probabilistic automaton [22]: each state x has an output value in
o(x) ∈ [0, 1] and, for each input a, t(x)(a) is a probability distribution of next states. The
behaviour of a state x is given by [[η(x)]] : A∗ → [0, 1], defined below. Intuitively, one can
think of [[η(x)]] as a probabilistic language: each word is associated with a value p ∈ [0, 1].

[[d]](ε) = ∑
b∈[0,1]

( ∑
o(x)=b

d(x))× b

[[d]](aw) = [[λx′. ∑
c∈Dω(X)

(∑b=t(x)(a) d(x))× c(x′))]](w)

It is worth to note that this exactly captures the semantics of [22], while the ordinary ∼FT
coincides with probabilistic bisimilarity of [15].

5 Coalgebras and T-Algebras
In the previous section we presented a framework, parameterized by a functor F and a
monad T, in which systems of type FT (that is, FT-coalgebras) can be studied using a novel
equivalence ≈T

F instead of the classical bisimilarity ∼FT. The only requirement we imposed
was that FT(X) has to be a T-algebra.

In this section, we will present functors F for which the requirement of FT(X) being a T-
algebra is guaranteed because they can be lifted to a functor F∗ on T-algebra. For these func-
tors, the equivalence ≈T

F coincides with ∼F∗ . In other words, working on FT-coalgebras in
Set under the novel ≈T

F equivalence is the same as working on F∗-coalgebras on T-algebras
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under the ordinary ∼F∗ equivalence. Next, we will prove that for this class of functors and
an arbitrary monad T the equivalence ∼FT is contained in ≈T

F . Instantiating this result for
our first motivating example of non-deterministic automata will yield the well known fact
that bisimilarity implies trace equivalence.

Let T be a monad. An endofunctor F∗ : SetT → SetT is said to be the T-algebra lifting of
a functor F : Set→ Set if the following square commutes‡:

SetT

UT
��

F∗ // SetT

UT
��

Set
F // Set

If the functor F has a T-algebra lifting F∗ then FT(X) is the carrier of the algebra F∗(T(X), µ).
Functors that have a T-algebra lifting are given, for example, by those endofunctors on Set
constructed inductively by the following grammar

F:: = Id | B | F× F | FA | TG

where A is an arbitrary set, B is the constant functor mapping every set X to the carrier of a
T-algebra (B, h), and G is an arbitrary functor. Since the forgetful functor UT : SetT → Set
creates and preserves limits, both F1 × F2 and FA have a T-algebra lifting if F, F1, and F2

have. Finally, TG has a T-algebra lifting for every endofunctor G given by the assignment
(X, h) 7→ (TGX, µTG). Note that we do not allow taking coproducts in the above grammar,
because coproducts of T-algebras are not preserved in general by the forgetful functor UT.
Instead, one could resort to extending the grammar with the carrier of the coproduct taken
directly in SetT. For instance, if T is the (finite) powerset monad, then we could extend the
above grammar with the functor F1 ⊕ F2 = F1 + F2 + {>,⊥}.

Now, let F be a functor with a T-algebra lifting and for which a final coalgebra Ω exists.
If Ω can be constructed as the limit of the final sequence (for example assuming the functor
accessible [1]), then, because the forgetful functor UT : SetT → Set preserves and creates
limits, Ω is the carrier of a T-algebra, and it is the final coalgebra of the lifted functor F∗.
Further, for any FT-coalgebra f : X → FT(X), the unique F-coalgebra homomorphism [[−]]
as in diagram (1) is a T-algebra homomorphism between T(X) and Ω. Conversely, the
carrier of the final F∗-coalgebra (in SetT) is the final F-coalgebra (in Set).

Intuitively, the above means that for an accessible functor F with a T-algebra lifting F∗,
F∗-equivalence in SetT coincides with F-equivalence with respect to T in Set. The latter
equivalence is coarser than the FT-equivalence in Set, as stated in the following theorem.

THEOREM 1. Let T be a monad. If F is an endofunctor on Set with a T-algebra lifting, then
∼FT implies ≈T

F .

The proof of this theorem (presented in appendix) relies on the fact that for every
monad T and functor F with a T-algebra lifting, if h : (X, f ) → (Y, g) is an FT-coalgebra
homomorphism, then (ηY ◦ h)] : (T(X), f ])→ (T(Y), g]) is an F-coalgebra homomorphism.

The above theorem instantiates to the well-known facts: for NDA, where F(X) = 2×
XA and T = Pω, that bisimulation implies language equivalence; for partial automata,

‡This is equivalent to the existence of a distributive law λ : TF ⇒ FT [13].
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where F(X) = 2× XA and T = 1 +−, that equivalence of pairs of languages, consisting of
defined paths and accepted words, implies equivalence of accepted words; for probabilistic
automata, where F(X) = [0, 1] × XA and T = Dω, that probabilistic bisimilarity implies
probabilistic/weighted language equivalence. Note that, in general, the above inclusion is
strict.

6 Discussion

In this paper, we lifted the powerset construction on automata to the more general frame-
work of FT-coalgebras. Our results lead to a uniform treatment of several kinds of existing
and new variations of automata (that is, FT-coalgebras) by an algebraic structuring of their
state space through a monad T. We showed as examples partial Mealy machines, structured
Moore automata, nondeterministic, partial and probabilistic automata. Appendix A shows
(as further examples) several behavioural equivalences that are extremely interesting for
the theory of concurrency. It is worth mentioning that the framework instantiates to many
other examples, among which weighted automata [27]. These are simply structured Moore au-
tomata for B = 1 and T = S−ω (for a semiring S) [8]. It is easy to see that ∼FT coincides with
weighted bisimilarity [5], while ≈T

F coincides with weighted language equivalence [27].
Some of the aforementioned examples can also be coalgebraically characterized in the

framework of [10]. There, instead of considering FT-coalgebras on Set and F∗-coalgebras on
SetT (the Eilenberg-Moore category), TG-coalgebras on Set and G-coalgebras on SetT (the
Kleisli category) are studied. The main theorem of [10] states that under certain assump-
tions, the initial G-algebra is the final G-coalgebra that characterizes (generalized) trace
equivalence. In Appendix C, we present a first step in exploring the connection between
both frameworks. However, the exact relationship is not clear yet and further research is
needed in order to make it precise. It is worth to remark that many of our examples will not
fit the framework in [10]: for instance, the exception, the side effect, the full-probability and
the interactive output monads do not fulfill their requirements (the first three do not have a
bottom element and the latter is not commutative). Moreover, we also note that the example
of partial Mealy machines is not purely trace-like, as all the examples in [10].

There are two other future research directions. On the one hand, we will try to exploit
F-bisimulations up to T [16, 17] as a sound and complete proof technique for ≈T

F . On the
other hand, we would like to lift many of those coalgebraic tools that have been developed
for “branching equivalences” (such as coalgebraic modal logic [6, 26] and (axiomatization
for) regular expressions [3]) to work with the “linear equivalences” induced by ≈T

F .
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A Beyond Bisimilarity and Traces
The operational semantics of concurrent and interactive systems is usually specified by la-
beled transition systems (LTS’s) that are coalgebras for the functor Pω(−)A. A huge variety
of behavioural equivalences for LTS’s has been proposed in literature, since bisimilarity is
often considered too strict, while trace equivalence too coarse (it is usually not composi-
tional).

The coalgebraic bisimilarity for the functor Pω(−)A coincides with the ordinary notion
of Park-Milner bisimilarity. Only recently, two works [10, 20] studied coalgebraic charac-
terization for the other equivalences. The former provides a coalgebraic characterization of
finite traces by employing Kleisli categories, while the latter provides a characterization of
trace, failure and ready semantics by employing “behaviour objects”.

In this appendix, we show that (finite) trace equivalence [11], complete trace equiva-
lence [7], failures [4] and ready semantics [21] can be seen as instances of ≈T

F .

Before introducing these semantics, we have to fix some notation. A labeled transition
system is a pair (X, δ) where X is a set of states and δ:X → Pω(X)A is a function assigning
to each state x ∈ X and to each label a ∈ A a set of possible successors states. x a→ y
means that y ∈ δ(x)(a). For a word w ∈ A∗, x w→ y means that x

a1→ . . . an→ y and w =
a1 . . . an. When w = ε, x ε→ y iff y = x. For a function ϕ ∈ Pω(X)A, I(ϕ) denotes the
set of all labels “enabled” by ϕ, i.e., {a ∈ A s.t. ϕ(a) 6= ∅}, while Fail(ϕ) denotes the set
{Z ⊆ A s.t. Z ∩ I(ϕ) = ∅}.

Let 〈X, δ〉 be a LTS and x ∈ X be a state. A trace of x is a word w ∈ A∗ such that x w→ y
for some y. A trace w of x is complete if x w→ y and y stops, i.e., I(δ(y)) = ∅. A failure pair of x
is a pair 〈w, Z〉 ∈ A∗ ×Pω(A) such that x w→ y and Z ∈ Fail(δ(y)). A ready pair of x is a pair
〈w, Z〉 such that x w→ y and Z = I(δ(y)). T (x), CT (x), F (x) andR(x) denote, respectively,
the set of all traces, complete traces, failure pairs and ready pairs of x. For I ranging over
T , CT ,F andR, two states x and y are I-equivalent iff I(x) = I(y).

For a concrete example, consider the following transition systems labeled over A =
{a, b, c}. They are all trace equivalent because their traces are a, ab, ac. The trace a is also
complete for p, but not for the others. Only r and s are failure equivalent, since 〈a, {bc}〉 is
a failure pair only of p, while 〈a, {b}〉 and 〈a, {c}〉 are failure pairs of p, r and s, but not of q.
Finally they are all ready different, since 〈a, ∅〉 is a ready pair only of p, 〈a, {b, c}〉 is a ready
pair of q and s but not of r, and 〈a, {b}〉 and 〈a, {c}〉 are ready pairs only of r and s.

p
a��

a
��~~~~

q
a��

r a
��>>>>a

������
s

a��
a
��>>>>a

������

c
##FFFFb

{{xxxx c
""FFFFb

||xxxx
b �� c�� b ��

b
""EEEEc

||yyyy c��

We are now ready to show that these equivalences are instances of ≈T
F . We first discuss

ready equivalence in details and then the others.
Take T = Pω and F = Pω(Pω(A)) × idA. For each set X, consider the function

πRX :Pω(X)A → FT(X) defined for all ϕ ∈ Pω(X)A by

πRX (ϕ) = 〈{I(ϕ)}, ϕ〉 ∈ Pω(Pω(A))×Pω(X)A.



14 GENERALIZING THE POWERSET CONSTRUCTION, COALGEBRAICALLY

This function allows to transform each LTS (X, δ) into the FT-coalgebra (X, πRX ◦ δ). The
latter has the same transitions of 〈X, δ〉, but each state x is “decorated” with the set {I(ϕ)}.

Now, by employing the powerset construction, we transform 〈X, πRX ◦ δ〉 into the F-
coalgebra (Pω(X), 〈o, t〉), where, for all Y ∈ Pω(X), a ∈ A, the functions o:Pω(X) →
Pω(Pω(A)) and t:Pω(X)→ Pω(X)A are

o(Y) =
⋃

y∈Y

{I(δ(y))} t(Y)(a) =
⋃

y∈Y

δ(y)(a).

The final F-coalgebra is (Pω(Pω(A))A∗ , 〈ε, (−)a〉) where 〈ε, (−)a〉 is defined as usual.
The final map [[−]]:Pω(X) → Pω(Pω(A))A∗ maps each {x} into a function assigning to
each word w, the set {Z ⊆ A s.t. x w→ y and Z = I(δ(y))}. In other terms, 〈w, Z〉 ∈ R(x)
iff Z ∈ [[{x}]](w). For s being the state depicted above, [[{s}]](ε) = {{a}}, [[{s}]](a) =
{{b}, {b, c}, {c}}, [[{s}]](ab) = [[{s}]](ac) = {∅} and for all the other words w, [[{s}]](a) =
∅.

The coalgebraic characterization of ready semantics is summarized by the following
commuting diagram:

X
πRX ◦δ ��

{.} // Pω(X)
[[m]](ε) = o(m)
[[m]](aw) = [[t(m)(a)]](w)〈o,t〉ttjjjjjjjjjjjjj

[[−]] //______________ Pω(Pω(A))A∗

〈ε,(−)a〉��
Pω(Pω(A))× (Pω(X))A //_______________ Pω(Pω(A))× (Pω(Pω(Pω(A))A∗))A

The other semantics can be characterized in the same way, by choosing different func-
tors F and different functions πX:Pω(X)A → FT.

For failure semantics, take F = Pω(Pω(A)) × idA (as in the case of ready semantics)
and πFX :Pω(X)A → FT(X) defined ∀ϕ ∈ Pω(X)A as 〈Fail(ϕ), ϕ〉.

For both trace and complete trace equivalence, take F = 2× idA (as for NDA). For trace
equivalence, πTX :Pω(X)A → FT(X) maps ϕ ∈ Pω(X)A into 〈1, ϕ〉. Intuitively, (X, δ;πTX ) is a
NDA where all the states are accepting. For complete traces, πCTX :Pω(X)A → FT(X) maps
φ in 〈1, ϕ〉 if I(ϕ) = ∅ (and in 〈0, ϕ〉 otherwise).

By taking T = Dω instead of T = Pω, we can characterized probabilistic trace, complete
trace, ready and failure as defined in [14]

B Proof of Theorem 1

In this appendix we provide a proof of Theorem 1 by showing that there exists a functor
from the category of FT-coalgebras to the category of F-coalgebras.

This functor maps each FT-coalgebra (X, f ) into the F-coalgebra (T(X), f ]) and each
FT-homomorphism h:(X, f )→ (Y, g) into the F-homomorphism T(h):(T(X), f ])→ (T(Y), g]).
In order to prove that this is a functor we just have to show that T(h) is an F-homomorphism
(i.e., the backward face of the following diagram commutes).
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T(X)

f ]

��













T(h) // T(Y)

g]

��













X
h //

f
��

ηX 88qqqqqq
Y

g
��

ηY 88rrrrrr

FT(X)
FT(h)

// FT(Y)

Note that the top face of the above diagram commute because h is an FT-homomorphism.
Also the front face commutes because η is a natural transformation. Thus FT(h) ◦ f ] ◦ ηX =
g] ◦ T(h) ◦ ηX = h ◦ g. Since η is the unit of the adjunction, then there exists a unique
j]:T(X) → FT(Y) in SetT such that h ◦ g = j] ◦ ηX . Since both FT(h) ◦ f ] and g] ◦ T(h) are
(by construction) morphisms in SetT, then FT(h) ◦ f ] = g] ◦ T(h).

C Free T-Algebras
Next, we briefly restrict the study presented in Section 5 to free T-algebras. This constitutes
a first step to clarify the connection of our work to the framework presented in [10].

For a monad T, the full subcategory of T-algebras consisting of the free ones is denoted
by SetT, and is called the Kleisli category of T. The objects are sets, and a morphism f : X → Y
in SetT is a function f : X → TY in Set. The composition of two morphisms f : X → Y and
g : Y → Z in SetT is given by µZ ◦ Tg ◦ f in Set. The functor J : Set → SetT mapping a
set X to itself and a function f : X → Y to the Kleisli morphism T f ◦ ηX : X → TY, has a
right adjoint UT given by X 7→ TX. Clearly, UT preserves limits and J preserves colimits.
Moreover, if T : Set → Set (weakly) preserves limits of ωop-chains, then so does J : Set →
SetT.

The T-Kleisli lifting of a functor F : Set → Set is a functor F : SetT → SetT such that
J ◦ F = F ◦ J. The existence of a Kleisli lifting is equivalent to the existence of a natural
transformation δ : FT ⇒ TF compatible with the monad structure, i.e. δ ◦ Fη = ηF and
δ ◦ Fµ = µF ◦ Tδ ◦ δT.

Now, let F be a functor that has a T-Kleisli lifting and that preserves the limit of the
final ωop-chain, which gives the final coalgebra Ω of F. If T is a monad which also preserves
limits of ωop-chains and the final object (T1 ∼= 1), then J(Ω) = Ω is the final coalgebra of F,
because J preserves limits of ωop-chains. We thus have that ∼F equivalence in Set coincides
with ∼F in SetT.

In order to obtain a similar result to the above for the functor UT instead of J we need to
move the position of T in our functor FT from the left to right. Let G be any endofunctor on
Set equipped with a distributive law δ : GT ⇒ TG. If FT is naturally isomorphic to TG, and
FµX = µGX ◦ TλX, then FUT = UTG. Since the forgetful functor UT : SetT → Set preserves
limits, if the final coalgebra Z of G in SetT is obtained as limit of the final sequence, then we
have that UT(Z) = T(Z) is the final F-coalgebra in Set.

As a concrete example of this very abstract construction take F = 2× (−)A and G =
1 + A×X. For T = P we have thatP(1 + A×−) is naturally isomorphic to 2×P(−)A. It is
not hard to see that all the other assumptions above are satisfied. Since the final coalgebra of
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G in SetT is A∗ [10], we have that P(A∗) (i.e. the set of languages over A) is the F-semantics
in Set, as expected.

For a monad T and an endofunctor G on Set, in [10], TG-coalgebras are considered,
with G having a Kleisli lifting G : SetT → SetT. Under the additional assumptions that
G-preserves limits of ωop-chains, the monad is strong and commutative and SetT is ccpo-
enriched, the authors proved that the initial G-algebra I in Set is a final G-coalgebra in
SetT, providing a canonical trace map tr : X → T(I) for each TG-coalgebra (X, g). Elements
x, y of X equated by the trace map are said to be trace equivalent, denoted by x ∼tr y. If
F : Set → Set has an algebra lifting F∗, and there is a natural transformation ρ : TG ⇒ FT,
then for every TG-coalgebra (X, g), x ∼tr y implies x ≈T

F y for the FT-coalgebra (X, ρ ◦ g).
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