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Abstract: We present a generalization of the relativistic, finite-volume, three-particle

quantization condition for non-identical pions in isosymmetric QCD. The resulting formal-

ism allows one to use discrete finite-volume energies, determined using lattice QCD, to

constrain scattering amplitudes for all possible values of two- and three-pion isospin. As

for the case of identical pions considered previously, the result splits into two steps: the

first defines a non-perturbative function with roots equal to the allowed energies, En(L),

in a given cubic volume with side-length L. This function depends on an intermediate

three-body quantity, denoted Kdf,3, which can thus be constrained from lattice QCD in-

put. The second step is a set of integral equations relating Kdf,3 to the physical scattering

amplitude, M3. Both of the key relations, En(L) ↔ Kdf,3 and Kdf,3 ↔ M3, are shown

to be block-diagonal in the basis of definite three-pion isospin, Iπππ, so that one in fact

recovers four independent relations, corresponding to Iπππ = 0, 1, 2, 3. We also provide the

generalized threshold expansion of Kdf,3 for all channels, as well as parameterizations for

all three-pion resonances present for Iπππ = 0 and Iπππ = 1. As an example of the utility of

the generalized formalism, we present a toy implementation of the quantization condition

for Iπππ = 0, focusing on the quantum numbers of the ω and h1 resonances.
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1 Introduction

The computation of scattering amplitudes using lattice quantum chromodinamics (LQCD)

has seen enormous progress in the last few years. The majority of calculations are based

on the finite-volume formalism of Lüscher [1], which relates discrete finite-volume energies

in a cubic, periodic, spatial volume of side-length L, to the scattering amplitude of two

identical spin-zero particles. This relation is exact up to corrections scaling as e−mL, with

m the pion mass, but holds only for energies in the regime of elastic scattering, i.e. below
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the lowest-lying three- or four-particle threshold. The formalism has since been extended

to generic two-particle systems [2–11], for which, however, the same restrictions apply.

At unphysically heavy pion masses, many resonances satisfy this restriction, leading to a

recent explosion of LQCD resonant studies as reviewed, for example, in ref. [12]. However,

for physical masses, many experimentally observed resonances have significant branching

fractions to modes containing three (or more) particles. Thus, the development of a multi-

particle formalism is essential in order to gain insight into the nature of these states.

In the last few years, significant theoretical effort has been devoted to extensions and

alternatives to the two-particle Lüscher formalism for more-than-two-particle systems. In

particular, a three-particle quantization condition for identical (pseudo)scalars has been

derived following three different approaches:1 (i) generic relativistic effective field theory

(RFT) [17–24], (ii) nonrelativistic effective field theory (NREFT) [25–28], and (iii) (rel-

ativistic) finite volume unitarity (FVU) [29–31]. (See ref. [32] for a review of the three

approaches.) At this stage, only the RFT formalism has been explicitly worked out includ-

ing higher partial waves.

These theoretical developments have been accompanied by significant progress in lat-

tice calculations. In previous work, the three-particle coupling was extracted using the

ground state energy in QCD [30, 33, 34], and also in ϕ4 theory [35]. Going beyond this,

the determination of complete spectra with quantum numbers of three pions has been

achieved by multiple groups in the last two years [36–38]. In fact, very recently, a large

number of three-π+ levels (including those in moving frames) has been combined with the

RFT formalism to constrain the three-particle scattering amplitude from first principles

QCD [24].

As the present quantization conditions are only valid for identical particles, their use

is limited to three pions (or kaons or heavy mesons) at maximal isospin, and thus only for

weakly interacting channels with no resonances. Motivated by this, in the present paper we

provide the generalization of the RFT approach to include nonidentical, mass-degenerate

(pseudo)scalar particles. Specifically, we focus on a general three-pion state in QCD with

exact isospin symmetry (and thus exact G parity, preventing two-to-three transitions).

A feature of all three-particle approaches is that the extraction of scattering ampli-

tudes proceeds via an intermediate three-particle scattering quantity, denoted in the RFT

approach by Kdf,3. In particular, the RFT quantization condition provides, for each finite-

volume three-particle energy, En(L), a combined constraint on Kdf,3 and the two-particle

scattering amplitude, M2. Additional constraints on M2 are provided by the two-particle

spectrum using the Lüscher formalism. Then, in a second step, infinite-volume integral

equations are used to relate Kdf,3 to the physical scattering amplitude, M3. To implement

these steps in practice, one requires a physically motivated parametrization of Kdf,3 that

includes, for example, a truncation in the angular momentum of two-particle subsystems.

Our work generalizes all aspects of this work flow to three-pion scattering for all allowed

values of two- and three-pion isospin. In section 2 we derive the generalized formalism.

We first review the results of refs. [17, 18] for identical particles [section 2.1], before pro-

1See also refs. [13–16].
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viding the extensions to non-identical pions, first of the relation between En(L) to Kdf,3

[section 2.2] and then of the integral equations relating Kdf,3 toM3 [section 2.3]. These are

presented for states with definite individual pion flavors. The change of basis to definite

total isospin is given in sections 2.4 and 2.5. An important consequence of projecting to

total isospin is that the results block diagonalize into four separate relations, one for each

of the allowed values of the total three-pion isospin: Iπππ = 0, 1, 2, 3.

With the formalism in hand, in section 3 we describe strategies to parametrize Kdf,3.

We determine the form of the threshold expansion for all choices of Iπππ, and provide

expressions for Kdf,3 that produce three-particle resonant behavior for each of the choices

of Iπππ and JP for which such behavior is experimentally observed.

To illustrate the utility of the generalized formalism, we present a numerical imple-

mentation for the Iπππ = 0 channel in section 4. We do so using forms of Kdf,3 that lead

to both vector and axial-vector resonances, mimicking the experimentally observed ω and

h1. The finite-volume energies exhibit avoided level crossings associated with the allowed

cascading resonant decays, e.g. h1 → ρπ → πππ.

This completes the main text, following which section 5 gives a brief summary of the

work and a discussion of the future outlook. We include four appendices to address various

technical details. First, in appendix A, we provide further discussion of the derivation of

the generalized quantization condition. Second, in appendix B, we collect the definitions of

the building blocks entering the quantization condition. Third, appendix C describes the

different bases we use for three-pion states. Finally, appendix D summarizes some group

theoretical results that are relevant to the implementation of the quantization condition.

2 Derivation

In this section we derive the quantization condition for general three-pion states. Following

the approach of refs. [4, 17], we first introduce a matrix of correlation functions

CL;jk(P ) ≡
∫
dx0

∫

L3

d3x e−iP ·x+iEt 〈TOj(x)O†k(0)〉L . (2.1)

Here O†k are Oj are operators that, respectively, create and destroy three-pion states, with

quantum numbers and additional information specified by the indices j, k. In the following

paragraphs we give a concrete choice for these operators that is particularly convenient

for the present derivation. The correlator is defined in the context of a generic, isospin-

symmetric effective theory of pions. The underlying fields are denoted by π+(x), π−(x)

and π0(x), and are normalized such that

〈0|πq(x)|π, q,p〉 = e−ip·x , (2.2)

where |π, q,p〉 is a state with mass m and charge q, and p0 = ωp =
√
p2 +m2. We use

Minkowski four-vectors, adopting the metric convention p · x = p0x0 − p · x. The finite

volume is implemented by requiring that all fields satisfy periodic boundary conditions in

each of the spatial directions., π(x) = π(x+ Lei).
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In the derivation of refs. [17, 18], the analysis was simplified by assuming that the inter-

actions of the identical scalar particles satisfied a Z2 symmetry that led to particle number

conservation modulo two.2 This implied, for example, that there were no intermediate

four-pion states in the correlator CL. This simplification carries over to the present analy-

sis because we are assuming exact isospin symmetry, so that G parity is exactly conserved,

and serves as the Z2 symmetry.

For a given choice of total momentum P , which is constrained by the boundary condi-

tions to take one of the values 2πn/L, with n a vector of integers, the correlator CL,ij(E,P )

has poles in E at the positions of the finite-volume eigenstates. Our aim is to derive a quan-

tization condition whose solutions give the energies of these eigenstates.

There are 27 distinct combinations of three-pion fields, assuming that we distinguish

identical fields with position labels, x1, x2, x3. It is useful to understand this multiplicity

from the viewpoint of combining three objects with isospin 1. This leads to seven irreducible

representations (irreps)

1⊗ 1⊗ 1 = (0⊕ 1⊕ 2)⊗ 1 = (1)⊕ (0⊕ 1⊕ 2)⊕ (1⊕ 2⊕ 3) . (2.3)

We see that the total three-pion isospin can have values Iπππ = 0, 1, 2, 3, with respective

multiplicities 1, 3, 2, 1. The multiplicities correspond to the number of possible values of

the two-pion isospin, Iππ, that can appear: all three values for Iπππ = 1, two values,

Iππ = 1, 2, for Iπππ = 2, and only one value each for Iπππ = 0 and 3, namely Iππ = 1 and

2, respectively. The situation is summarized in figure 1.

Since we are treating isospin as an exact symmetry, we need only consider one choice of

Iz (or, equivalently, one choice of electric charge) from each of the seven irreps. A convenient

choice is to use the combination with vanishing electric charge, since this appears once in

each irrep. Thus, henceforth we focus on the space of the seven neutral operators:

Õ(a, b, k) ≡




π̃−(a) π̃0(b) π̃+(k)

π̃0(a) π̃−(b) π̃+(k)

π̃−(a) π̃+(b) π̃0(k)

π̃0(a) π̃0(b) π̃0(k)

π̃+(a) π̃−(b) π̃0(k)

π̃0(a) π̃+(b) π̃−(k)

π̃+(a) π̃0(b) π̃−(k)




. (2.4)

Here we have written the fields in momentum space as this will prove convenient below.

These operators are related to Oj(x) via

Oj(x) ≡
∫

a,b,k
f(a, b, k) e−i(a+b+k)·x Õj(a, b, k) , (2.5)

where
∫
k ≡

∫
dk0/(2π)

∑
k, with the sum over k being over the finite-volume set introduced

above for P . f(a, b, k) is a smooth function that specifies the detailed form of Oj . It is

2This is not a fundamental limitation on the derivation; the generalization without a Z2 symmetry is

derived in ref. [19].
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Figure 1. Sketch of subchannels for pairwise interactions present in each three-pion system with

fixed overall isospin, Iπππ. For Iπππ = 0 and 3, only one subchannel is present, having Iππ = 1 and

Iππ = 2, respectively. For Iπππ = 2, two subchannels are present, with Iππ = 1 and 2, implying

that the three-particle quantization condition lives in a two-dimensional flavor space. For Iπππ = 1,

all three two-pion subchannels contribute (Iππ = 0, 1, and 2), leading to a three-dimensional flavor

space. For convenience, we use the shorthand notation (Iππ = 0) ≡ “σ”, (Iππ = 1) ≡ “ρ”, and

(Iππ = 2) ≡ “(ππ)2”, in which we label (when possible) the two-pion subchannels by the renonances

present in them.

convenient for the subsequent derivation to choose f(a, b, k) to be invariant under exchanges

or permutations of its arguments.3

At this point, the reader may wonder why, in eq. (2.4), we have distinguished between

the six different channels with charge composition π+, π0, π−, by using different momentum

labels, and then multiplied them by a symmetric function in eq. (2.5) so as to apparently

remove the distinction between the channels. The motivation for this construction is to

create a single formalism that can simultaneously treat identical and nonidentical particles.

How this works will become clear below.

Having defined the column of operators, Oj , we are now in position to derive a skeleton

expansion for CL;ij , exactly as was done in ref. [17]. The only distinction compared to the

earlier work is that the endcaps, appearing on the far left and far right of every diagram,

now represent a column (on the left) and row (on the right), so that each Feynman diagram

encodes a 7 × 7 matrix, defining a contribution to the matrix of correlators, CL;ij . As we

discuss in the following, this matrix structure naturally propagates through all steps of

the derivation so that the final result appears identical to that of ref. [17], but with the

additional flavor channel assigned to each of the building blocks. The final step is to

3One could also, in principle choose different weight functions for the different entries of the column but

this has no effect on the results derived, and leads to more complicated intermediate expressions.
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perform a change of basis into states with definite two- and three-pion isospin. This block

diagonalizes CL;ij , as expected, and one recovers four distinct quantization conditions,

one each for Iπππ = 0, 1, 2, 3. While the Iπππ = 0 and 3 conditions are one-dimensional

in the flavor index, Iπππ = 1 and 2 are 3 and 2 dimensional, respectively, encoding the

coupled-channel scattering of the various allowed Iππ subchannels.

2.1 Formalism for identical (pseudo-)scalars

In this subsection we review the results of refs. [17, 18] for the case of three identical

particles, which apply here for the Iπππ = 3 channel. These results will serve as stepping

stones to the generalization for other values of Iπππ. In ref. [17], it was shown that the

finite-volume correlator for three identical (pseudo-)scalars can be written

CL(P ) = C∞(P ) + iA′3F3
1

1 +Kdf,3F3
A3 , (2.6)

where

2ωL3 × F3 ≡
F

3
− F 1

1 +M2,LG
M2,LF , M2,L ≡

1

K−12 + F
. (2.7)

This result holds for m2 < E2−P 2 < (5m)2 and neglects L dependence of the form e−mL,

while keeping all power-like scaling. The intuitive picture behind its derivation is that only

three-pion states can go on shell for the kinematics considered, and only these on-shell

states can propagate large distances to feel the periodicity and induce 1/Ln corrections.

The quantities ω, F,G,K2,Kdf,3, A
′
3, A3 and C∞ are each defined in detail in ref. [17], as

is the matrix space on which all quantities act.4 Here we only give a brief summary of

the most important details, with some additional definitions provided in appendix B. All

objects besides CL and C∞ are defined on an index space denoted by k, ℓ,m where k

represents the three-momentum for the spectator particle, i.e. is shorthand for a finite-

volume momentum k, and ℓ,m give the angular-momentum of the non-spectator pair. A

cutoff on the k index is built into all matrices so that this index space is always finite.

To intuitively understand the appearance of the cutoff function, note that, for fixed total

energy E and momentum P , if the spectator carries kµ = (ωk,k) then the squared invariant

mass of the non-spectator pair is

E⋆2
2,k ≡ (E − ωk)2 − (P − k)2 . (2.8)

This becomes negative for sufficiently large k2 implying that the state cannot go on the

mass shell and therefore does not induce power-like L dependence. Thus it is possible to

absorb the deep subthreshold behavior into the definitions of K2,Kdf,3, A
′
3, A3 and C∞ and

to cut off the matrix space.

The objects ω, F , G, K2 and Kdf,3 are all matrices on the k, ℓ,m space, e.g. F =

Fk′ℓ′m′,kℓm, whereas A′3 and A3 are row and column vectors respectively, e.g. A3 = A3;kℓm.

In this way all indices in eqs. (2.6) and (2.7) are fully contracted, with adjacent factors

multiplied according to usual matrix multiplication. The L-dependence in these results

4The quantities we call A3 and A′
3 here are denoted A and A′ in refs. [17, 18].
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enters both through the index space, k, and through explicit dependence inside of F and

G, which are defined in eqs. (B.7) and (B.3), respectively. The simplest object entering

eq. (2.7) is the diagonal kinematic matrix

ωk′ℓ′m′,kℓm ≡ δk′kδℓ′ℓδm′m

√
k2 +m2 . (2.9)

This leaves only two quantities to define: the two- and three-particle K matrices,

K2 and Kdf,3, respectively. The former is given in eq. (B.9). It depends on the two-

to-two scattering phase shift, δℓ, in each angular momentum channel, for two-particle

energies ranging from 0 (well below the threshold at 2m) up to E⋆ − m. Here we have

introduced the notation E⋆ =
√
E2 − P 2, for the three-particle center-of-momentum frame

(CMF) energy. In practice, one must choose a value ℓmax above which the phase shift is

assumed negligible, in order to render K2 finite-dimensional. Then it can be determined

using the two-particle quantization condition, together with finite-volume energies from a

numerical lattice calculation.

The remaining object, Kdf,3, encodes the short-distance part of the three-particle am-

plitude. We close this subsection by explaining, first, how this quantity can be constrained

from finite-volume three-particle energies and, second, how it is related to the physical

observable, the three-particle scattering amplitude.

The utility of eq. (2.6) is that it allows one to identify the poles in CL(P ) as a function

of E, corresponding to the three-body finite-volume spectrum for fixed values of L and P .

These pole locations, denoted En(L) for n = 0, 1, 2, . . . , occur at energies for which

detk,ℓ,m
[
1 +Kdf,3(E

⋆)F3(E,P , L)
]

= 0 , (2.10)

where we have made the kinematic dependence explicit. Thus, given many values of En(L),

ideally for different P and L, one can identify parameterizations of Kdf,3(E
⋆) that describe

the system and fix the values of the parameters. As with K2, also here a value of ℓmax must

be set to render Kdf,3(E
⋆) finite-dimensional. Indeed, the angular momentum cutoffs in the

two- and three-particle sectors must be performed in a self consistent way, as is described

in ref. [22].

Now, taking Kdf,3(E
⋆) as known, we present its relation to the three-particle scattering

amplitude,M3, first derived in ref. [18]. As is explained in that work, one can relate CL(P )

to a new finite-volume correlator, M3,L(P ), in a two-step procedure. First we take only

the second term of eq. (2.6), multiply by i, and amputate A′3F [2ωL3]−1 on the left and

[2ωL3]−1FA3 on the right to reach

C ′L(P ) ≡ −
[

F

2ωL3

]−1
F3

1

1 +Kdf,3F3

[
F

2ωL3

]−1
, (2.11)

= D(u,u)
disc +D(u,u) + L(u)L

1

1 +Kdf,3F3
Kdf,3R(u)

L , (2.12)

where in the second step we have introduced

D(u,u)
disc ≡ −

[
F

2ωL3

]−1[ F

6ωL3
− FM2,LF

2ωL3

][
F

2ωL3

]−1
, (2.13)

D(u,u) ≡ −
[

F

2ωL3

]−1
F3

[
F

2ωL3

]−1
−D(u,u)

disc , (2.14)

– 7 –
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L(u)L ≡
[

F

2ωL3

]−1
F3 , (2.15)

R(u)
L ≡ F3

[
F

2ωL3

]−1
. (2.16)

Note that D(u,u), L(u)L and R(u)
L are closely related to F3, differing only by the amputation

factors and, in the case of D(u,u), by the subtraction of D(u,u)
disc . The latter is labeled with the

subscript “disc” for disconnected, referring to the fact that these terms arise from diagrams

in which one of the three-particles does not interact with the other two. The second step

towards defining M3,L(P ) is to drop D(u,u)
disc and to symmetrize the resulting function with

respect to the exchange of pion momenta. The result is

M3,L(P ) ≡ S
[
M(u,u)

3,L (P )
]
, (2.17)

M(u,u)
3,L (P ) ≡ D(u,u) + L(u)L

1

1 +Kdf,3F3
Kdf,3R(u)

L , (2.18)

where S indicates the symmetrization.5 This is explained in detail in section 2.3 below, in

the context of the generic isospin system.

The motivation for these seemingly ad hoc redefinitions is that the new correlator,

M3,L(P ), is closely related to the physical, fully connected three-to-three scattering am-

plitude. Substituting P = (E,P ), the connection is given by

M3(E,P ) = lim
ǫ→0+

lim
L→∞

M3,L(E + iǫ,P ) . (2.19)

This ordered double limit can be evaluated analytically to produce an integral equation

relating Kdf,3 to theM3. This completes the complicated mapping from the finite-volume

spectrum to infinite-volume amplitudes. Again, we point the reader to ref. [18] for a full

derivation and for the explicit forms of the integral equations.

2.2 Generalized quantization condition

In this subsection we generalize the derivation of the quantization condition [eq. (2.10)]

to the system of three pions with any allowed total isospin. The relation of the general-

ized Kdf,3 to the corresponding generalized scattering amplitude is discussed in the next

subsection.

As explained above, the finite-volume correlator, CL,ij , becomes a 7 × 7 matrix on

the space of all possible neutral three-pion configurations. We find that, to generalize the

quantization condition, we also need to extend all the objects in the correlator decomposi-

tion [eq. (2.6)], the quantization condition [eq. (2.10)] and the relation to M3 [eqs. (2.17)

and (2.19)] to be matrices on the seven-dimensional flavor space. We stress that all objects,

5The quantity M
(u,u)
3,L given here is actually slightly different from the object with the same name defined

in ref. [18]. The distinction is that the M
(u,u)
3,L is this work has been partially symmetrized, leading to small

differences in L(u) and R(u). However, these differences have no impact on the fully symmetrized quantity,

M3,L, which is identical to that in ref. [18].
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Figure 2. Three Feynman diagram topologies required to illustrate the extension to generic isospin.

including C∞, A3 and A′3 become flavor matrices, even though the latter are defined as

either scalars or vectors in the kℓm indices.

In the original derivation of ref. [17], the first step was to identify a skeleton expan-

sion that expressed CL in terms of generalized Bethe-Salpeter kernels and fully dressed

propagators. Cutting rules were then applied to write each diagram as a sum of various

contributions, and summing over all possibilities lead to eq. (2.6). A key feature that will

simplify the present generalization is that the new matrix space can be completely imple-

mented already at the level of Bethe-Salpeter kernels and fully dressed propagators, i.e.

before the steps of decomposition and summation. These final steps, which lead to the

main complications in the earlier work, can then be copied over with the new index space

passing in a straightforward way into F , G, K2 and the other matrices entering the final

results.

To illustrate this we carefully consider the three diagrams of figure 2. We give expres-

sions for each of these in turn, first for the case of identical particles and then for the general

isospin extensions. In this way, all building blocks are defined for the new quantization

condition, which is then given in eq. (2.44) below.

Beginning with figure 2a, the expression in the case of three identical particles is

C
[2a]
L (P ) =

1

6

∑

k,a

∫
da0

2π

∫
dk0

2π
iσ(k, a) ∆(a)∆(b)∆(k) iσ†(k, a) , (2.20)

where σ(k, a) and σ†(k, a) are endcap factors encoding the coupling of the operator to a

three-particle state and ∆(a) is a fully dressed propagator. As explained in ref. [17], this

can be rewritten as

C
[2a]
L (P ) = C [2a]

∞ (P ) + iσ
iF

6ωL3
iσ† , (2.21)

where the first term on the right-hand side is the contribution from the diagram of figure 2a

to the infinite-volume correlation function. In the second term we have introduced σ and σ†

as row and column vectors, respectively, on the kℓm space. These are ultimately combined

with other terms to define A′3 and A3, respectively.

In the extension to general three-pion isospin, eq. (2.20) is replaced with

C
[2a]
L,jl(P ) =

1

6

∑

n,n′

∑

k,a

∫
da0

2π

∫
dk0

2π
iσjn(k, a) [∆(a)∆(b)∆(k)]nn′ iσ†n′l(k, a) , (2.22)

where b = P −k−a. Here [∆(a)∆(b)∆(k)]nn′ is a diagonal matrix of propagator triplets, in

which each entry is built from charged and neutral pion propagators according to eq. (2.4).
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We repeat the pion content of each entry here for convenience:

[∆(a)∆(b)∆(k)] = diag
(

[−][ 0 ][+], [ 0 ][−][+], [−][+][ 0 ], [ 0 ][ 0 ][ 0 ],

[+][−][ 0 ], [ 0 ][+][−], [+][ 0 ][−]
)
, (2.23)

where [−][ 0 ][+] = ∆−(a)∆0(b)∆+(k), etc., the subscript indicating the pion field at the

sink of the two-point function defining the fully-dressed propagator. In fact, in the iso-

symmetric theory, the propagators are all equal as functions, ∆−(a) = ∆0(a) = ∆+(a).

Nonetheless, it is useful to treat these objects as distinct, in order to better identify the

patterns arising in our matrix representation of the Feynman rules.

The endcap matrices, σjl(k, a) and σ†jl(k, a), are built from the function f(a, b, k),

introduced in eq. (2.5), that encodes how the fundamental fields, π0, π+ and π−, are used

to build up the annihilation operators Oj(x). The exact relation is σjl(k, a) = Mjlf(a, b, k),

where

M =




� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �




, � = 0 , � = 1 . (2.24)

(Here and below we use empty and filled squares to present matrices of 0s and 1s as we

find this form more readable.)

This complicated matrix structure in the case of the non-interacting diagram, figure 2a,

may seem surprising. The structure arises simply because six of the seven entries in the

column Oj(x) (all entries besides j = 4) are built from π−, π0 and π+, distinguished only

by the momentum assignments as shown in eqs. (2.4) and (2.5). Thus, even when all

interactions are turned off, CL,jl is still nonzero for any combination of j, l 6= 4.

In more detail, the definition of M ensures that eq. (2.22) gives the correct expression

for C
[2a]
L,jl, for all choices of j and l. Here one must consider three distinct cases. First for j =

4, l 6= 4, as well as j 6= 4, l = 4, the correlator vanishes, as expected for the non-interacting

contribution connecting a [−][ 0 ][+] channel with a [ 0 ][ 0 ][ 0 ]. Second, if both j, l 6= 4

then one recovers a non-zero contribution with a factor of
∑

kMjkMkl = 6 arising from

the contracted matrix indices. This compensates the 1/6 pre-factor, leading to the correct

expression for a diagram with three distinguishable particles. Finally, j = l = 4 yields the

diagram with three neutral particles and in this case the 1/6 survives and correctly gives

the symmetry factor for identical particles.

Having demonstrated that eq. (2.22) gives the correct generalization of eq. (2.20), it is

now very straightforward to generalize the decomposition, eq. (2.21). We find

C
[2a]
L (P ) = C[2a]

∞ (P ) +
1

3
σFσ† , (2.25)

[F]jl ≡
iF

2ωL3
δjl , (2.26)
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where δjl is the identity matrix on the seven-dimensional flavor space. Here we find it

convenient to absorb various factors of i, ω and L into the boldface definitions. Specifically,

we use

[σ]jl = iσjl ,
[
σ†
]
jl

= i
[
σ†
]
jl
, and [CL(P )]jl = CL,jl(P ) , (2.27)

In the following we generally follow the convention of using bold-faced symbols whenever

flavor-space indices are suppressed.

We turn now to the diagram shown in figure 2b. In the case of a single channel of

identical particles the corresponding expression is

C
[2b]
L (P ) =

1

4

∑

k,a,a′

∫
da0

2π

∫
da′0

2π

∫
dk0

2π
iσ(k, a′) ∆(a′)∆(b′)

× iB(a′, b′; a, b) ∆(a)∆(b) ∆(k) iσ†(k, a) , (2.28)

where B is the infinite-volume Bethe-Salpeter kernel. As we demonstrate in ref. [17] this

leads to a contribution of the form

C
[2b]
L (P ) = iσ

iF

2ωL2
iK2 iF iσ

† + · · · , (2.29)

where K2 is the two-particle K matrix, up to some subtleties in the sub-threshold definition,

as discussed in refs. [17, 18]. The ellipsis in eq. (2.29) indicates that additional terms arise

containing less than two factors of F . Indeed, many of the complications in ref. [17] arise in

the demonstration that these terms can be reabsorbed into redefinitions of C∞, σ and σ†, in

a consistent way that generalizes to all orders. It is this patterm of absorbing higher-order

terms that leads to the conversion of B into the K matrix.

Following the pattern established above, our next step is to give the isospin general-

ization of eq. (2.28)

C
[2b]
L,jl(P ) =

1

4

∑

k,a,a′

∫
da0

2π

∫
da′0

2π

∫
dk0

2π
iσjn(k, a′) [∆(a′)∆(b′)∆(k)]nn′

× [∆(k)−1iB(a′, b′; a, b)]n′n′′ [∆(a)∆(b)∆(k)]n′′n′′′ iσ†n′′′l(k, a) . (2.30)

All quantities here have been defined, with the exception of [∆(k)−1iB(a′, b′; a, b)]n′n′′ . This

object is a matrix on the flavor space, with non-zero entries only when the third particles

of the n′ and n′′ states coincide, see again eq. (2.4). In the case where n′ and n′′ do have

a common spectator, the entry is defined by setting ∆(k)−1 to the spectator species and

taking B as the Bethe-Salpeter kernel for the scattering of the n′ and n′′ non-spectator

pairs. We give a concrete expression of this matrix structure (in the context of K2) in

eqs. (2.32)–(2.35) below.

As with eq. (2.22), it is straightforward to show that (2.30) gives the correct result

for the correlator for all choices of j and l. For example, if j = 4 and l 6= 4, then the

left-hand loop (containing momenta a′ and b′) consists of three π0s, and the expression

then forces the spectator in the right-hand loop (that with momenta a and b) to also be a

π0. There are then two options for n′′ = n′′′ available, namely n′′ = 3 and 5 (n′′ = 4 being
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disallowed since l 6= 4). These two options correspond to the scattering process in the

Bethe-Salpeter kernel being π0(a
′)π0(b′) ← π+(a)π−(b) and π0(a

′)π0(b′) ← π−(a)π+(b),

respectively. These give equal contributions because in the loop sums/integrals we can

freely interchange the dummy labels a and b. This redundancy cancels the prefactor of 1/2

for right-hand loop, while leaving it for the left-hand loop, as required for a diagram with

only one exchange-symmetric two-particle loop.

We are now ready to present the isospin generalization of eq. (2.29),

C
[2b]
L (P ) = σFK2Fσ† + · · · , (2.31)

where all objects have been defined above besides

K2 ≡ i[2ωL3]




K+

K0

K−


 . (2.32)

Here our notation indicates a block-diagonal matrix, in which the subscript on each block

denotes the charge of the spectator. The blocks are given explicitly by

K+ ≡


 [π−π0 ← π−π0] [π−π0 ← π0 π−]

[π0 π− ← π−π0] [π0 π− ← π0 π−]


 , (2.33)

K0 ≡




[π−π+ ← π−π+] [π−π+ ← π0 π0] [π−π+ ← π+π−]

[π0 π0 ← π−π+] [π0 π0 ← π0 π0] [π0 π0 ← π+π−]

[π+π− ← π−π+] [π+π− ← π0 π0] [π+π− ← π+π−]


 , (2.34)

K− ≡


[π0 π+ ← π0 π+] [π0 π+ ← π+π0]

[π+π0 ← π0 π+] [π+π0 ← π+π0]


 , (2.35)

where each scattering process in square brackets indicates the corresponding two-particle

K matrix. We stress that many entries in these K matrices are trivially related, e.g.

[π−(a′)π+(b′)← π−(a)π+(b)] = [π−(a′)π+(b′)← π+(b)π−(a)] . (2.36)

This completes the discussion of figure 2b.

To conclude the extension of the quantization condition, it remains only to consider

figure 2c. Here we immediately give the isospin-generalized expression

C
[2c]
L,jl(P ) =

1

4

∑

k,a,a′

∫
da0

2π

∫
da′0

2π

∫
dk0

2π
iσjn(k, a′) [∆(a′)∆(b′)∆(k)]nn′

× [∆(k)−1iB(a′, b′; p, bpk)]n′n′′ [∆(p)∆(bpk)∆(k)]Gn′′n′′′

× [∆(p)−1iB(bpk, k; a, b)]n′′′m′′ [∆(a)∆(b)∆(p)]m′′m′iσ†m′l(p, a) , (2.37)
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where bpk = P − p − k. All quantities are defined above except for the propagator triplet

with the G superscript, which represents the contribution of the central cut in figure 2c.

To give an explicit expression, we introduce the matrix

TG =




� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �




, � = 0 , � = 1 . (2.38)

This corresponds to interchanging the first and last particles in each channel, which is

what is required by the “switching” of the spectator particle in figure 2c. Note that TG is

a reducible representation of the element (13) of the permutation group S3 in the notation

of appendix C. Using this matrix we then have

[∆(p)∆(bpk)∆(k)]Gnn′′ = [∆(p)∆(bpk)∆(k)]nn′ [TG]n′n′′ . (2.39)

In ref. [17] we demonstrated that such exchange propagators gave rise to a new kind

of finite-volume cut involving G. We find that the isospin-generalized result is

C
[2c]
L (P ) = σFK2GK2Fσ† + · · · , (2.40)

where

G = i
1

2ωL3
GTG . (2.41)

We stress that, in contrast to K2 and F , the matrix G does not commute with 1/[2ωL3]

on the k, ℓ,m index space. For this reason we have been careful to show the order of the

product defining G.

At this point we have introduced the key quantities entering the generalized quantiza-

tion condition: F, K2 and G. With these objects defined, every step in the decompositions

of refs. [17, 18] naturally generalizes to flavor space, with each equation carrying over essen-

tially verbatim, but with extra flavor indices. The only significant difference is that certain

steps, related to symmetrization, require additional justification when flavor is included.

This is discussed in appendix A, where the additional arguments are given. In the end,

one reaches a decomposition of the finite-volume correlator that is exactly analogous to

eq. (2.6) above:

CL(P ) = C∞(P )−A′3F3
1

1−Kdf,3F3
A3 , (2.42)

where

F3 ≡
F

3
+ F

1

1−M2,LG
M2,LF , M2,L ≡

1

K−12 − F
. (2.43)
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The sign changes in eqs. (2.42) and (2.43) as compared to eqs. (2.6) and (2.7) are due to

the factors of i that are absorbed into the bold-faced quantities.6

The endcap factors, A′3 and A3, are matrices on the seven-dimensional flavor space,

describing the coupling of each of the seven operators [see eq. (2.4)] to each of the seven

interacting asymptotic states. The exact definitions are unimportant for this work and

it suffices to know that these quantities, like C∞(P ), have only exponentially suppressed

dependence on L, and do not contain the finite-volume poles that we are after. Thus, just

as in the single channel case, the finite-volume spectrum is given by all divergences of the

matrix appearing between A′3 and A3, equivalently by all solutions to the quantization

condition

detk,ℓ,m,f

[
1−Kdf,3(E

⋆)F3(E,P , L)
]

= 0 , (2.44)

where the subscript f indicates that the determinant additionally runs over flavor space.

Note that this expression will give the spectra of all three-particle quantum numbers si-

multaneously and is therefore not useful in practice. In the section 2.4 below we discuss

how to project this result into the various sectors of definite total isospin.

2.3 Generalized relation to the three-particle scattering amplitude

First, however, we present the isospin generalizations of eqs. (2.13)–(2.19) above, thus

providing the relation between Kdf,3 and the physical scattering amplitude. One first

defines the modified finite-volume correlator:

M3,L(P ) ≡ S
[
M

(u,u)
3,L (P )

]
, (2.45)

M
(u,u)
3,L (P ) ≡ D(u,u) + L

(u)
L

1

1−Kdf,3F3
Kdf,3R

(u)
L , (2.46)

where

D(u,u) ≡ F−1F3F
−1 −D

(u,u)
disc , D

(u,u)
disc ≡ F−1

[
F

3
+ FM2,LF

]
F−1 , (2.47)

L
(u)
L ≡ F−1F3 , R

(u)
L ≡ F3F

−1 . (2.48)

S now denotes a symmetrization procedure in the multi-flavor system, an extension that

introduces some additional complications as we discuss in the following paragraphs. As

in the case of a single channel, an ordered double limit of M3,L gives a set of integral

equations relating Kdf,3 to the physical scattering amplitude, denoted M3,

M3(E,P ) = lim
ǫ→0+

lim
L→∞

M3,L(E + iǫ,P ) . (2.49)

It is straightforward to write out the resulting integral equations explicitly, as done for

identical particles in ref. [18], but they are not enlightening and we do not do so here.

6For completeness, we note that A3 and A′
3 include factors of i: they are the flavor generalizations of

iA3 and iA′
3, respectively. They are the generalized all-orders endcaps, whose leading terms are σ

† and σ,

respectively. Similarly Kdf,3 is the flavor generalization of iKdf,3.
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This concludes the path from finite-volume spectrum, through Kdf,3, to the scattering

amplitude M3.

As in the single-channel case, implicit in this procedure is a conversion from the k, ℓ,m

index space to a function of the incoming and outgoing three-momenta. This conversion is

performed simultaneously with a symmetrization procedure. We stress that symmetrization

is needed even for non-identical particles, to ensure that all diagrams are included, i.e. that

the proper definition of the infinite-volume amplitude is recovered.

At this point, it remains only to specify the symmetrization procedure, encoded in the

operator S, for the case of general pion flavors. To do so, we begin by defining

X(u,u)(k′,a′;k,a) ≡ 4πY ∗ℓ′m′(â′⋆2,k′)X
(u,u)
k′ℓ′m′,kℓm Yℓm(â⋆

2,k) , (2.50)

where X
(u,u)
k′ℓ′m′,kℓm stands for a generic, unsymmetrized quantity, e.g.M(u,u)

3,L in the identical-

particle case or an entry of M
(u,u)
3,L in flavor space. Here â⋆

2,k is the spatial direction of

(ω⋆
a,a

⋆
2,k), the four-vector reached by boosting (ωa,a) with velocity β = −(P−k)/(E−ωk).

In other words â⋆
2 gives the direction of back-to-back momenta of the non-spectator pair,

which have momenta a and P −k−a in their two-particle CMF. The same holds for â′⋆2,k′
with a → a′ and k → k′. Contracting the spherical harmonic indices, as shown on the

right-hand side of eq. (2.50), leads to a function of momenta whose argument can be take

as k, â⋆
2,k or, equally well, as k,a. Here we choose the latter convention, i.e. specifying

all momenta in the finite-volume frame, as this makes the symmetrization procedure more

transparent.

We begin with the case of a single channel of identical particles, where the symmetriza-

tion procedure, first introduced in ref. [18], is given by

X(k′,a′, b′;k,a, b) ≡ S[X
(u,u)
k′ℓ′m′,kℓm] ≡

∑

{p′
3,p

′
1}∈P ′

3

∑

{p3,p1}∈P3

X(u,u)(p′3,p
′
1;p3,p1) . (2.51)

The sums here run over the sets

P3 =
{
{k,a}, {a, b}, {b,k}

}
and P ′3 =

{
{k′,a′}, {a′, b′}, {b′,k′}

}
, (2.52)

with b ≡ P − a− k and b′ ≡ P − a′ − k′. As discussed in ref. [18], this step is necessary

to reach the correct definition of M3, a quantity that is invariant under the exchange of

any two incoming or outgoing momenta. The essential point is that the sum runs over all

assignments of the spectator momentum for both incoming and outgoing particles in X(u,u).

To generalize this to non-trivial flavors, we first note that the identical-particle pre-

scription, i.e. simply summing M
(u,u)
3,L over all permutations of the momenta, is clearly

incorrect. The issue is that, for example, the π0 π+π− → π0 π+π− scattering amplitude

is not, in general, invariant under permutations of either the incoming or the outgoing

momenta. Instead, the required property is that amplitudes must be invariant under the

simultaneous exchange of flavor and momentum labels. Summing over such exchanges en-

sures that the all choices of the spectator pion flavor are included, as illustrated in figure 3.

To express this we introduce matrices that rearrange flavors in accordance with a given

momentum permutation. For example, the second element in the set P3 corresponds to
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k→ a, a→ b, b→ k, and should be matched with the following flavor rearrangement:

Rk→a ≡




� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �




, � = 0 , � = 1 , (2.53)

We additionally define Rk→k ≡ I (the identity) and Rk→b ≡ R2
k→a.The matrices Rk→b,

Rk→a, and Rk→k are reducible representations of elements (231), (321), and (1) of S3
[see again appendix C]. This then allows us to succinctly express the generalization of

eq. (2.51) to the space of all possible three-pion flavors

Xf ′,f(k
′,a′, b′;k,a, b) ≡ S[X

(u,u)
f ′k′ℓ′m′,f kℓm] , (2.54)

≡
∑

{p′
3,p

′
1}∈P ′

3

∑

{p3,p1}∈P3

RT
k′→p′

3
·X(u,u)(p′3,p

′
1;p3,p1) ·Rk→p3

.

(2.55)

Note that the symmetrization also converts us from the index space to the momentum

coordinates (k′,a′, b′;k,a, b), and thus leads to the proper dependence for the three-body

scattering amplitude. In fact, the scattering amplitude does not depend on this full set of

vectors, but rather on the subset built from the eight possible Poincaré invariants that can

be built from six on-shell four-vectors. This statement holds regardless of whether or not

the particles are identical.

We conclude this subsection by commenting that, as for the quantization condition

in eq. (2.44), the relation (2.49) is in the basis of three-pion states labeled by individ-

ual pion flavors. The conversion to definite three-pion isospin, and the resulting block

diagonalization, will be addressed in section 2.5.

2.4 Block diagonalization in isospin: quantization condition

We now project the above expressions onto definite two- and three-pion isospin. To achieve

this we require a matrix C such that



3

〈
(ππ)2π

∣∣

2

〈
(ππ)2π

∣∣

2

〈
ρπ
∣∣

1

〈
(ππ)2π

∣∣

1

〈
ρπ
∣∣

1

〈
σπ
∣∣

0

〈
ρπ
∣∣




= C ·




〈
π− , π0 , π+

∣∣
〈
π0 , π− , π+

∣∣
〈
π− , π+ , π0

∣∣
〈
π0 , π0 , π0

∣∣
〈
π+ , π− , π0

∣∣
〈
π0 , π+ , π−

∣∣
〈
π+ , π0 , π−

∣∣




, (2.56)

where the subscripts on the bras on the left-hand side indicate the total isospin, Iπππ, and

we have indicated the isospin of the first two pions with the shorthand (ππ)2 for Iππ = 2, ρ
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π

π

π

π

π

πk

M
(u,u)
3,L

a

bM3,L =

π

π

π

π

π

π

M
(u,u)
3,L+

a

b

k +

π

π

π

π

π

π

M
(u,u)
3,L

b

k

a

Figure 3. Representation of the symmetrization procedure applied to the outgoing particles. Colors

indicate different flavors.

for Iππ = 1 and σ for Iππ = 0. This notation and some related results are discussed further

in appendix C. A simple exercise using Clebsch-Gordon coefficients shows that the result

is given by the orthogonal matrix

C =




1√
10

1√
10

1√
10

√
2
5

1√
10

1√
10

1√
10

−1
2 −1

2 0 0 0 1
2

1
2

− 1
2
√
3

1
2
√
3
− 1√

3
0 1√

3
− 1

2
√
3

1
2
√
3

√

3
5

2

√

3
5

2 − 1√
15
− 2√

15
− 1√

15

√

3
5

2

√

3
5

2

1
2 −1

2 0 0 0 −1
2

1
2

0 0 1√
3
− 1√

3
1√
3

0 0

− 1√
6

1√
6

1√
6

0 − 1√
6
− 1√

6
1√
6




. (2.57)

The block-diagonalized finite-volume correlator is then given by

C ·CL(P ) · CT = C ·
[
C∞(P )−A′3F3

1

1−Kdf,3F3
A3

]
· CT . (2.58)

To further reduce these expressions one can insert CT · C = 1 between all adjacent

factors, so that every matrix is replaced according to X → C ·X · CT . One can explicitly

check that this transformation block diagonalizes F, K2, G and Kdf,3 so that the final

quantization condition factorizes into four results, one each for the four possibilities of

total three-pion isospin, Iπππ = 0, 1, 2, 3. For example, starting with eq. (2.41) above, one

finds (with blank entries vanishing)

C ·G · CT = i
1

2ωL3
G




1

−1
2 −

√
3
2

−
√
3
2

1
2

1
6

√
15
6

√
5
3

√
15
6

1
2 − 1√

3
√
5
3 − 1√

3
1
3

−1




. (2.59)
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det
[
1−K

[I]
df,3(E

⋆)F
[I]
3 (E,P , L)

]
= 0

F
[I]
3 ≡

F[I]

3
+ F[I] 1

1−M
[I]
2,LG

[I]
M

[I]
2,LF

[I] M
[I]
2,L ≡

1

K
[I]−1
2 − F[I]

I F[I] K
[I]
2 G[I]

3 iF
2ωL3 i[2ωL3]K(ππ)2 i 1

2ωL3G

2 iF
2ωL3

(
1 0

0 1

)
i[2ωL3]


K(ππ)2 0

0 Kρ


 i 1

2ωL3G



−1

2 −
√
3
2

−
√
3
2

1
2




1 iF
2ωL3




1 0 0

0 1 0

0 0 1


 i[2ωL3]




K(ππ)2 0 0

0 Kρ 0

0 0 Kσ


 i 1

2ωL3G




1
6

√
15
6

√
5
3

√
15
6

1
2 − 1√

3
√
5
3 − 1√

3
1
3




0 iF
2ωL3 i[2ωL3]Kρ −i 1

2ωL3G

Table 1. Summary of quantization conditions for all allowed values of the total isospin I = Iπππ.

We introduce the shorthand G[I] to indicate the block within C ·G · CT corresponding to

a given total isospin. See table 1 for the explicit definitions. It is interesting to note that

G[3], G[0], and G[2] each correspond to the element (13), as it is defined, respectively, in the

trivial, sign and standard irreps of S3. In addition G[1] is this same element in a reducible

representation, the direct sum of the trivial and the standard irreps.

For the two-particle K matrix, K2, the change of basis gives an exact diagonalization,

with each total-isospin block populated by the possible two-pion subprocesses, as illustrated

in figure 1. The quantity F is trivial under the change of basis, since it is proportional

to the identity matrix. Finally, the exchange properties of the pions within Kdf,3 (which

are the same as those of M3,L and M3) are enough to show that it too block diagonalizes,

but now with all elements non-zero in a given total-isospin sector. We conclude that

the quantization condition divides into four separate relations, compactly represented by

adding superscripts [I] to all quantities. The resulting forms of K
[I]
2 and F[I] as well as the

corresponding quantization conditions, are summarized in table 1. One noteworthy result

is the change in the sign of the G term for Iπππ = 0 compared to that for Iπππ = 3, which

is a consequence of the antisymmetry of the isospin wavefunction in the former case.

2.5 Block diagonalization in isospin: relation to M3

To conclude our construction of the general isospin formalism, it remains only to express

the relations between Kdf,3 and the scattering amplitude, M3, described in section 2.3, in

– 18 –



J
H
E
P
0
7
(
2
0
2
0
)
0
4
7

the definite-isospin basis. Exactly as with the quantization condition, the approach is to

left- and right-multiply the finite-volume correlator, M3,L(P ), by C and CT respectively

C ·M3,L(P ) · CT = C · S
[
M

(u,u)
3,L (P )

]
· CT =

∑

{p′
3,p

′
1}∈P ′

3

∑

{p3,p1}∈P3

× C ·RT
k′→p′

3
· CT · C ·M(u,u)

L (p′3,p
′
1;p3,p1) · CT · C ·Rk→p3

· CT .
(2.60)

One can then verify that the change of basis block diagonalizes the various Rk→p3
as well

as M
(u,u)
L . In other words, the symmetrization does not mix the different total isospin so

that we can write

M
[I]
3,L(P ) =

∑

{p′
3,p

′
1}∈P ′

3

∑

{p3,p1}∈P3

R
[I]T

k′→p′
3
M

[I](u,u)
L (p′3,p

′
1;p3,p1)R

[I]
k→p3

, (2.61)

where each object on the right-hand is reached by identifying a specific block after the

change of basis. The symmetrizing matrices are defined as follows: Rk′→k′ = Rk→k = I,

R
[I]
k→b = R

[I]

k′→b′
=
(
R

[I]
k→a

)2
, and R

[I]
k→a = R

[I]

k′→a′ are given in table 2. For Iπππ = 0, 2,

and 3, R
[I]
k→a coincides with the element (321) in the irreps of S3, see eqs. (C.9) and (C.10).

To conclude we only need the isospin specific definitions for the building blocks en-

tering M
[I]
3,L(P ). These are natural generalizations of eqs. (2.46)–(2.48) but we repeat the

expressions here for convenience:

M
[I](u,u)
3,L (P ) ≡ D[I](u,u) + L

[I](u)
L

1

1−K
[I]
df,3F

[I]
3

K
[I]
df,3R

[I](u)
L , (2.62)

where

D
[I](u,u)
disc ≡

(
F[I]

)−1
[
F[I]

3
+ F[I]M2,LF

[I]

](
F[I]

)−1
,

D[I](u,u) ≡
(
F[I]

)−1
F
[I]
3

(
F[I]

)−1
−D

[I](u,u)
disc ,

L
[I](u)
L ≡

(
F[I]

)−1
F
[I]
3 ,

R
[I](u)
L ≡ F

[I]
3

(
F[I]

)−1
.

(2.63)

3 Parametrization of Kdf ,3 in the different isospin channels

In order to use the quantization condition detailed in the previous section, Kdf,3 must be

parametrized in a manner that is consistent with its symmetries. In the ideal situation, only

a few free parameters will be needed describe Kdf,3 in the kinematic range of interest, such

that one can overconstrain the system with many finite-volume energies and thereby extract

reliable predictions for the three-particle scattering amplitude. There are two regimes in

which this is expected to hold: near the three-particle threshold and in the vicinity of
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I R
[I]
k→a

3 1

2



−1

2 −
√
3
2

√
3
2 −1

2




1




1
6

√

5
3

2

√
5
3

−
√

5
3

2 −1
2

1√
3

√
5
3 − 1√

3
1
3




0 1

Table 2. Summary of the symmetrization matrices entering the relation between the scattering

amplitude and K
[I]
df,3.

a three-particle resonance. In this section we describe the parametrizations in these two

regimes.

An important property of Kdf,3 that has been left implicit heretofore is that it can

be chosen real.7 This applies when Kdf,3 is expressed as a function of momenta, using

eqs. (2.50) and (2.51), rather than in the {kℓm} basis.8 The reality of Kdf,3 in the case of

identical scalars arises in the derivation of ref. [17] from the use of the PV prescription to

define integrals over poles. The same argument applies here, except that, in addition, one

must choose the relative phases between different flavor channels to be real. This additional

condition is relevant for the multichannel cases, I = 1 and 2.

3.1 Threshold expansion of Kdf ,3

Although in the discussion above Kdf,3 appears in the finite-volume quantization condition,

it is important to remember that it is an infinite-volume quantity. In addition, like the

physical scattering amplitude, it is a Poincare-invariant function (equivalently a Lorentz-

invariant and momentum-conserving function) of the six on-shell momenta. It also inherits

from M3 invariance under the simultaneous exchange of particle species and momenta in

7This assumes that, as is the case for QCD, the underlying theory is invariant under T, or equivalently

CP, so that coupling constants in the effective field theory can be chosen to be real.
8In the {kℓm} basis, Kdf,3 becomes complex due to the spherical harmonics in the decomposition (2.50).

This applies also to F , G and K2. The key point, however, is that each of these objects, and thus any

symmetric product built from them, is an hermitian matrix on the {kℓm} space. The determinant of any

such matrix, in particular the determinant defining the quantization condition, must then be a real function.

Similarly, since M
(u,u)
3,L is hermitian, one recovers a real function upon contracting with spherical harmonics.

This subtlety can be avoided by using real spherical harmonics, as we do in our numerical implementation

below.
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both the initial and final state, as well symmetry under charge conjugation (C), parity (P)

and time-reveral (T) transformations [19].

To make this final point clear it is useful to introduce Kdf,3 (representing here a generic

entry of the flavor matrix Kdf,3) as a function of six three-vectors, in direct analogy to the

left-hand side of eq. (2.54). Working in the basis of definite individual pion flavors allows

us to readily express the consequences of various symmetries. For example, the exchange

symmetry can be written as

Kdf,3;[π+π0π− ← π+π0π−](p
′
1,p
′
2,p
′
3;p1,p2,p3) =

Kdf,3;[π+π0π− ← π+π−π0](p
′
1,p
′
2,p
′
3;p1,p3,p2) , (3.1)

where we have swapped the second and third species and momenta on the in-state.9 Using

T invariance then implies the following relation,

Kdf,3;[π+π0π− ← π+π0π−](p
′
1,p
′
2,p
′
3;p1,p2,p3) =

Kdf,3;[π+π0π− ← π+π0π−](−p1,−p2,−p3;−p′1,−p′2,−p′3) . (3.2)

Combining with parity implies that Kdf,3 is unchanged when the initial- and final-state

momenta triplets are swapped:

Kdf,3;[π+π0π− ← π+π0π−](p
′
1,p
′
2,p
′
3;p1,p2,p3) =

Kdf,3;[π+π0π− ← π+π0π−](p1,p2,p3;p
′
1,p
′
2,p
′
3) . (3.3)

This result holds for all theories that are PT invariant.

As proposed in ref. [20], and worked out in ref. [22] for three identical bosons, one

can expand Kdf,3 (which in the present case is replaced with the matrix Kdf,3) about the

three-particle threshold in a consistent fashion, and use the symmetries to greatly restrict

the number of terms that appear. The results of ref. [22] apply to the Iπππ = 3 three-pion

system; here we generalize them to the Iπππ = 0, 1 and 2 channels. The new feature is the

need to include isospin indices in the particle interchange transformations.

For the parametrizations, we use the same building blocks as in ref. [22],

∆ ≡ s− 9m2

9m2
, ∆i ≡

sjk − 4m2

9m2
, ∆′i ≡

s′jk − 4m2

9m2
, t̃ij ≡

tij
9m2

, (3.4)

with generalized Mandelstam variables defined as

s ≡ E2 , sij ≡ (pi + pj)
2 = sji, s′ij ≡ (p′i + p′j)

2 = s′ji , tij ≡ (pi − p′j)2 . (3.5)

The power counting scheme for the expansion will be

∆ ∼ ∆ij ∼ ∆′ij ∼ t̃ij . (3.6)

9This property may seem obvious, but we stress that it does not hold for individual Feynman diagrams.

Because the definition for Kdf,3 is built up diagrammatically, the exchange invariance does not hold for

various intermediate quantities entering the original derivation and only emerges in the final definition.

This point is discussed in more detail in appendix A.
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As discussed in ref. [22], only eight of the sixteen quantities in eq. (3.4) are independent —

the overall CMF energy, and seven angular variables. The relations between the quantities

will be used to simplify the threshold expansions.

In the following, we work out the leading two or three terms in the parametrizations

of Kdf,3 in each of the isospin channels. A summary of key aspects of the results is given in

table 3. The presence of even or odd values of ℓ is determined by whether the states in the

isospin decomposition are given by |(ππ)2π〉 and |σπ〉, leading to even angular momentum

in the first two pions, or else |ρπ〉, leading to odd angular momenta.10 The fact that only

small values of angular momentum appear in the table (ℓ, ℓ′ ≤ 2) is due to our consideration

of only the lowest few terms in the threshold expansion. Only a few cubic-group irreps

appear for the same reason. All values of ℓ and ℓ′, as well as all cubic-group irreps, will

appear at some order in the expansion.

3.1.1 Iπππ = 3

This is the simplest channel, and has been analyzed previously in ref. [22], from which

we simply quote the results. The Iπππ = 3 state is fully symmetric in isospin, so the

momentum-dependent part of K
[I=3]
df,3 must be symmetric under particle interchanges. In

the charge neutral sector, there is only a single Iπππ = 3 state, and thus no isospin indices

are needed. K
[I=3]
df,3 is therefore a function only of the momenta, and, through quadratic

order, there are only five independent terms that can appear:

m2K
[I=3]
df,3 = Kiso +K(2,A)

df,3 ∆
(2)
A +K(2,B)

df,3 ∆
(2)
B +O(∆3) , (3.7)

Kiso = Kiso
df,3 +Kiso,1

df,3 ∆ +Kiso,2
df,3 ∆2 (3.8)

∆
(2)
A =

3∑

i=1

(∆2
i + ∆′ 2i )−∆2, (3.9)

∆
(2)
B =

3∑

i,j=1

t̃ 2ij −∆2 . (3.10)

Here Kiso
df,3,K

iso,1
df,3 ,K

iso,2
df,3 ,K

(2,A)
df,3 and K(2,B)

df,3 are numerical constants. An extensive study of

how these terms affect the finite-volume spectrum has been performed in ref. [22].

3.1.2 Iπππ = 0

The three-pion state with Iπππ = 0 is totally antisymmetric under the permutation of

isospin indices, as shown explicitly by the last row of C in eq. (2.56). Thus, to satisfy

the exchange symmetry exemplified by eq. (3.1), the momentum-dependent part of K
[I=0]
df,3

must also be totally antisymmetric under particle exchange, in order that the full three-

pion state remains symmetric. Again, no explicit isospin indices are needed, as there is

only one Iπππ = 0 state.

10We stress that the notation |ρπ〉 indicates only that the first two pions are combined into an isotriplet.

This implies that their relative angular momentum must be odd, but does not restrict the pions to be in a

p-wave.
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Iπππ term (ℓ′, ℓ) irreps

3 Kiso
df,3 (0, 0) A−1

3 K(2,A)
df,3 (0, 0), (0, 2), (2, 0) A−1

3 K(2,B)
df,3 (0, 0), (0, 2), (2, 0), (2, 2) A−1 , E

−, T−2 , T
+
1

0 K(AS)
df,3 (1,1) T−1 , T

+
1

0 K(AS,2)
df,3 (1,1) T−1

2 KT
df,3


(0, 0) (0, 1)

(1, 0) (1, 1)


 A−1 , T

+
1

2 KT,2
df,3


(0, 0) (0, 1)

(1, 0) (1, 1)


 A−1

2 KT,3
df,3


(0, 0), (0, 2), (2, 0) (0, 1), (2, 1)

(1, 0), (1, 2) (1, 1)


 A−1 , T

+
1

2 KT,4
df,3


(0, 0), (0, 2), (2, 0), (2, 2) (0, 1), (2, 1)

(1, 0), (1, 2) (1, 1)


 A−1 , E

−, T−2 , T
+
1

1 KSS
df,3




(0, 0) — —

— — —

— — —


 A−1

1 KSD
df,3




— (0, 0) (0, 1)

(0, 0) — —

(1, 0) — —


 A−1

1 KDD
df,3




— — —

— (0, 0) (0, 1)

— (1, 0) (1, 1)


 A−1 T

−
1

Table 3. Properties of low-order terms in the threshold expansion of Kdf,3. The terms are speci-

ficed by their coefficients in eqs. (3.7), (3.12), (3.27), and (3.30). The values of (ℓ′, ℓ) are obtained

by decomposing the expessions into the kℓm basis, following the method of ref. [22]. The matrix

structure corresponds to the isospin decomposition of appendix C, which is also used in the afore-

mentioned equations. The final column lists the cubic-group irreps that are present in finite volume

when one considers the rest frame, P = 0. The superscript gives the parity, which includes the

intrinsic negative parity of the three-pion state. The irreps are determined by first working out

which JP values are present, and then subducing to the cubic group. Results for Iπππ = 3 are

taken from ref. [22].
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It is straightforward to see that the leading completely antisymmetric term that can

appear in the momentum-dependent part of K
[I=0]
df,3 is of quadratic order in the threshold

expansion:

K
[I=0]
df,3 ⊃ KAS

df,3

∑

ijk
mnr

ǫijkǫmnrtimtjn ≡ KAS
df,3∆

(2)
AS . (3.11)

At next order two new structures arise and the full form can be written

K
[I=0]
df,3 =

(
KAS

df,3 +KAS,1
df,3 ∆

)
∆

(2)
AS +KAS,2

df,3 ∆
(3)
AS +O(∆4), (3.12)

with

∆
(3)
AS ≡

∑

ijk
mnr

ǫijkǫmnrtimtjntkr . (3.13)

3.1.3 Iπππ = 2

As discussed in the previous section, and summarized in table 1, the isotensor chan-

nel involves a two-dimensional flavor space. This space can be understood in terms of

the permutation group S3, as described in appendix C. The two isospin basis vectors,

|χ1〉2 = |(ππ)2π〉2 and |χ2〉2 = |ρπ〉2, also given in eqs. (C.12) and (C.13), transform in

the standard irrep of S3. To satisfy the exchange relations exemplified by eq. (3.1), the

combined transformation of isospin indices and momenta must lie in the trivial irrep of

S3. This requires combining the isospin doublet with a momentum-space doublet also

transforming in the standard irrep. At linear order, there are three momenta, and these

decompose into a symmetric singlet (p1 + p2 + p3) and the standard-irrep doublet

ξ1 =
1√
6

(2p3 − p1 − p2) and ξ2 =
1√
2

(p2 − p1) . (3.14)

There is an analogous doublet, ξ′i, built from final-state momenta. The symmetric combi-

nations are then

|ψsym〉 = ξ1 |χ1〉2 + ξ2 |χ2〉2 ≡
(
ξ1

ξ2

)
≡ ~ξ , (3.15)

|ψ′sym〉 = ξ′1 |χ1〉2 + ξ′2 |χ2〉2 ≡


ξ
′
1

ξ′2


 ≡ ~ξ ′ , (3.16)

where the last two forms introduce a convenient column vector notation. The leading term

in K
[I=2]
df,3 then becomes

K
[I=2]
df,3 ⊃ KST

df,3 |ψ′sym〉 · 〈ψsym| ≡ KST
df,3


ξ
′
1 · ξ1 ξ′1 · ξ2
ξ′2 · ξ1 ξ′2 · ξ2


 ≡ KST

df,3
~ξ ′µ ⊗ ~ξµ ,

=
KST

df,3

6


(2p′3 − p′1 − p′2) · (2p3 − p1 − p2)

√
3(2p′3 − p′1 − p′2) · (p2 − p1)

√
3(p′2 − p′1) · (2p3 − p1 − p2) 3(p′2 − p′1) · (p2 − p1)


 ,

(3.17)
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where KST
df,3 is a constant. Note that this is of linear order in ∆, since the inner products

ξi · ξ′j can be written as linear combinations of the tij . There are no terms of O(∆0).

At next order, there are three sources of contributions. First, one can multiply the

term in eq. (3.17) by ∆. Second, one can build additional basis vectors transforming as

doublets, but of higher order in momentum. Third, one can form Lorentz singlets in more

than one way. We discuss the latter two issues in turn.

To proceed systematically, we begin by classifying objects quadratic in momenta, of

the general form pµi p
ν
j . The nine such objects contain three standard-irrep doublets:

ξ(S)µνi = ξµi P
ν + µ↔ ν , ξ(A)µνi = ξµi P

ν − µ↔ ν , (3.18)

and
~ξ(S̄)µν ≡

(
ξ(S̄)µν1 , ξ(S̄)µν2

)
= (ξµ2 ξ

ν
2 − ξµ1 ξν1 , ξ

µ
1 ξ

ν
2 + ξµ2 ξ

ν
1 ) . (3.19)

The latter is the standard irrep that results from the direct product of ~ξ with itself. Each

of these doublets can be combined with the isospin-space doublet to make fully symmet-

ric objects out of both initial- and final-state momenta. These are then combined as in

eq. (3.17) to give a contribution to Kdf,3. When Lorentz contractions are included, as dis-

cussed below, symmetric doublets (ξ(S) and ξ(S̄)) must be combined with other symmetric

objects, and similarly for the antisymmetric doublet ξ(A). Taking into account also CPT

symmetry, there are then four possible combinations, schematically given by

ξ(S)′ξ(S) , ξ(S)′ξ(S̄) + ξ(S̄)′ξ(S) , ξ(S̄)′ξ(S̄) and ξ(A)′ξ(A) . (3.20)

Lorentz indices can be contracted in three ways:

(i) gµνgµ′ν′ , (ii) gµµ′gνν′ and (iii) ǫµνµ′ν′ . (3.21)

The first two can be used only for the symmetric objects, while the last two can be used

for the antisymmetric objects. We begin with the Lorentz contractions of type (i). Here it

turns out that all three symmetric combinations lead to the same result, namely the outer

product

K
[I=2]
df,3 ⊃ ~ξ ′(2) ⊗ ~ξ (2) , (3.22)

where

~ξ (2) =

(
2∆3 −∆1 −∆2√

6
,

∆2 −∆1√
2

)
∝ (ξ1 · P, ξ2 · P ) , (3.23)

with P = p1 + p2 + p3 = p′1 + p′2 + p′3. Next we consider Lorentz contractions of type (ii).

Here we find only two combinations lead to new structures, namely,

K
[I=2]
df,3 ⊃ ~ξ(S̄)′µν ⊗ ~ξ(S)µν + ~ξ(S)′µν ⊗ ~ξ(S̄)µν , (3.24)

and

K
[I=2]
df,3 ⊃ ~ξ(S̄)′µν ⊗ ~ξ(S̄)µν . (3.25)

Finally, the contraction of type (iii) leads to

K
[I=2]
df,3 ⊃ ǫµνρσ ~ξ(A)′µν ⊗ ~ξ(A)ρσ , (3.26)

which vanishes identically.
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Thus, at this stage, we have found four terms of O(∆2). A further potential source of

such terms is to combine contributions linear in ξ with those cubic in ξ′, and vice versa.

Carrying out an analysis similar to that above, we find, however, that all such terms can

be written in terms of those already obtained. Thus the final form of K
[I=2]
df,3 is

K
[I=2]
df,3 =

(
KT

df,3 +KT,1
df,3∆

)
~ξ ′µ ⊗ ~ξµ +KT,2

df,3
~ξ ′(2) ⊗ ~ξ (2)+

+KT,3
df,3

(
~ξ(S̄)′µν ⊗ ~ξ(S)µν + ~ξ(S)′µν ⊗ ~ξ(S̄)µν

)
+KT,4

df,3
~ξ(S̄)′µν ⊗ ~ξ(S̄)µν +O(∆3) , (3.27)

where the superscript T refers to isotensor.

3.1.4 Iπππ = 1

Lastly, we consider the parametrization of K
[I=1]
df,3 . Here the isospin subspace is three-

dimensional and in section 2 we used a basis with definite two-pion isospin,

{|(ππ)2π〉1 , |ρπ〉1 , |σπ〉1} . (3.28)

In this section we find it convenient to use a different basis, consisting of a singlet trans-

forming in the trivial irrep of S3 and a doublet in the standard irrep. The relation between

bases is shown explicitly in eqs. (C.15)–(C.18) and, in the matrix notation that follows, we

order the basis vectors such that the singlet comes first:

{|χs〉1 , |χ1〉1 , |χ2〉1} . (3.29)

The presence of two irreps implies a greater number of options for building a fully

symmetric object. In particular, the analysis for the symmetric singlet component is iden-

tical to that for the Iπππ = 3 sector, with the leading two terms being of O(∆0) and O(∆),

respectively. Combining a final-state singlet with an initial-state doublet, an overall singlet

of O(∆) is obtained using the Lorentz-scalar doublet ~ξ (2) of eq. (3.23). An analogous

term is obtained by interchanging initial and final states. At this same order, initial- and

final-state doublets can be combined as in eq. (3.17). In total, enforcing CPT invariance,

we end up with

K
[I=1,|χ〉]
df,3 =

(
KSS

df,3 +KSS,1
df,3 ∆

)



1 0 0

0 0 0

0 0 0


+KSD

df,3




0 ξ
(2)
1 ξ

(2)
2

ξ
′(2)
1 0 0

ξ
′(2)
2 0 0




+KDD
df,3




0 0 0

0 ξ′1 · ξ1 ξ′1 · ξ2
0 ξ′2 · ξ1 ξ′2 · ξ2


+O(∆2) ,

(3.30)

where the |χ〉 superscript on the left-hand side emphasizes that we are using the new basis,

introduced in (3.29). The SS and DD superscripts on the right-hand side refer to singlet

and doublet irreps.
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3.2 Three-particle resonances

The threshold expansion derived in the previous section plays a similar role for three-

particle interactions as the effective-range expansion does for the two-particle K matrix. It

provides a smooth parametrization of the interaction, valid for some range around thresh-

old, that respects the symmetries. However, we expect that the convergence of the series

is limited by the singularities in Kdf,3 closest to the three-particle threshold, just as the

expansion for K2 is limited either by the nearest poles, possibly associated with a two-

resonance, or else by the t-channel cut. As studying three-particle resonances is one of

the major goals behind the development of the three-particle quantization condition, it

is important to determine appropriate forms of Kdf,3 in the channels that contain such

resonances. This is the task of the present section.

We begin by listing, in table 4, the total JP and isospin for the resonant channels

observed in nature that couple to three pions [39]. We include only cases where the coupling

is allowed in isosymmetric QCD. Resonances are present only for Iπππ = 0 and Iπππ = 1.

We note the absence of the JP = 0+, Iπππ = 1, a0(980), for which no three-pion coupling is

possible that is simultaneously consistent with angular momentum and parity conservation.

For each resonance, we also note the corresponding subduced cubic group irreps. The cubic

symmetry group including parity (also called the achiral or full octahedral group) defines

the symmetry of the system provided that the total momentum is set to zero. In a lattice

QCD calculation, one can project the three-pion states onto definite cubic-group irreps

by choosing appropriate three-pion interpolating operators, as discussed in appendix D.

Note that, for the values of JP arising in the table, a finite-volume irrep can always be

identitifed that does not couple to any other listed values. The final column in the table

gives the lowest three-pion orbit that couples to the irrep(s) for the corresponding state.

The ordering of the orbits is described in appendix D; see in particular table 5.

In the remainder of this section we determine the forms of the entries of Kdf,3 that

couple to three pions having each of the quantum numbers listed in table 4. We stress that,

as in the previous section, this is an infinite-volume exercise. When using the resulting

forms for K
[I]
df,3 in the quantization condition, one must covert the forms given here to the

kℓm index set introduced above. This is a straightforward exercise that we do not discuss

further here.

By analogy with the two-particle case, we expect that a three-particle resonance can be

represented by a pole in the part of K
[I]
df,3 with the appropriate quantum numbers [20], i.e.

K
[I,|χ〉]
df,3 = KX

df,3

cX
s−M2

X

+O
[
(s−M2

X)0
]
, (3.31)

where the superscript |χ〉 on the left-hand side emphasizes that we work in the basis of

definite symmetry states for Iπππ = 1 (see also appendix C). On the right-hand side, X

labels the quantum numbers, MX is close to the resonance mass (at least in the case of

narrow resonances), the real constant cX is related to the width of the resonance, and

KX
df,3 carries the overall quantum numbers. The precise relationship of cX and MX to

the resonance parameters in M3 is not known analytically, since determining M3 requires

solving the non-trivial integral equations discussed above.
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Resonance Iπππ JP Irrep (P = 0) 3π orbit

ω(782) 0 1− T−1 4

h1(1170) 0 1+ T+
1 2

ω3(1670) 0 3− A−2 4

π(1300) 1 0− A−1 1

a1(1260) 1 1+ T+
1 2

π1(1400) 1 1− T−1 4

π2(1670) 1 2− E− and T−2 2

a2(1320) 1 2+ E+ and T+
2 3

a4(1970) 1 4+ A+
1 16

Table 4. Lowest lying resonances with negative G-parity, and which couple to three pions, in

the different isospin and JP channels. The fourth column shows the cubic group irreps that are

subduced from the rotation group irreps, assuming that the resonance is at rest (P = 0). The final

column gives the lowest three-pion momentum orbit that contains the corresponding cubic group

irrep, again assuming P = 0.

We stress that, once a form for KX
df,3 is known, only one sign of cX will lead to a

resonance pole with the physical sign for the residue. The correct choice can be identified by

requiring that the finite-volume correlator CL has a single pole with the correct residue [20,

22]. In the limit cX → 0, one recovers an additional decoupled state in the finite-volume

spectrum at energy E = MX (assuming P = 0), corresponding to a stable would-be

resonance. The form in eq. (3.31) was proposed in ref. [20] for the case of identical scalars

(which is equivalent to the Iπππ = 3 channel here) for which KX
df,3 is a constant. As noted

above, however, there are no resonances in nature in the Iπππ = 3 or Iπππ = 2 channels, so

the example given in ref. [20] is for illustrative purposes only. In the following we determine

forms for KX
df,3 that can be used for all the resonant channels listed in table 4.

We also enforce an additional requirement on KX
df,3, namely that it has a factorized

form in isospin space. This is motivated by the fact that the residues of resonance poles

in M2 and M3 do factorize, and it was argued in ref. [21] that this carries over to poles

in K2 evaluated at off-shell momenta. Here we assume that this holds also for resonance

poles in Kdf,3. We view this as plausible, but leave the proof to future work.

Before turning to the detailed parametrizations, we comment on the range of validity

for the quantization condition. All the resonances in table 4 have, in principle, additional

decay channels, such as 5π or KK̄. One must consider on a case by case basis whether

neglecting these is justified, based on the couplings between the resonance of interest to the

neglected channels, as well as the target precision of the calculation. Another possibility is

to work at unphysically heavy pion masses, such that some of the neglected channels are

– 28 –



J
H
E
P
0
7
(
2
0
2
0
)
0
4
7

kinematically forbidden. While the procedure for including additional two-particle channels

should be given by a straightforward generalization of ref. [19], rigorously accommodating

the 5π state would be a significant formal undertaking.

3.2.1 Isoscalar resonances

The symmetry requirements for the KX
df,3 are exactly as in the threshold expansion. For

Iπππ = 0, this means complete antisymmetry under particle exchange. Useful building

blocks are the following objects:

V α = Pµ

∑

ijk

ǫijk p
µ
j p

α
k

CMF−−−−→ E

2

(
0,−3ω−p3 − p−[E − 3ω3]

)
, (3.32)

Aα = ǫαβγδ p
β
1p

γ
2p

δ
3

CMF−−−−→ E (0, p1 × p2) = E (0, p2 × p3) ,

= E (0, p3 × p1) ,

(3.33)

where p−µ = pµ1 − p
µ
2 = (ω−,p−), pµ3 = (ω3,p3), etc. The quantities V α and Aα are fully

antisymmetric under particle exchange, and describe a vector and axial vector, respectively,

as can be seen from their forms in the CMF. In particular, the vanishing of the temporal

components in this frame shows the absence of scalar and pseudoscalar contributions (with

the respect to the three-dimensional rotation group).

Taking into account the negative parity of the pion, the momentum-space amplitude

for the JP = 1− ω(782) to decay to three pions must transform as an axial vector. This

leads to the following form for Kdf,3,

Kω
df,3 = A′µAµ , (3.34)

where A′µ has the same form as Aµ but expressed in terms of final-state momenta. The

expression (3.34) is manifestly Lorentz and CPT invariant. We have checked explicitly

that, when reduced to the kℓm basis used in the quantization condition, this expression

transforms purely as a T−1 under the cubic group. Indeed, it turns out to be proportional to

the operator ∆
(3)
AS, given in eq. (3.13), that arises in the threshold expansion. Furthermore,

we note from table 5 in appendix D that the lowest three-pion state in a cubic box that

transforms in the T−1 irrep lies in the fourth orbit and has momenta (1, 1, 0), (−1, 0, 0) and

(0,−1, 0) (or a cubic rotation thereof) in units of 2π/L. This can be understood from the

fact that, in the CMF, Aµ vanishes if any of the three pion momenta vanish, as can be

seen from eq. (3.33).

These results have implications for a practical study of the ω resonance. As is known

from the study of two-particle resonances, to map out the resonant structure (e.g. the rapid

rise in the phase shift) requires many crossings between the finite-volume resonance level

and those of weakly-interacting multi-particle states. Since the lowest, non-interacting

three-pion state with the quantum numbers of the ω lies in the fourth orbit, it occurs

at relatively high energy. Thus for small to moderate volumes, the finite-volume level

corresponding to the ω will be the lowest lying state and there will be no avoided level

crossings. Only by going to larger boxes will the level-crossings needed to constrain Kdf,3 in
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detail be present. For physical pion masses the constraint is not too strong — an avoided

level crossing requires mL & 4.6. However, if working with heavier-than-physical pions,

such as in the example presented in section 4, larger values of mL are needed (mL & 6.5

in the toy model). These constraints apply, however, only in the overall rest frame. It is

likely that moving frames, for which the constraints will be relaxed, will play an important

role in any detailed investigation of the ω resonance.

For the JP = 1+ h1(1170), the momentum-space decay amplitude must transform as

a vector, leading to

Kh1
df,3 = V ′µVµ . (3.35)

Only two momenta need to be nonzero for V µ to be nonvanishing, and indeed the lowest

momentum configuration transforming as the required T+
1 lies in the second orbit and has

momenta (1, 0, 0), (−1, 0, 0) and (0, 0, 0) (see table 5). Applying the same estimate as above

based on the non-interacting energy, the first CMF avoided-level crossing for physical pion

masses is already expected for mL & 1.8. Thus, for all volumes where the neglected e−mL

is a reasonable approximation (typically requiring mL & 4), we expect to recover useful

constraints on the h1 width in all finite-volume frames.

Finally, for the JP = 3− ω3(1670), the momentum-space amplitude must transform as

JP = 3+. One possible form is

Kω3
df,3 = (AµA

′ µ)3 − 3

5
(A2)(A′ 2)(AµA

′ µ) , (3.36)

where the second term is required to project against a JP = 1+ component. The corre-

sponding cubic-group irrep, A−2 , appears first in the same three-pion orbit as for the ω, for

then the axial current Aµ is nonzero.

3.2.2 Isovector resonances

We turn now to parameterizations of KX
df,3 in the three-dimensional isovector case, working

always in the χ-basis of (3.29) [defined explicitly in eqs. (C.15)–(C.18)].

Beginning with the JP = 0− π(1300), the simplest case in this sector, we note that

these quantum numbers can be obtained from three pions at rest, so that no momentum

dependence is required in Kπ
df,3. However, as we have seen in section 3.1.4, momentum-

independence is possible only for the component connecting permutation-group-singlets in

the initial and final states. For the other components momentum dependence is needed to

obtain a form that is fully symmetric under permutations. Using results from our discussion

of the threshold expansion, we find the following possible form11

Kπ
df,3 =




sπ

dπ ξ
′(2)
1

dπ ξ
′(2)
2


⊗

(
sπ, dπ ξ

(2)
1 , dπ ξ

(2)
2

)
. (3.37)

11We stress that we are not here doing an expansion in momenta, but rather writing a simple form

that has the appropriate symmetries. More complicated expressions consistent with the desired quantum

numbers are certainly possible.
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Here sπ and dπ are real constants, corresponding to couplings to the singlet and doublet

components, respectively. The outer product structure is necessary due to the factorization

of the residue at the K-matrix pole. We stress that the components of the two vectors in the

outer product must be Lorentz scalars in order that Kπ
df,3 couples to JP = 0−. Thus, for

example, ξ
(2)
1 cannot be replaced by ξµ1 . We also note that we do not expect the momentum-

dependent parts of this expression to be suppressed relative to the momentum-independent

ones, since we are far from threshold.

We can use the properties of the physical π(1300) resonance to guide our expectations

concerning sπ and dπ. In particular, the resonance has been observed to have both σπ

and ρπ final states [39]. Recalling from appendix C that the first two entries of the vector

space are linear combinations of the states |(ππ)2π〉1 and |σπ〉1, while the third is |ρπ〉1, we

see that sπ describes the coupling to the former two states, while dπ couples to all three.

Thus dπ must be nonzero to describe the physical resonance, with its ρπ decay, while the

importance of sπ depends on the details of the amplitude.

Next we turn to the JP = 1+ a1(1260). Taking into account the intrinsic parity of the

pion, the decay amplitude must transform as a vector. A possible form is thus

Ka1
df,3 = gPµν




sa1V
′µ
S

da1 ξ
′µ
1

da1 ξ
′µ
2


⊗

(
sa1V

ν
S , da1 ξ

ν
1 , da1 ξ

ν
2

)
, (3.38)

where

V ν
S = ξν1 ξ

(2)
1 + ξν2 ξ

(2)
2 , (3.39)

is a vector that is symmetric under permutations, and

gPµν = (gµν − PµPν/P
2) , (3.40)

is the projector that arises from the sum over polarizations of ǫµǫ
∗
ν . It projects against Pµ,

and in the CM frame it picks out the spatial part, VS , which transforms as a vector, while

removing the JP = 0+ quantity, V 0
S . We are forced to use a form for V ν

S that is cubic

in momenta because the only symmetric vector linear in momenta is simply Pµ, which

vanishes when contracted with gP . In contrast to the form for the π(1300), eq. (3.37), the

doublet portion of the amplitude in eq. (3.38) has a simpler momentum-dependence than

the singlet part. The real constants sa1 and da1 play the same role as for the π(1300), and

again da1 must be nonzero since ρπ and σπ decays are observed.

Next we turn to the JP = 1− π1(1400). It is not possible to construct a fully sym-

metric axial vector from three momenta, and thus the decay amplitude of the symmetric

component vanishes. For the doublet part, a nonzero amplitude can be obtained by com-

bining the completely antisymmetric axial vector Aµ [eq. (3.33)] with the doublet ~ξ (2) in

the appropriate manner. This leads to

Kπ1
df,3 = A′µgPµνA

ν




0

−ξ′(2)2

ξ
′(2)
1


⊗

(
0, −ξ(2)2 , ξ

(2)
1

)
. (3.41)
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To parametrize the JP = 2− π2(1670) requires a tensor composed of momentum vec-

tors, with the appropriate symmetry properties. Using the constructions from the previous

section, we find the following form:

Kπ2
df,3 =

(
gPρµg

P
σν −

1

3
gPρσg

P
µν

)



sπ2T
′ρσ

dπ2 ξ(S̄)′ρσ1

dπ2 ξ(S̄)′ρσ2


⊗

(
sπ2T

µν , dπ2 ξ(S̄)µν1 , dπ2 ξ(S̄)µν2

)
, (3.42)

where

Tµν = ξµ1 ξ
ν
1 + ξµ2 ξ

ν
2 , (3.43)

is a Lorentz tensor that is an S3 singlet. The tensor containing gP projects out the J = 2

part in the CM frame.

For the JP = 2+ a2(1320) we need to construct a pseudotensor from momentum

vectors. The simplest form that we have found is

Ka2
df,3 =

(
gPρµg

P
σν −

1

3
gPρσg

P
µν

)



sa2A
′ρV ′σ

−da2A′ρξ′σ2
da2A

′ρξ′σ1



sym

⊗
(
sa2A

µV ν , −da2Aµξν2 , da2A
µξν1

)
sym

,

(3.44)

where the subscript “sym” indicates symmetrizing the tensors.

Finally, for the JP = 4+ a4(1970), we need to construct an ℓ = 4 pseudotensor from

momentum vectors. One possible form is

Ka4
df,3 =

(
gPµ′µg

P
ν′νg

P
ρ′ρg

P
σ′σ −

6

7
gPµ′ν′g

P
µνg

P
ρ′ρg

P
σ′σ +

3

35
gPµ′ν′g

P
ρ′σ′gPµνg

P
ρσ

)
T ′µ

′ν′ρ′σ′

4 ⊗ Tµνρσ
4 ,

(3.45)

Tµνρσ
4 =

(
sa4(AµAνAρV σ), −da4(AµAνAρξσ2 ), da4(AµAνAρξσ1 )

)
sym

, (3.46)

T ′µνρσ4 =




sa4(A′µA′νA′ρV ′σ)

−da4(A′µA′νA′ρξ′2σ)

da4(A′µA′νA′ρξ′1σ)


 . (3.47)

An alternative form replaces two of the axial vectors with vectors (in either or both the

initial and final states).

4 Toy model: spectrum in Iπππ = 0 channel

The goal of this section is to present an example of the implementation of the new quantiza-

tion conditions derived in this paper. We choose the Iπππ = 0 channel, which is the simplest

of the new results, since the quantization condition is one-dimensional in isospin space. The

extension of the implementation to the other channels is, however, straightforward.
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The Iπππ = 0 channel is of direct phenomenological relevance, due to the presence of

two (relatively) light three-particle resonances, the ω(782) and the h1(1170). In particular,

at physical pion masses, the ω lies only slightly above the five-pion inelastic threshold, and

the isospin-violating couplings to two and four pions are weak, so that the three-particle

quantization condition is likely to provide a good description. Indeed, at somewhat heavier-

than-physical pion masses (e.g. Mπ ∼ 200 MeV), the ω should lie between the three- and

five-pion thresholds. If, in addition, one has exact isospin symmetry, there will be no

coupling to channels with an even number of pions. This example can thus be explored in

a rigorous way using the quantization condition derived in this work, and is an excellent

candidate for the first lattice QCD study of a three-particle resonance.

Another feature of interest in these examples is the presence of the ρ resonance in

two-particle subchannels. Although the decay ω → ρπ is kinematically forbidden, we

expect, given the width of the resonance, that it will have a significant impact on the

energy levels in the vicinity of the ω mass. For the h1, the ρπ decay is allowed (and seen

experimentally), and thus the system provides an example in which the full complication

of cascading resonant decays, h1 → ρπ → 3π, occurs. We also note that, away from the

three-particle resonance energy, the dominant effect on the three-pion spectrum arises from

pairwise interactions, and thus this spectrum provides an alternative source of information

on the ρ resonance. Indeed, the effect on the three-particle spectrum is enhanced relative

to that for two pions due to the presence of three pairs.

The implementation of the isoscalar three-particle quantization condition requires only

minor generalizations of the Iπππ = 3 case implemented previously in refs. [20, 22–24].

Specifically, appendices A and B of ref. [22] provide a summary of all necessary results.

The new features here are two-fold: (i) the expression for F3 contains a relative minus sign

for G compared to that for Iπππ = 3 (see table 1), which is trivial to implement; (ii) the

angular momentum indices ℓ,m of the interacting pair contain only odd partial waves.

Concerning the latter point, in our illustrative example we restrict to the lowest allowed

partial wave, namely ℓ = 1. While odd two-particle partial waves have not previously

been implemented in the three-particle quantization condition, this requires only a simple

generalization from the work in ref. [22], where ℓ = 0 and 2 were considered. In particular,

we follow that work in using real spherical harmonics, and in the method of projection

onto different irreps of the cubic group.

We now describe how the resonances are included in our example. We stress at the

outset that the parameters we choose are not intended to be close to those for the physical

particles, but rather are choices that allow certain features of the resulting spectrum to be

clearly seen. For the ρ, we use the Breit-Wigner parametrization:

(
k

Mπ

)3

cot δ1 =
M2

ρ − E2

EMπ

6π

g2
E2

M2
ρ

, (4.1)

with g = 1 and Mρ = 2.8Mπ.12 As explained in ref. [23], in order for the three-particle

12Our chosen value of Mρ/Mπ corresponds to a theory with Mπ ∼ 320MeV (see ref. [41]). Our choice

of the coupling g is, however, significantly smaller than the observed value (corresponding to a narrower-

than-physical decay width).
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quantization condition to remain valid in the presence of two-particle resonances, we must

use a modified principal value prescription. This requires the following changes to F̃ and K̃2:

[F ]kℓ′m′;pℓm → [F ]kℓ′m′;pℓm + δkpδℓ′ℓδm′mH(k)
I
(ℓ)
PV(q⋆22,k)

32π
, (4.2)

[
(K2)

−1]
kℓ′m′;pℓm

→
[
(K2)

−1]
kℓ′m′;pℓm

− δkpδℓ′ℓδm′mH(k)
I
(ℓ)
PV(q⋆22,k)

32π
, (4.3)

where ℓ and ℓ′ are odd, and in this case ℓ = ℓ′ = 1. We find that I
(ℓ=1)
PV (q) = C/q2, with

C . −50M2
π is enough to accommodate any resonance in the region Mρ < 5Mπ.13

For the three-particle resonances, we use the general form given in eq. (3.31) for Kdf,3,

with the specific momentum-dependent expressions for Kω
df,3 and Kh1

df,3 given in eqs. (3.34)

and (3.35), respectively. We choose C = −100M2
π , and set Mω = 4.3Mπ, Mh1 = 4.7Mπ,

cω = 0.02, and ch1 = 0.42. These choices are motivated by the hierarchy of the resonance

parameters known from experiment, i.e., Mh1 > Mω, Γh1 > Γω. We stress, however, that

we do not at present know how to relate the parameters cX to the physical width, and that

these values are chosen only for illustrative purposes.

The resulting three-pion spectra for two different irreps, T∓1 , are shown in figure 4

as a function of MπL. As described in section 3.2, these irreps couple to resonances

with JP = 1∓, i.e. to the ω and h1 channels, respectively. For comparison, we include

noninteracting energies for the finite-volume 3π, ρπ, and ω/h1 states. The actual spectral

lines show significant shifts from the noninteracting levels, as well as the usual pattern of

avoided level crossings. For our choice of parameters of the ω and h1, the avoided level

crossings are quite narrow. This could be a result of the resonance being narrow, or a

volume suppression of the gap in the avoided level crossings.

Moreover, the finite-volume state related to the toy h1 is significantly shifted with

respect to the position of the pole in Kdf,3. To further investigate this feature, in figure 5 we

study the effects of varying ch1 [the residue of the pole in Kdf,3] as well as C [parametrizing

the scheme dependence in eqs. (4.2) and (4.3)]. We stress that C ultimately encodes a

scheme dependence of Kdf,3, in that one can vary C and Kdf,3 simultaneously to keep the

finite-volume spectrum and the three-particle scattering amplitude unchanged. It follows

that varying C at fixed Kdf,3 corresponds to a change in the physical system, so that the

finite-volume energies should also shift. In short, the four panels of figure 5 correspond to

four different physical systems with the common feature that Kdf,3, in some given scheme,

has the h1 pole position. We find that the position of interacting levels moves closer to the

pole position (horizontal dashed line) when either ch1 or C is reduced. This shows that

the large shift in figure 4 is a result of the specific parameters chosen, and not a general

13A technical aspect of our numerical implication is that the matices F , G and K2 are truncated slightly

before H(k) = 0, by already discarding entries for which H(k) . 10−8. This corresponds to truncating

values of E⋆2
2,k slightly above zero and is required because the boost factor γk = (E−ωk)/E

⋆
2,k [also defined

in eq. (B.4) below] can become arbitrarily enhanced for near-zero values, leading to numerical instabilities.

In the present case this cut also serves to avoid the unphysical pole in K2 [due to the 1/E term in eq. (4.1)],

which is present even after the IPV shift is applied.
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(a) ω channel.
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(b) h1 channel.

Figure 4. Illustrative finite-volume spectra for three pions with Iπππ = 0 and irreps (a) T−

1 and

(b) T+
1 , plotted versus MπL. The interacting spectrum is shown by solid lines, with the alternating

orange and blue colors only used to distinguish adjacent levels. Dashed and dotted grey lines show

the comparison with different noninteracting levels. The parameters used for K2 and Kdf,3 are

described in the text.

feature of the system considered. Clearly, future work is needed to fully understand the

interplay of Kdf,3 with the physical resonance parameters and the finite-volume energies.

Finally, we comment that the smaller number of observed levels in the T−1 plot, as

compared to the T+
1 , can be understood in terms of the antisymmetry of the momentum

wavefunctions — as discussed in appendix D. Indeed, one can understand precisely the

counting of levels in both plots, as we explain in that appendix.

5 Conclusion

This work constitutes the first extension of the finite-volume three-particle formalism to

include nonidentical particles. We have focused on the description of a generic three-

pion system in QCD with exact isospin symmetry. The main difference with the original

quantization condition of refs. [17, 18] is that there are different subchannels for pairwise

interactions (Iππ = 0, 1, 2) that must be taken into account. The new three-particle quan-

tization condition, and the infinite-volume three-particle integral equations, look formally

identical to those for identical particles, but live in an enlarged matrix space with addi-

tional flavor indices. The central point of this work is to give the explicit forms of all

building blocks in this enlarged space, and to outline a strategy for extracting three-pion

scattering amplitudes, in both weakly-interacting and resonant systems, for all possible

quantum numbers.

As described in section 2, to carry out the derivation it is convenient to first generalize

the quantization condition using the basis with definite individual pion flavors. The final

result is then block-diagonalized by performing a standard change of basis in flavor space,

with the resulting blocks labeled by the three-pion isospin Iπππ = 0− 3, and the elements
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Figure 5. Finite-volume energies for various scattering parameters in the T+
1 irrep, zoomed in to

focus on energies close to the toy h1 resonance. As explained in the text, changing either C or ch1
,

changes the physical three-particle scattering amplitude while leaving the pole in Kdf,3 fixed. The

bottom right panel corresponds to the parameters of the figure 4b.

within each block labeled by the allowed values of incoming and outgoing two-pion isospin

Iππ. In this way, the three-pion quantization condition turns into a set of four indepen-

dent expressions, to be applied separately to finite-volume energies with the corresponding

quantum numbers. The Iπππ = 3 quantization condition is the same as that for three iden-

tical (pseudo-)scalars derived in refs. [17, 18], while those for Iπππ = 0, 1, 2 are new. The

implementation of the new quantization conditions is of similar complexity to the Iπππ = 3

case, where there have been extensive previous studies [20, 22–24]. They do, however,

exhibit some new features, such as the presence of odd partial waves and different relative

signs between the finite-volume objects involved.

In section 3, we also have addressed the parametrization of Kdf,3 in a general isospin

channel, which is a crucial point for the extraction of three-particle scattering amplitudes

from lattice QCD. First, we have extended the threshold expansion of Kdf,3 to all values

of Iπππ. This is a series expansion about threshold based on symmetry properties of Kdf,3:

Lorentz invariance, CPT and particle exchange. We have worked out the first few terms for

all isospin channels. In addition, we propose parametrizations of Kdf,3 to describe all three-

particle resonances present in the Iπππ = 0 and 1 channels. These generate an additional

state in the spectrum, which decouples in the limit of zero coupling.

Given these results, all ingredients are now available for lattice studies of resonances

with three-particle decay channels, such as the ω(782) and the h1(1170). These two

Iπππ = 0 resonances are particularly good candidates for a first study, as they lie be-
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low the 5Mπ threshold for slightly heavier-than-physical pions. In section 4 we use the new

quantization condition to determine the finite-volume spectrum for these two channels in

a toy model motivated by the experimentally observed hierarchies of masses and widths.

Our exploration suggests that, in practice, moving frames will be needed to gain insight

in the nature of the resonances, especially in the case of the ω(782). We stress, however,

not yet established how the parameters of Kdf,3 relate to the physical masses and widths

of the resonances and thus more investigation is needed.

Going forward, the next steps fall into three basic categories. First, it would be

instructive to study various limiting cases, in order to provide useful crosschecks and gain

insights into the structure of the new quantization conditions. One concrete example

would be to study the Iπππ = 2 expressions, continued to parameters such that the ρ

resonance becomes a stable particle. In this case one can restrict to the energy regime

Mρ +Mπ <
√
s < 3Mπ, and the result should coincide with the two-particle, finite-volume

formalism for vector-scalar scattering [43], already used to analyze finite-volume energies

in ref. [38]. Second, it is necessary to further generalize the formalism, so as to describe all

possible systems of two- and three-particles with generic interactions, quantum numbers,

and degrees of freedom. Specific cases, ranked from most straightforward to most difficult,

include three pseudoscalar particles in SU(Nf )-symmetric QCD, three-nucleon systems

(i.e. the inclusion of spin) and, by far the most challenging, Nπ → Nππ transitions in the

Roper channel (requiring spin, 2 → 3 transitions, and non-identical and non-degenerate

particles). Finally, and most importantly, the application of this formalism to three-pion

resonances using lattice QCD is now well within reach. This will represent the achievement

of a long-standing milestone on the way towards unlocking the exotic excitations of the

strong force.

Acknowledgments

We thank Raúl Briceño for helpful comments and many fruitful discussions. We also thank

Mattia Bruno, Christopher Thomas, David Wilson, and Antoni Woss for useful discus-

sions. FRL acknowledges the support provided by the European projects H2020-MSCA-

ITN-2015/674896-ELUSIVES, H2020-MSCA-RISE-2015/690575-InvisiblesPlus, the Span-

ish project FPA2017-85985-P, and the Generalitat Valenciana grant PROMETEO/2019/

083. The work of FRL also received funding from the European Union Horizon 2020 re-

search and innovation program under the Marie Sk lodowska-Curie grant agreement

No. 713673 and “La Caixa” Foundation (ID 100010434, LCF/BQ/IN17/11620044). The

work of SRS is supported in part by the United States Department of Energy (USDOE)

grant No. DE-SC0011637, in part by the DOE.

A Further details of the derivation

In this appendix we provide more details of the derivation of the result for the generalized

finite-volume correlator, eq. (2.42). As noted in the main text, most of the steps in the
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original derivation of ref. [17] go through, with the only change being the need to gener-

alize the core quantities F , G and K2 in the presence of flavor [using the definitions of

eqs. (2.26), (2.32) and (2.41)]. In other words, almost all of the equations in ref. [17] can

be taken over unchanged as long as one adds flavor indices and uses the new definitions.

There is, however, one step in the derivation that needs further generalization, as we now

explain.

The most challenging part of the derivation of ref. [17] is to show that Kdf,3 has the

appropriate symmetry. Since the symmetrization procedure must be generalized here, as

described in section 2.3, a natural question is whether the derivation of the quantization

condition in the presence of flavor leads to the appropriately symmetrized version of Kdf,3,

denoted Kdf,3. A second aim of this appendix is to explain why this is indeed the case.

For the sake of brevity, we assume that the reader has a copy of ref. [17] in front of

them and we do not repeat equations from that work. We refer to equations from ref. [17]

as (HS1), (HS2), etc.14

The first place in ref. [17] where the discussion does not generalize in a simple way is in

the discussion between (HS140) and (HS146). This concerns the introduction of quantities

with a superscript (s), e.g. A′(1,s) in (HS140). These are to be contrasted with quantities

having a superscript (u), such as D(u,u) in eq. (2.47). For the latter quantities, the matrix

index k corresponds to the spectator momentum, while for quantities with superscript

(s), k labels the momentum of one of the nonspectator pair. To be more precise, in the

symmetrization described in eq. (2.51), the choice P3 = {k,a} from eq. (2.52) corresponds

to a (u) quantity, while that with P3 = {a, b} corresponds to an (s) quantity. The third

choice, P3 = {b,k}, leads to quantities denoted by (s̃) in ref. [17]. These three choices are

illustrated in figure 13b of ref. [17].

We choose our flavor generalizations of A′(1,u) and A′(1,s) such that (HS140) maintains

its form, becoming15

A
′(2,u)
L = A′(2,u) + 2A′(1,s) F K2 . (A.1)

With this choice, the coupling of flavor and momentum labels is automatically maintained.

For example, in the product [A′(1,s)]ij [F]jl, if j = 2, corresponding to π̃0(a)π̃−(b)π̃+(k),

then the spectator attaching to the endcap has momentum a and is a neutral pion. Thus

no additional permutation matrix is needed. With this choice the symmetrized endcap is

simply given by16

A′ = A′(u) + A′(s) + A′(s̃) . (A.2)

14Some aspects of the derivation of ref. [17] were streamlined in ref. [21], which generalized the derivation

to include a K-matrix pole. We do not refer to the latter work, however, since the notation therein is quite

involved, as there is an additional channel needed for the K-matrix pole, which is not relevant here. In any

case, our aim is not to repeat the derivation, but rather to describe how it can be taken over wholesale.

The more pedestrian approach of ref. [17] is adequate for this purpose.
15The numerical superscripts indicate the order in an expansion in numbers of “switch states”. The

details, described in ref. [17], are not important for the present discussion.
16A potentially confusing issue is why there are only three terms in the symmetrization sums, as opposed

to six, the number of permutations of the three momenta. In other words, why is it sufficient to have one

contribution from each of the different choices of spectator momenta, while the order of the nonspectator

momenta is irrelevant? In the case of three neutral pions (j = 4) this is because the amplitude is symmetric

under exchange of the nonspectator pair. For other choices of the flavor index j, the two pions in the
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Here we are considering endcaps obtained by summing to all orders in perturbation theory,

and thus there is no numerical superscript. In this notation the complete endcap appearing

in the main text is A′3 = σ + A′ [see, e.g., eq. (2.42)].

Now we come to the core issue of this appendix. The derivation of ref. [17] produces, in

many places,17 the combination A′(u) + 2A′(s), rather than the desired symmetric quantity

A′. The key results needed to allow symmetrization generalize here to

{
A′(u) + 2A′(s)

}
FA(u) = A′FA(u) ⇔ A′(s)FA(u) = A′(s̃)FA(u) , (A.3)

{
A′(u) + 2A′(s)

}
FA = A′FA ⇔ A′(s)FA = A′(s̃)FA . (A.4)

In each line, the two forms are algebraically equivalent, and we will demonstrate the second

forms. The argument for (the ungeneralized form of) these results given in ref. [17] applies

only for identical particles. Here we give the generalization.

In both eqs. (A.3) and (A.4) there is an implicit sum over the flavor indices. The matrix

F is diagonal in flavor [see eq. (2.26)], so the right-hand flavor index of the left endcap and

the left-hand flavor index of the right endcap are the same, and we call this common

index j. In the all-neutral case, j = 4, the arguments of ref. [17] hold and demonstrate

the equalities. For other choices, the equalities hold only after summing over the pairs of

values of j that are related by interchanging the first two pions, i.e. j = {1, 2}, {3, 5} and

{6, 7}. For each of these pairs, we denote the two values as j1 and j2. The new results that

are needed are

(A
(u)
j1i

)kℓm = (−1)ℓ(A
(u)
j2i

)kℓm , (A.5)

(A
′(s)
ij1

)kℓ′m′ = (−1)ℓ
′

(A
′(s̃)
ij2

)kℓ′m′ , (A.6)

as well as a result derived in ref. [17],

(−1)ℓ
′

Fk′ℓ′m′;kℓm(−1)ℓ = Fk′ℓ′m′;kℓm , (A.7)

using which it is simple to derive eqs. (A.3) and (A.4).

We discuss eqs. (A.5)–(A.7) in turn. Note that in the first two of these equations, the

flavor label i plays no role. What eq. (A.5) states is that, if we interchange the momenta

a and b, and interchange the flavors j1 and j2, then we obtain the same amplitude. The

factor of (−1)ℓ arises because we are decomposing into spherical harmonics with respect

to â⋆ on the left-hand side and b̂
⋆

on the right-hand side, corresponding to a parity flip in

the CMF of the nonspectator pair. The same explanation holds for eq. (A.6), except here

there is the additional feature that interchanging a and b also interchanges (s) and (s̃).

Finally, eq. (A.7) encodes the statement that F vanishes (up to exponentially suppressed

corrections) unless ℓ+ ℓ′ is even.

nonspectator pair have different charges, and their order has no meaning in the context of a Feynman

diagram, as long as we associate a given momentum label always with a given flavor, as is the case here.
17Strictly speaking, these quantities should have a common numerical superscript indicating the order in

the expansion in switch states, but this plays no role in the present derivation, so we drop it for the sake of

brevity.
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The remainder of the derivation in ref. [17] generalizes step by step in the presence

of flavor. Each equation holds when the original quantities are replaced by their flavored

(bold faced) generalizations (taking into account the factors of i and 2ωL3 absorbed into

the bold faced definitions). No new results are needed. For example, the key result given

in (HS196)–(HS198), which is also crucial to allow symmetrization, carries over verbatim

for each choice of flavor indices. Also, the complicated steps in (HS213)–(HS239), which

result in a symmetrized Kdf,3, carry over and (using the key results given above) lead to

a Kdf,3 with exactly the generalized symmetry properties described in section 2.3. Finally

we note that the inclusion of the generalized three-particle Bethe-Salpeter kernel, B3, also

follows the same steps as in section IV.E of ref. [17], because B3 has the same symmetry

properties as σ, namely those of M3.

B Building blocks of the quantization condition

This appendix provides a self-contained collection of all necessary definitions to implement

the three-particle quantization condition.

First, we define the cutoff function:

H(k) = J(z) , z =
E⋆2

2,k − (1 + αH)m2

(3− αH)m2
, (B.1)

J(z) =





0, z ≤ 0 ,

exp
(
−1

z exp
[
− 1

1−z

])
, 0 < z < 1 ,

1, 1 ≤ z ,

(B.2)

where E⋆2
2,k = (E − ωk)2 − (P − k)2 and αH ∈ [−1, 3) a constant that sets the scheme

for Kdf,3 but does not affect the relation between finite-volume energies and the physical

amplitude. We typically choose αH = −1, corresponding to the highest cutoff.

For G we use the relativistic form described in ref. [19],

Gpℓ′m′;kℓm(E,P , L) ≡ 1

L3

H(p)H(k)

b2 −m2

4πYℓ′m′(k⋆)Y∗ℓm(p⋆)

q⋆ℓ
′

2,p q
⋆ℓ
2,k

1

2ωk
, (B.3)

where b = P − p− k is the momentum of the exchanged particle and q⋆22,k = E⋆2
2,k/4−m2 is

the squared back-to-back momentum of the non-b pair in its CMF. We have also used the

two-particle CMF quantities p⋆ and k⋆, defined via

p⋆ = (γk − 1)
(
p · (k̂−P )

)
(k̂−P ) + ωpγkβk(k̂−P ) + p,

βk =
|P − k|
E − ωk

, γk = (1− β2k)−1/2 ,
(B.4)

where x̂ = x/|x|. The definition for k⋆ is given by exchanging p↔ k everywhere. Finally,

Yℓm(k) are harmonic polynomials,

Yℓm(k) ≡ |k|ℓYℓm(k̂) , (B.5)
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where Yℓm are the spherical harmonics. In practice, it is more convenient to use the real

spherical harmonics, as discussed in ref. [22].

Next,

Fk′ℓ′m′;kℓm(E,P , L) ≡ δk′kFℓ′m′,ℓm(k) , (B.6)

where F (k) is a sum-integral difference that is proportional to the zeta functions that

appear in the two-particle quantization condition [1, 2]. This object also depends on

(E,P , L) but we leave this implicit, focusing on the role of the spectator momentum.

F (k) requires ultraviolet (UV) regularization, and can be written in various forms that

are equivalent up to exponentially-suppressed corrections. The original form, presented in

ref. [17], uses a product of H functions as a UV regulator. Here, we give a different form

that is simpler to evaluate numerically. Following ref. [4], we write

Fℓ′m′;ℓm(k) =
1

16π2L(E−ωk)

[∑

na

−PV

∫
d3na

]
eα(x

2−r2)

x2 − r2
4πYℓ′m′(r)Y∗ℓm(r)

xℓ′+ℓ
, (B.7)

where na = aL/(2π), x = q⋆2,kL/(2π), and

r(nk,na) = na + nkP

[
na · nkP

n2kP

(
1

γk
− 1

)
+

1

2γk

]
, (B.8)

with k−P = nkP (2π/L), and γk as in eq. (B.4). The UV regularization is now provided by

the exponential in the integrand with α > 0. The α dependence is exponentially suppressed

in L but can become numerically significant if α is taken too large. We find that α . 0.5

is usually sufficient. In this regularization, the integral can be performed analytically, as

explained in appendix B of ref. [22].

Finally, we turn to K2, which is a diagonal matrix:

[
1

K2

]

pℓ′m′;kℓm

= δpkδℓ′ℓδm′m
1

K(ℓ)
2;k

, (B.9)

1

K(ℓ)
2;k

=
1

16πE⋆
2,k

{
q⋆2,k cot δℓ(q

⋆
2,k) + |q⋆2,k|[1−H(k)]

}
, (B.10)

where δℓ(q
⋆
2,k) is the two-particle phase-shift in the ℓth partial wave.

C Three-pion states

We collect in this appendix some additional details concerning the basis we use for the

neutral three-pion states. The first two pions are combined into a state of definite isospin.

The Iππ = 2, 1 and 0 states are denoted (ππ)q2, ρ
q, and σ, respectively, with q the charge.

The two-pion state is then combined with the remaining pion to create a state of total
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isospin Iπππ (denoted by a subscript on the kets listed below). This leads to

|(ππ)2π〉3 =
1√
5

(
|(ππ)+2 π−〉+

√
3 |(ππ)02π0〉+ |(ππ)−2 π+〉

)
, (C.1)

|(ππ)2π〉2 =
1√
2

(
|(ππ)+2 π−〉 − |(ππ)−2 π+〉

)
, (C.2)

|ρπ〉2 =
1√
6

(
|ρ+π−〉+ 2 |ρ0π0〉+ |ρ−π+〉

)
, (C.3)

|(ππ)2π〉1 =
1√
10

(√
3 |(ππ)+2 π−〉 − 2 |(ππ)02π0〉+

√
3 |(ππ)−2 π+〉

)
, (C.4)

|ρπ〉1 =
1√
2

(
|ρ+π−〉 − |ρ−π+〉

)
, (C.5)

|σπ〉1 = |σπ0〉 , (C.6)

|ρπ〉0 =
1√
3

(
|ρ+π−〉 − |ρ0π0〉+ |ρ−π+〉

)
. (C.7)

The right-hand sides can be further decomposed into the |πππ〉 basis used in the main text,

resulting in eqs. (2.56) and (2.57).

We make extensive use of the irreducible representations (irreps) of the symmetry

group S3, which describes permutations of three objects. It has 6 elements, divided into

three conjugacy classes as

{(1)}, {(12), (23), (13)} and {(231), (321)} . (C.8)

The three irreps are as follows.

1. The trivial representation, with all elements being the identity. States transforming

according this irrep are denoted |χs〉.

2. The sign or alternating representation:

(1), (231), (312)→ +1,

(12), (23), (13)→ −1.
(C.9)

States transforming according to this irrep are denoted |χa〉.

3. The standard representation, which is two dimensional. A convenient choice of basis

vectors, denoted |χ1〉 and |χ2〉, leads to:

(1)→
(

1 0

0 1

)
, (12)→

(
1 0

0 −1

)
, (13)→ 1

2


 −1 −

√
3

−
√

3 1


 ,

(23)→ 1

2


−1

√
3

√
3 1


 , (231)→ 1

2


 −1

√
3

−
√

3 −1


 , (312)→ 1

2


−1 −

√
3

√
3 −1


 .

(C.10)
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The three-pion states listed above can be classified according to their transformations

under permutations. The Iπππ = 3 state transforms in the symmetric irrep, the Iπππ = 2

states in the standard irrep, the Iπππ = 1 states in a direct sum of the symmetric and

standard irreps, and the Iπππ = 0 state in the sign irrep. The linear combinations that lie

in the permutation-group irreps are (with the subscript on the ket again denoting isospin)

|χs〉3 = |(ππ)2π〉3 , (C.11)

|χ1〉2 = |(ππ)2π〉2 , (C.12)

|χ2〉2 = |ρπ〉2 , (C.13)

|χ1〉1 = −
√

5

3
|(ππ)2π〉1 +

2

3
|σπ〉1 , (C.14)

=
1√
12

(
2 |π+, π−, π0〉+ 2 |π−, π+, π0〉 − |π+, π0, π−〉

− |π0, π+, π−〉 − |π0, π−, π+〉 − |π−, π0, π+〉
)
, (C.15)

|χ2〉1 = |ρπ〉1 , (C.16)

|χs〉1 =
2

3
|(ππ)2π〉1 +

√
5

3
|σπ〉1 , (C.17)

=
1√
15

(
|π+, π−, π0〉+ |π0, π+, π−〉+ |π−, π0, π+〉+ |π−, π+, π0〉

+ |π0, π−, π+〉+ |π+, π0, π−〉 − 3 |π0, π0, π0〉
)
, (C.18)

|χa〉0 = |ρπ〉0 . (C.19)

D Group-theoretic results

In this appendix we collect some group-theoretic results that are relevant for the practical

implementation of the quantization condition described in the main text. We restrict our

considerations to the overall rest frame, i.e. we set P = 0; generalizations to moving frames

are straightforward but tedious.

We begin by listing the irreps that are created and annihilated by operators with

(Iπππ)z = 0, having the form of three noninteracting pions, each with a definite momentum.

Focusing on annihilation operators, we write

π̃i(a)π̃j(b)π̃k(c) , (D.1)

with π̃ the Fourier transform of some choice of local pion operator. The indices i, j, k

denote (Iπ)z, and the constraint that the total operator is neutral restricts the choices

of indices to seven options, as described in appendix C. The momenta are a = 2πm1/L,

b = 2πm2/L, and c = −a−b = 2πm3/L. One then projects onto definite isospin using the

results given in eqs. (2.56) and (2.57) and appendix C. Operators of this type are typically

used as part of the variational basis in lattice QCD calculations, and the energies of the

– 43 –



J
H
E
P
0
7
(
2
0
2
0
)
0
4
7

orb.
(
m2

1,m
2
2,m

2
3

)
dim. Iπππ = 0 Iπππ = 1 Iπππ = 2 Iπππ = 3

1 (0,0,0) 2 — R
(o)
2 +R

(o)
3 — A−1

2 (1,1,0) 21 T+
1 R

(o)
2 +R

(o)
3 A−1 , E

−, T+
1 A−1 , E

−

3 (2,2,0) 42 T+
1 , T

+
2 R

(o)
2 +R

(o)
3 A−1 , E

−, T−2 , T
+
1 , T

+
2 A−1 , E

−, T−2

4 (2,1,1) 84 R
(4)
0 R

(o)
2 +R

(o)
3 R

(4)
2 R

(4)
3

5 (3,3,0) 28 A+
2 , T

+
1 R

(o)
2 +R

(o)
3 A−1 , T

−
2 , A

+
2 , T

+
1 A−1 , T

−
2

6 (4,1,1) 24 — R
(o)
2 +R

(o)
3 A−1 , E

−, T+
1 A−1 , E

−, T+
1

7 (3,2,1) 168 R
(7)
3 R

(o)
2 +R

(o)
3 2 R

(7)
3 R

(7)
3

16 (5,3,2) 336 R
(16)
3 R

(o)
2 +R

(o)
3 2 R

(16)
3 R

(16)
3

Table 5. Cubic-group irreps for the three-pion operators with P = 0 and total charge zero for

isospin Iπππ = 0, 2 and 3. These results include the intrinsic negative parity of the pions. The

operators are those with the lowest seven noninteracting energies for a cubic box with mL ≈ 4,

together with the lowest-lying orbit having the maximal possible dimension. The first column

gives the orbit number, o, the second specifies the orbit, as described in the text, while the third

gives the dimension of the orbit. The remaining columns list the irreps appearing in the orbit,

R
(o)
I . As indicated, results for Iπππ = 1 are given by summing the irreps in the Iπππ = 2 and

Iπππ = 3 columns. Entries in the Iπππ = 3 column agree with those in table 2 of ref. [22]

(up to intrinsic parity, which is omitted in the earlier work). The missing entries are R
(4)
0 =

A−

2 , E
−, T−

1 , T
+
1 , T

+
2 , R

(4)
2 = A−

1 , A
−

2 , 2E
−, T−

1 , T
−

2 , 2T
+
1 , 2T

+
2 , R

(4)
3 = A−

1 , E
−, T−

2 , T
+
1 , T

+
2 , R

(7)
3 =

A−

1 , E
−, T−

1 , 2T
−

2 , A
+
2 , E

+, 2T+
1 , T

+
2 , and R

(16)
3 = A−

1 , A
−

2 , 2E
−, 3T−

1 , 3T
−

2 , A
+
1 , A

+
2 , 2E

+, 3T+
1 , 3T

+
2 .

corresponding noninteracting states provide points of comparison for the spectrum of the

interacting theory (see, e.g., figure 4).

Each choice of m1 and m2 (which fixes m3 = −m1−m2) is related to some number of

other choices by cubic group transformations. We specify the resulting orbit by giving the

values of m2
1, m

2
2 and m2

3, which provide a unique specification for the examples we consider

(although not in general). Each orbit decomposes into irreps of the cubic group, and these

are listed in table 5 for the operators coupling to the seven lowest-energy states in the

absence of interactions. We recall that the irreps for the 48-element cubic group (including

parity) are A±1 , A±2 , E±, T±1 and T±2 , with dimensions of {1, 1, 2, 3, 3}, respectively. The

result from appendix C that the Iπππ = 1 triplets decompose into a trivial singlet and a

standard irrep doublet under the permutation group S3, leads to the result shown in the

table that the irreps for Iπππ = 1 are simply the sum of those for Iπππ = 2 and Iπππ = 3.

We stress that it is always possible to choose particular linear combinations of operators

that pick out each of the irreps in a given orbit. This is very useful in practice as it restricts

the number of terms in Kdf,3 that contribute (see section 3.1), and allows one to consider

the resonances discussed in section 3.2 one by one. We note that certain irreps do not

appear until quite high orbits, e.g. A−2 and T−1 do not appear until the fourth orbit, while
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orb. m2
ρ m2

π dim. irreps

1 0 0 3 T+
1

2 1 1 18 A−1 , E
−, T−1 , T

−
2 , 2T

+
1 , T

+
2

3 2 2 36 A−1 , A
−
2 , 2E

−, 2T−1 , 2T
−
2 , A

+
2 , E

+, 3T+
1 , 2T

+
2

4 3 3 24 A−1 , E
−, T−1 , 2T

−
2 , A

+
2 , E

+, 2T+
1 , T

+
2

Table 6. Cubic-group irreps contained in ρπ states. The intrinsic negative parity of the pion

and the rho are included. Orbits are numbered, and specified by the squares of the momenta, with

pρ = 2πmρ/L and pπ = 2πmπ/L. The irreps shown are present for each the three allowed isospins,

Iρπ = 0, 1, and 2. The dimensions of the orbits apply separately for each choice of isospin.

E+ and A+
2 do not appear until the seventh. This leaves only A+

1 , which does not appear

until the sixteenth orbit. This is the lowest “generic” orbit, i.e. one in which all nontrivial

cubic-group transformations have vanishing characters.

In order to interpret the interacting spectra in the presence of narrow two-particle res-

onances, it is also useful to determine which irreps are present assuming that the resonance

is a stable particle. In practice, for the energy range of interest, the most important such

resonance is the ρ, as shown by the examples in figure 4. Thus we have determined the

irreps created by ρπ operators, treating the ρ as a stable particle with JP = 1−. There are

three isospin combinations with total (Iρπ)z = 0, and these decompose into total isospin

Iρπ = 0, 1 and 2. Since the ρ and π are different particles, the cubic-group irreps that

appear are the same for all choices of isospin, and the results for the lowest few momentum

orbits are given in table 6. The multiplicities of the T−1 irrep agree with the results from

table 3 of ref. [38].

We can use the results in tables 5 and 6 to understand the level-counting in figure 4,

which shows the spectra for Iπππ = 0 and irreps (a) T−1 and (b) T+
1 . The energies of

the second to the sixth noninteracting 3π orbits are shown in both panels (the first orbit,

having E/m = 3, lies below the plotted range), as well as the first three noninteracting ρπ

levels.

For T−1 (the ω channel), we see from table 5 that, for the energy range shown in the

figure, only the fourth orbit contains this irrep. From table 6, we see that the second and

third ρπ orbits contain the T−1 , but not the first. In all but one case, there is only a single

T−1 irrep present, the exception being the third ρπ orbit, which contains two such irreps.

These results are consistent with the interacting energies plotted in figure 4a, which can

be interpreted, for mL . 6, as roughly corresponding to the ω resonance, second ρπ orbit,

fourth 3π orbit, and a pair of ρπ third orbits.

The results for the T+
1 irrep, displayed in figure 4b, can be interpreted in a similar

manner. All the 3π and ρπ orbits shown in the figure contain this irrep, with unit mul-

tiplicities except for the second and third ρπ orbits, which have multiplicities 2 and 3,

respectively. This counting, together with the h1 state, matches that seen in the figure.
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