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Abstract

Domain generalization (DG), i.e., out-of-
distribution generalization, has attracted increasing
interests in recent years. Domain generalization
deals with a challenging setting where one or sev-
eral different but related domain(s) are given, and
the goal is to learn a model that can generalize to an
unseen test domain. Great progress has been made
over the years. This paper presents the first review
of recent advances in domain generalization.
First, we provide a formal definition of domain
generalization and discuss several related fields.
We then categorize recent algorithms into three
classes: data manipulation, representation learning,
and learning strategy, and present some algorithms
in detail for each category. Third, we introduce the
commonly used datasets and applications. Finally,
we summarize existing literature and present some
potential research topics for the future.

1 Introduction

Machine learning (ML) has achieved remarkable success in
various areas, such as computer vision, natural language pro-
cessing, and healthcare. The goal of ML is to design a model
that can learn general and predictive knowledge from training
data, and then apply the model to new (test) data. Traditional
ML models are trained based on the i.i.d. assumption that
training and testing data are identically and independently
distributed. However, this assumption does not always hold
in reality. When the probability distributions of training data
and testing data are different, the performance of ML models
often deteriorates due to domain distribution gaps. Collecting
the data of all possible domains to train ML models is expen-
sive and even prohibitively impossible. Therefore, enhancing
the generalization ability of ML models is important in both
industry and academic fields.

There are many generalization-related research topics with
the names of domain adaptation, meta-learning, transfer
learning, covariate shift, and so on. In recent years, Domain
generalization (DG) has received much attention. The goal of
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domain generalization is to learn a model from one or several
different but related domains (i.e., diverse training datasets)
that will generalize well on unseen testing domains. Over
the past years, domain generalization has made significant
progress in various areas such as computer vision and nat-
ural language processing. Despite the progress, there has not
been a survey in this area that comprehensively introduces
and summarizes its main ideas, learning algorithms and other
related problems to provide insights into the future research.

In this paper, we present the first survey on domain general-
ization to introduce its recent advances, with special focus on
its formulations, algorithms, datasets, applications, and future
research directions. We hope that this survey can provide a
comprehensive review for interested researchers, and inspire
more research in this and some related areas.

2 Domain Generalization and Related Areas

Definition 1 (Domain). Let X denote a nonempty input
space and Y an output space. A domain is composed of
data that are sampled from a distribution. We denote it as
S = {(xi,yi)}q ~ Pxy, wherex € X CRYL, ye Y CR
denotes the label, and Pxy denotes the joint distribution of
the input sample and output label. X,Y denote the corre-
sponding random variables.

Definition 2 (Domain generalization). In domain general-
ization problems, we are given M training (source) domains
Strain = {Sl | L= 1a e 7M} where §* = {(x;my;)};h:l
denotes the i-th domain. The joint distributions between each
two domains are different: Piy # Piy,1 < i # j < M.
The goal of domain generalization is to learn a robust and
generalizable predictive function h X — Y from the
M training domains to achieve a minimum prediction er-
ror on an unseen test domain Siest (i.e., Siest cannot be ac-
cessed in training and P& # Pl fori € {1,--- ,M}):
ming, Ex y)es,... [(h(x),y)], where E is the expectation
and ((-,-) is the loss function.

We briefly describe the related research areas.

Multi-task learning [Caruana, 1997] jointly optimizes
models on several related tasks. By sharing representations
between these tasks, we could enable the model to general-
ize better on the original task. Note that multi-task learning
does not aim to enhance the generalization to a new (unseen)


https://arxiv.org/abs/2103.03097

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

task. Particularly, multi-domain learning is a kind of multi-
task learning, which trains on multiple domains to learn mod-
els for each original domain instead of new test domains.

Transfer learning [Pan and Yang, 2010; Zhuang er al.,
2020; Wang, 2018] trains a model on a source task and aims
to enhance the performance of the model on a different but
related target domain/task. Pretraining-finetuning is the com-
monly used strategy for transfer learning where the source
and target domains have different tasks and target domain is
accessed in training. In DG, the target domain cannot be ac-
cessed and the training and test tasks are often the same while
they have different distributions.

Domain adaptation (DA) [Patel et al., 2015] is also pop-
ular in recent years. DA aims to maximize the performance
on a given target domain using existing training source do-
main(s). The difference between DA and DG is that DA has
access to the target domain data while DG cannot see them
during training. This makes DG more challenging than DA
but more realistic in practical applications.

Meta-learning [Vilalta and Drissi, 2002] aims to learn the
learning algorithm itself by learning from previous experi-
ence or tasks, i.e., learning-to-learn. While the tasks are dif-
ferent in meta-learning, in domain generalization, the learn-
ing tasks are the same. Meta-learning is a general learn-
ing strategy that can be used for DG [Li et al, 2018a;
Balaji et al., 2018; Li et al., 2019b; Du and others, 2020]
by simulating the meta-train and meta-test tasks in training
domains to enhance the performance for DG.

Lifelong Learning [Biesialska et al., 2020], or continual
learning, cares about the learning ability among multiple se-
quential domains/tasks. It requires the model to continually
learn over time by accommodating new knowledge while re-
taining previously learned experiences. This is also different
from DG since it can access the target domain in each time
step and it does not explicitly handle the different distribu-
tions across domains.

Zero-shot learning aims at learning models from seen
classes and classify samples whose categories are unseen in
training. In contrast, domain generalization in general studies
the problem where training and testing data are from the same
classes but with different distributions.

3 Methodology

In this section, we introduce existing domain generalization
methods in detail. As shown in Figure 1, we categorize them
into three groups, namely:

(1) Data manipulation: This category of methods focuses
on manipulating the inputs to assist learning general rep-
resentations. Along this line, there are two kinds of pop-
ular techniques: a). Data augmentation, which is mainly
based on augmentation, randomization, and transforma-
tion of input data; b). Data generation, which generates
diverse samples to help generalization.

(2) Representation learning: This category of methods is
the most popular in domain generalization. There are
two representative techniques: a). Domain-invariant rep-
resentation learning, which performs kernel, adversarial
training, or explicitly feature alignment between domains
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Figure 1: Taxonomy of domain generalization methods.

to learn domain-invariant representations; b). Feature
disentanglement, which tries to disentangle the features
into domain-shared or domain-specific parts for better
generalization.

(3) Learning strategy: This category of methods focuses
on exploiting the general learning strategy to promote
the generalization capability, which mainly includes two
kinds of methods: a). Ensemble learning, which relies on
the power of ensemble to learn a unified and generalized
predictive function; b). Meta-learning, which is based on
the learning-to-learn mechanism to learn general knowl-
edge by constructing meta-learning tasks to simulate do-
main shift. Additionally, there are other learning strategy
that can also be used for DG and we categorized them as
other learning strategy.

While these categories are conceptually different, they are
complementary to each other and can be combined towards
better performance. We will describe each category in detail.

3.1 Data Manipulation

The generalization performance of a ML model often relies
on the quantity and diversity of the training data. Given a
limited set of training data, data manipulation is one of the
cheapest and simplest way to generate samples so as to en-
hance the generalization capability of the model. The main
objective for data manipulation-based DG is to increase the
diversity of existing training data using different data manip-
ulation methods. At the same time, the data quantity is also
increased. Data manipulation-based DG is formulated as:

min By [((h(x), y)] + Exr y [E(A(X), )], (D

where x’ = mani(x) denotes the manipulated data using a
function mani(-). Based on the difference of this function,
we further categorize existing work into two types: data aug-
mentation and data generation.

Data Augmentation-based DG

Augmentation is one of the most useful techniques for train-
ing machine learning models. Typical augmentation oper-
ations include flipping, rotation, scaling, cropping, adding
noise, and so on. They have been widely used in super-
vised learning to enhance the generalization performance of
a model by reducing overfitting. Without exception, they can
also be adopted for DG where mani(-) can be instantiated as
these data augmentation functions.
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Domain randomization. Other than typical augmenta-
tion, domain randomization is an effective technique for data
augmentation. It is commonly done by generating new data
that can simulate complex environments based on the lim-
ited training samples. As data becomes more complex and
diverse, generalization ability can be increased. Here, the
mani(-) function is implemented as several manual trans-
formations (commonly used in image data) such as: alter-
ing the location and texture of objects, changing the number
and shape of objects, modifying the illumination and cam-
era view, and adding different types of random noise to the
data. [Khirodkar et al., 2019] used domain randomization
to generate more training data in simulated environments in
order to generalize in real test environment. [Prakash and oth-
ers, 2019] further took into account the structure of the scene
when randomly placing objects for data generation, which en-
ables the neural network to utilize context information when
detecting objects.

Adversarial data augmentation. Adversarial data aug-
mentation aims to guide the augmentation to optimize the
generalization capability, by enhancing the diversity of data
while assuring their reliability. [Shankar er al., 2018] used
a Bayesian network to model dependence between label, do-
main and input instance, and proposed CrossGrad, a cautious
data augmentation strategy that perturbs the input along the
direction of greatest domain change while changing the class
label as little as possible. [Volpi et al., 2018] proposed an
iterative procedure that augments the source dataset with ex-
amples from a fictitious target domain that is “hard” under
the current model, where adversarial examples are appended
at each iteration to enable adaptive data augmentation. Other
than directly updating the inputs by gradient ascent, [Zhou
et al., 2020b] adversarially trained a data augmentation net-
work to generate samples that can fool the feature extractor
to eventually learn general representations.

Data Generation-based DG

Data generation is also a popular technique to generate di-
verse and rich data to boost the generalization capability of
a model. Here, the function mani(-) can be implemented us-
ing some generative models such as Variational Auto-encoder
(VAE) [Kingma and Welling, 2013], and Generative Adver-
sarial Networks (GAN) [Goodfellow et al., 2014]. In addi-
tion, it can also be implemented using the Mixup [Zhang et
al., 2018] strategy.

[Rahman er al., 2019] leveraged ComboGAN [Anoosheh
et al., 2018] to generate new data and then applied domain
discrepancy measure such as MMD [Gretton et al., 2012]
to minimize the distribution divergence between real and
generated images to learn general representations. [Qiao et
al., 2020] leveraged adversarial training to create “fictitious”
yet “challenging” populations, where a Wasserstein Auto-
Encoder [Tolstikhin et al., 2017] was used to generate sam-
ples that preserve the semantics while having large domain
transportation cost. [Zhou et al., 2020c] generated novel dis-
tributions under semantic consistency and then maximized
the difference between source and the novel distributions.
[Somavarapu et al., 2020] introduced a simple transformation
based on image stylization to explore cross-source variability.
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In addition to the above generative models, Mixup [Zhang
et al., 2018] is also a popular technique for data genera-
tion. Mixup generates new data by performing linear inter-
polation between any two instances and between their la-
bels with a weight sampled from a Beta distribution, which
does not require to train generative models. Recently, there
are several methods using Mixup for DG, by either per-
forming Mixup in the original space [Wang et al., 2020d;
Wang et al., 2020e] to generate new samples; or in the fea-
ture space [Zhou et al., 2021] which does not explicitly gener-
ate raw training samples. These methods achieved promising
performance on popular benchmarks while remaining con-
ceptually and computationally simple.

3.2 Representation Learning

Representation learning has always been the focus of machine
learning for decades and is also one of the keys to the suc-
cess of domain generalization. We decompose the prediction
function h as h = f o g, where g is a representation learning
function and f is the classifier function. The goal of repre-
sentation learning is formulated as:

H)}iqn Ex, o 0(f(9(x)),y) + Mreg, (2)

where {; denotes some regularization term and X is the
tradeoff parameter. Many methods are designed to better
learn the feature extraction function g with corresponding
l1eg. In this section, we categorize the existing literature on
representation learning into two main categories based on dif-
ferent learning principles: domain-invariant representation
learning and feature disentanglement.

Domain-invariant Representation-based DG

[Ben-David er al., 2007] theoretically proved that if the fea-
ture representations remain invariant to different domains, the
representations are general and transferable to different do-
mains. Motivated by this theory, the learning objective for
DG is to minimize the distribution gap within the training
domains in order to learn domain-invariant features. Along
this line, there are mainly three types of methods: kernel-
based methods, domain adversarial learning, and explicit fea-
ture alignment.

Kernel-based methods. Kernel-based machine learning
relies on the kernel function to transform the original data into
a high-dimensional feature space without ever computing the
coordinates of the data in that space, but by simply comput-
ing the inner products between the samples of all pairs in the
feature space. For domain generalization, there are plenty of
algorithms based on kernel methods, where the representation
learning function ¢ is implemented as some feature map ¢(-)
which is easily computed using kernel function k(-, -) such as
RBF kernel and Laplacian kernel.

[Blanchard et al., 2011] is the first work to use kernel
method for DG which is extended later in [Blanchard et al.,
2017]. Their goal is to learn a domain-invariant positive semi-
definite kernel for minimum risk control. [Grubinger ef al.,
2015] adapted transfer component analysis (TCA) [Pan et
al., 2011] to bridge the multi-domain distributions gap for
DG. Similar to TCA, Domain-Invariant Component Analysis
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(DICA) [Muandet et al., 2013] is one of the classic meth-
ods using kernel for DG. DICA finds a feature transformation
kernel k(-, -) that minimizes the distribution discrepancy be-
tween all data in feature space. [Gan et al., 2016] adopted the
similar method as DICA and further added attribute regular-
ization. In contrast to DICA which deals with the marginal
distribution, [Li et al., 2018c] learned feature representations
that remain domain-invariant in class-conditional distribu-
tion. [Ghifary et al., 2016] used Fisher’s discriminant analy-
sis to minimize intra-class discrepancy while maximizing the
inter-class discrepancy from different domains. They pro-
posed Scatter Component Analysis (SCA) to learn domain-
invariant representations using MMD [Gretton et al., 2012],
where the SCA kernel takes into account inter- and intra-class
discrepancies. [Erfani et al., 2016] proposed an Elliptical
Summary Randomisation (ESRand) that comprises of a ran-
domised kernel and elliptical data summarization. ESRand
projected each domain into an ellipse to represent the domain
information and then used some similarity metric to com-
pute the distance. [Hu et al., 2019] proposed multi-domain
discriminant analysis to perform class-wise kernel learning
for DG, which is more fine-grained. [Mahajan er al., 2020]
learned disentangled representations using causal matching.

Domain adversarial learning. Domain-adversarial train-
ing is widely used for learning domain-invariant features.
[Ganin and Lempitsky, 2015; Ganin et al, 2016] pro-
posed Domain-adversarial neural network (DANN) for do-
main adaptation. In DANN, the discriminator is trained to
distinguish the domains while the generator is trained to fool
the discriminator to learn domain-invariant feature represen-
tations. [Li et al., 2018b] adopted such idea for DG. [Gong et
al., 2019] used adversarial training by gradually reducing the
domain discrepancy in a manifold space. [Li et al., 2018d]
proposed a conditional invariant adversarial network (CIAN)
to learn class-wise adversarial networks for DG. Similar ideas
were also used in [Shao ef al., 2019; Rahman et al., 2020;
Wang et al., 2020f]. [Jia et al., 2020] used single-side ad-
versarial learning and asymmetric triplet loss to make sure
only the real faces from different domains were indistinguish-
able, but not for the fake ones. In addition to adversarial do-
main classification, [Zhao et al., 2020a] introduced additional
entropy regularization by minimizing the KL divergence be-
tween the conditional distributions of different training do-
mains to push the network to learn domain-invariant features.
Some other GAN-based methods [Garg et al., 2020] were
also proposed with theoretically guaranteed generalization
bound.

Explicit feature alignment. This line of works aligns the
feature distributions across training domains to learn domain-
invariant representations through explicit distribution align-
ment [Li et al., 2018b; Zhou et al., 2020al, or feature nor-
malization [Jin et al., 2020b]. [Motiian and others, 2017] in-
troduced a cross-domain contrastive loss for representation
learning, where mapped domains are semantically aligned
and yet maximally separated. Some methods explicitly min-
imized the feature distribution divergence by minimizing
the maximum mean discrepancy (MMD) [Pan et al., 2011;
Wang et al., 2018; Zhu et al., 20201, second order correlation
[Sun and Saenko, 2016], both mean and variance (moment
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matching), Wasserstein distance [Zhou et al., 2020al, of do-
mains for either domain adaptation or domain generalization.
[Zhou et al., 2020a] aligned the marginal distribution of dif-
ferent source domains via optimal transport by minimizing
the Wasserstein distance.

[Jin et al., 2020b; Jin et al., 2021] proposed Style Nor-
malization and Restitution (SNR) to simultaneously ensure
both high generalization and discrimination capability of the
networks. After the style normalization, a restitution step is
performed to distill task-relevant discriminative features from
the residual (i.e., the difference between the original feature
and the style normalized feature) and add them back to the
network to ensure high discrimination. Restitution is ex-
tended to other alignment-based method to restorate discrim-
inative information dropped by alignment [Jin e al., 2020a].

Feature Disentanglement-based DG

Disentangled representation learning tries to learn a function
that maps a sample to a feature vector that contains all the
information about different factors of variation, with each di-
mension (or a subset of dimensions) containing information
about only some factor(s). Disentanglement-based DG in
general decomposes a feature representation into understand-
able compositions/sub-features, with one part being domain-
shared/invariant part, and the other domain-shared one, which
is formulated as:

gfngisnf Ex,yg(f(gc (x)), y)JF)‘greg +tlrecon ([96(X), gs(x)], X),
3)

where ¢g. and g, denote the domain-shared and domain-
specific feature representations, respectively. A, u are trade-
off parameters. The loss £, is a regularization term that ex-
plicitly encourages the separation of the domain shared and
specific features and /;¢co,, denotes a reconstruction loss that
prevents the loss of information. Note that [g.(x), gs(xX)]
denotes the combination/integration of two kinds of fea-
tures (which is not limited to concatenation). Based on the
choice of architectures and implementation mechanisms, the
disentanglement-based DG can be categorized into two types:
multi-component analysis and generative modeling.

Multi-component analysis. In multi-component analysis,
the domain-shared and domain-specific features are in gen-
eral extracted using the the corresponding network modules.
UndoBias [Khosla et al., 2012] started from a SVM model
to maximize interval classification on all training data for do-
main generalization. It represented the parameters of the ¢-th
domain as w; = wq + A;, where wg denotes the domain-
shared parameters and A; denotes the domain-specific pa-
rameters. Some other methods extented the idea of UndoBias
from different aspects. [Niu et al., 2015] proposed Multi-
view DG (MVDG) using multi-view learning to learn the
combination of exemplar SVMs under different views for ro-
bust generalization. [Ding and Fu, 2017] designed domain-
specific networks for each domain and one shared domain-
invariant network for all domains to learn disentangled repre-
sentations. [Li et al., 2017a] extended the idea of UndoBias
into the neural network context and developed a low-rank pa-
rameterized CNN model for end-to-end training.

Generative modeling. Generative models can be used for
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disentanglement from the perspective of data generation pro-
cess. They formulate the generative mechanism of the sam-
ples from the domain-level, sample-level and label-level. The
Domain-invariant variational autoencoder (DIVA) [Ilse et al.,
2020] disentangled the features into domain information, cat-
egory information, and other information, which is learned
in the VAE framework. [Peng et al., 2019] further disen-
tangled the domain and class information using VAE. [Qiao
et al., 2020] also adopted VAE for disentanglement, where
they proposed a Unified Feature Disentanglement Network
(UFDN) that treated both data domains and image attributes
of interest as latent factors to be disentangled. [Liu et al.,
2020] proposed a unified solution for both domain adaptation
and domain generalization that used causality to disentangle
the features with theoretical bounds.

3.3 Learning Strategy

In addition to data manipulation and representation learning,
DG was also studied in general machine learning paradigms,
which is divided into three categories: ensemble learning-
based DG, meta-learning-based DG, and others.

Ensemble Learning-based DG

For domain generalization, ensemble learning exploits the
structure or relations between several source domains by us-
ing certain learning architectures and training strategies for
better generalization. Ensemble learning assumes that any
sample can be treated as an integration of existing training
domains, so the final prediction results are obtained as the
superposition of the training data or models.

[Mancini er al., 2018] proposed to use learnable weights
for aggregating the predictions from different source specific
classifiers, where a domain predictor is adopted to predict
the probability of a sample belonging to each domain (i.e.,
weights). [Segi et al., 2020] maintained domain-dependent
batch normalization (BN) statistics and BN parameters for
different source domains while all the other parameters were
shared. In inference, the final prediction was a linear combi-
nation of the domain-dependent models with the combination
weights inferred by measuring the distances between the in-
stance normalization statistics of the test sample and the accu-
mulated population statistics of each domain. [D’Innocente
and Caputo, 2018] proposed domain-specific layers of dif-
ferent source domains and learning the linear aggregation of
these layers to represent a test sample.

Meta-learning-based DG

Meta-learning [Vanschoren, 2018] is to learn a general model
from multiple tasks by induction. To use meta-learning for
DG, a general strategy is to divide the multi-source domains
into meta-train set S,,;,-, and meta-test set S,,,;. to simulate
domain shift. Denote # the model parameters to be learned,
meta-learning can be formulated as:

I(U(Smie; 0) + BUSmirn: @)
00 ’

where ¢ is the parameters for meta-train task and «, 5 are
learning rates for outer and inner loops, respectively.

0=0-a (4)
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Inspired by Model-agnostic meta-learning (MAML) [Finn
et al., 20171, [Li et al., 2018a] proposed MLDG (Meta-
Learning for DG), an optimization-based meta-learning strat-
egy for domain generalization. MLDG splits the data from
the source domains into meta-train and meta-test, where the
model can gradually learn to adapt to the simulated test
domains. [Balaji et al., 2018] introduced a meta regular-
izer (MetaReg) in meta-learning for fine-grained regulariza-
tion. [Li et al., 2019b] proposed feature-critic training for
the feature extractor by designing a meta optimizer learned
in different domains. [Dou et al., 2019] used the simi-
lar idea of MLDG and additionally introduced two comple-
mentary losses to explicitly regularize the semantic structure
of feature space. [Du and others, 2020] proposed an ex-
tended version of information bottleneck named Meta Vari-
ational Information Bottleneck (MetaVIB). MetaVIB learns
to minimize the Kullback-Leibler (KL) divergence between
the latent distributions belonging to the same category. Re-
cently, some works also adopted meta-learning for semi-
supervised DG or discriminative DG [Chen et al., 2020;
Sharifi-Noghabi et al., 2020; Wang et al., 2020a; Zhao et al.,
2020b].

Other Learning Strategy

There are some other learning paradigms for DG. For in-
stance, inspired by self-supervised learning that builds self-
supervised tasks from unlabeled data [Jing and Tian, 2020],
[Carlucci et al., 2019] constructed a self-supervised task of
solving jigsaw puzzles to learn generalized representations.
[Li et al., 2019a] learned feature extractors and classifiers us-
ing episodic training. First, they fix the classifier to learn the
worst-case feature extractor; then, they fix the feature extrac-
tor to learn the worst-case classifier. [Huang er al., 2020] used
self-challenging to iteratively discarded the dominant features
activated on the training data and forced the network to acti-
vate remaining features that correlate with labels.

4 Datasets and Applications

In this section, we briefly discuss the popular datasets and
applications in DG. Image classification is the most pop-
ular benchmark and application for DG such as Rotated
MNIST [Ghifary er al., 2015], PACS [Li et al, 2017al,
VLCS [Fang et al., 2013] and Office-Home [Venkateswara
et al., 2017] datasets.

There are other areas where DG also plays a key role.
In computer vision, apart from image classification, satel-
lite image classification [Deshmukh et al., 2019] is also
a popular application area for DG. Some works also used
DG for semantic segmentation [Gong et al., 20191, action
recognition [Li er al., 2017b; Li et al., 2019al, face anti-
spoofing [Shao er al., 2019], person ReID [Wang et al.,
2020d; Jin et al., 2020al, and street view recognition [Qiao
et al., 2020]. Also, there are some work for video under-
standing [Niu et al., 2015].

In natural language processing, some work used DG for
sentiment classification on Amazon Review dataset [Wang et
al., 2020f]. Others used DG for semantic parsing [Wang et
al., 2020al, web page classification [Garg er al., 2020]. Med-
ical analysis is one of the key application area for DG due
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to its nature of data scarcity. In this field, tissue segmenta-
tion [Dou et al., 2019], Parkinson’s disease [Muandet et al.,
2013], activity recognition [Erfani er al., 2016], and chest X-
ray recognition [Mahajan et al., 2020; Li et al., 2020].

Apart from those areas, DG was also used in reinforcement
learning [Zhou et al., 2021; Li ef al., 2018a] to generalize
to unseen environment. Some work used DG to recognize
speech utterance [Shankar et al., 2018; Piratla et al., 2020]
and fault diagnosis [Li et al., 2020]. It is clear that DG is be-
ing applied to more areas to learn models that can generalize
well to unseen data.

5 Discussion

5.1 Summarization

The quantity and diversity of training data are of great impor-
tance to model’s generalization ability. Many methods aim
to enrich the training data using the aforementioned data ma-
nipulation methods to achieve good performance. However,
one issue of the data manipulation methods is that there is a
lack of theoretical guarantee of the unbound risk of general-
ization. Therefore, it is important to develop theories for the
manipulation-based methods which could further guide the
data generation designs without violating ethical standards.

Compared to data manipulation, representation learning
has theoretical support in general [Ben-David er al., 2007;
Blanchard et al., 2011]. Kernel-based methods are widely
used in traditional methods while deep learning-based meth-
ods play a leading role in recent years. While domain ad-
versarial training often achieves better performance in do-
main adaptation, in DG, we did not see significant results
improvements from these adversarial methods. We think
this is probably because the task is relatively easy. For the
explicit distribution matching, more and more works tend
to match the joint distributions rather than just match the
marginal [Blanchard ef al., 2011; Li et al., 2018b] or condi-
tional [Li et al., 2018c] distributions. Thus, it is more feasible
to perform dynamic distribution matching [Wang er al., 2018;
Wang et al., 2020c].

For learning strategy, there is a trend that many works used
meta-learning for DG, where it requires to design better opti-
mization strategies to utilize the rich information of different
domains. In addition to deep networks, there are also some
work [Ryu et al., 2019] that used random forest for DG, and
we hope more diverse methods will come.

5.2 Future Research Challenges

Continuous domain generalization. In many real applica-
tions, a system consumes streaming data with non-stationary
statistics. In this case, it is critical to perform continuous
domain generalization that efficiently updates DG models
to overcome catastrophic forgetting and adapt to new data.
While there are some continuous domain adaptation meth-
ods [Wang et al., 2020b], there is only limited exploration on
continuous DG and this is favorable in real scenarios.

Domain generalization to novel categories. The existing
DG algorithms usually assume the label space for different
domains are the same. A more practical and general setting
is to support the generalization on new categories, i.e., both
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domain and task generalization. This is conceptually similar
to the goal of meta-learning and zero-shot learning. Some
work [Maniyar et al., 2020] proposed zero-shot DG and we
expect more work will come in this area.

Interpretable domain generalization. Disentanglement-
based DG methods decompose a feature to domain-
invariant/shared and domain-specific parts, which provide
some interpretation to DG. For other categories of methods,
there is still a lack of deep understanding of the semantics
or characteristics of learned features in DG models. Causal-
ity [Liu et al., 2020] may be one promising tool to understand
domain generalization networks and provide interpretations.

Large-scale pre-training/self-learning and DG. In recent
years, we have witnessed the rapid development of large-
scale pre-training/self-learning, such as BERT [Devlin et al.,
2018] and GPT-3 [Brown et al., 2020]. Pre-training on large-
scale dataset and then finetuning the model to downstream
tasks could improve its performance, where pre-training is
beneficial to learn general representations. For instance,
existing work that used the pre-trained representations on
source domain can achieve competitive performance on do-
main adaptation tasks [Wang er al., 2019]. Therefore, how
to design useful and efficient DG methods to help large-scale
pre-training/self-learning is worth investigating.

6 Conclusion

Generalization has always been an important research topic
in machine learning research. In this article, we review the
domain generalization area by providing in-depth analysis
of existing methods, datasets and applications. Finally, we
thoroughly analyze the methods and provide several poten-
tial research challenges. We hope that this survey can pro-
vide useful insights to interested researchers and inspire more
progress in domain generalization and other research areas.
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