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In this survey we shall explore (one definition of) generalized trigonometric
functions from different standpoints and illustrate the roles they play in various
branches of mathematics. We start from the analytic point of view and for each
p ∈ (1,∞) introduce a function sin−1

p by an integral formula, which is just an
extension of the well known integral representation of arcsin, and then use it
to define generalized sine, cosine and tangent functions (labelled sinp, cosp and
tanp respectively). Numerous properties of these functions, such as an identity
of Pythagorean type, are exhibited. Then we consider the unit circle in R2 with
the lp norm and define generalized trigonometric functions as is done in the
standard case when the l2 norm is used. We show that these functions coincide
with those introduced earlier. In the third section we consider the integral
operator T : Lp(I) → Lp(I) given by Tf(x) =

∫ x
0
f(t)dt, where I = (0, 1),

and look at the problem of finding an extremal function (an element of the
unit sphere of Lp(I) at which the norm of T is attained). It turns out that
the extremal functions are given by cosp . The following section deals with the
Dirichlet eigenvalue problem for the p−Laplacian on a bounded interval: all
eigenfunctions are expressible by means of sinp functions, which corresponds
exactly to the classical situation when p = 2. After establishing a connection
with approximation theory, we conclude with a review of other ways in which
the classical trigonometric functions have been generalized.

In the literature a variety of different definitions of generalized trigonomet-
ric functions can be found (see [7], [8]): all extend the classical functions and
preserve some of their properties. It becomes clear that no single definition
preserves all the classical properties and that which definition is adopted de-
pends on the applications envisaged. Our focus on a particular choice reflects
our research interests.

1 Analytic point of view

It is well known from basic calculus that∫ 1

0

1√
1− t2

dt = π/2 (1)
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and ∫ x

0

1√
1− t2

dt, 0 ≤ x ≤ 1 (2)

define a (differentiable) function on [0, 1]. Since 1√
1−t2 is positive on (0, 1), the

function is increasing and one-to-one from [0, 1] to [0, π/2]. This function is
arcsin(x) and can be used to define the function sin on [0, π/2]. By standard
extension procedures we can define the sin function on (−∞,∞).

Obviously this can be extended. Let 1 < p <∞ and define a (differentiable)
function Fp : [0, 1]→ R by

Fp(x) =
∫ x

0

1
p
√

1− tp
dt, 0 ≤ x ≤ 1. (3)

Since Fp is strictly increasing it is a one-to-one function on [0, 1] with range
[0, πp/2], where

πp = 2
∫ 1

0

1
p
√

1− tp
dt, 0 ≤ x ≤ 1. (4)

The inverse of Fp on [0, πp/2] we denote by sinp and extend as in the case of sin
(p=2) to [0, πp] by defining

sinp(x) = sinp(πp − x) for x ∈ [πp/2, πp];

further extension is achieved by oddness and 2πp-periodicity on the whole of R.
By this means we obtain a differentiable function on R which coincides with sin
when p = 2.

Corresponding to this we define a function cosp by the prescription

cosp(x) =
d

dx
sinp(x), x ∈ R. (5)

Clearly cosp is even, 2πp-periodic and odd about πp; and cos2 = cos. If x ∈
[0, πp/2], then from the definition it follows that

cosp(x) = (1− (sinp(x))p)1/p. (6)

Moreover, the asymmetry and periodicity show that

| sinp(x)|p + | cosp(x)|p = 1, x ∈ R. (7)

Fig.1 below gives the graphs of sinp and cosp for p = 1.2 and 6.
From (4) it follows that

πp
2

= p−1

∫ 1

0

(1−sp)−1/ps1/p−1ds = p−1B(1−1/p, 1/p) = p−1Γ(1−1/p)Γ(1/p),

where B is the Beta function, Γ is the Gamma function and

πp =
2π

p sin(π/p)
. (8)
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Figure 1: sin6, cos6 and sin1.2, cos1.2

Clearly π2 = π and, with p′ = p/(p− 1),

pπp = 2Γ(1/p′)Γ(1/p) = p′πp′ . (9)

Using (8) and (9) we see that πp decreases as p increases, with

lim
p→1

πp =∞, lim
p→∞

πp = 2, lim
p→1

(p− 1)πp = lim
p→1

πp′ = 2. (10)

The dependence of πp on p is illustrated in Fig. 2.

Figure 2: y = πp

The generalized tangent function is defined as in the classical case:

tanp x =
sinp x
cosp x

. (11)
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Figure 3: y = tan6(x), [0, π6/2) y = tan1.2(x), [0, π1.2/2)

Fig.3 indicates the behaviour of tanp when p = 1.2 and 6.
Obviously tanp x is defined for all x ∈ R except for the points (k + 1/2)πp

(k ∈ Z); it is odd, πp-periodic and tanp 0 = 0. Use of (7) shows that on
(−πp/2, πp/2), tanp has derivative 1 + | tanp x|p.

It follows that
d

dx
(tan−1

p x) =
1

1 + |x|p

and on (−πp/2, πp/2),

tan−1
p (x) =

∫ x

0

1
1 + |t|p

dt

Evidently tan−1
2 x = arctanx.

2 Geometric point of view

Here we start by recalling the definition of the sin and cos functions via the unit
circle in the plane R2 with the l2 metric, and then generalize this for R2 with
the lp metric.

Given r > 0, then Sr = {(x, y) ∈ R2;x2 + y2 = r2} is a circle in the plane
R2 with the l2 metric.

Each point in R2 can be described by rectangular coordinates (x, y) or polar
coordinates (r, φ). The relation between these different coordinates is described
by the functions sin, cos and tan.

The connection between polar and rectangular coordinates is given by:

x = r cos(φ) (12)
y = r sin(φ). (13)

Due to the l2 metric we have

r2 = x2 + y2;
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and φ is related to x and y by means of the tan function:

φ = tan−1(y/x), when x, y > 0.

Let us consider the case p 6= 2.

Figure 4: The first quadrant of S1 for p = 2, 6, 1.2

Then the analogue of the circle is the p−circle Sr = {(x, y) ∈ R2; |x|p+|y|p =
rp} and we expect the following identities:

x = r cosp(φ) (14)
y = r sinp(φ). (15)

From this follows | sinp(φ)|p+| cosp(φ)|p = 1, so that cosp(φ) = (1−(sinp(φ))p)1/p

when x, y > 0. Fig. 4 above shows how the shape of S1 changes with p. When
p 6= 2, the p−circle Sr is not symmetric with respect to rotation and then the
obvious one-to-one relation between the length of a curve segment on Sr and
its angle, as we have in the l2 metric, does not exist. Instead of this we will
consider the quite natural condition

d

dφ
sinp(φ) = cosp(φ),

setting
φ = 0 when (x, y) = (1, 0),

and suppose that φ increases when (x, y) moves on Sr in the anticlockwise
direction.

Then

d

dt
sin−1

p (t) =
1

cosp(sin−1
p (t))

=
1

1− tp
when 0 ≤ t < 1,

from which it follows that the sinp and cosp functions defined in this section are
the same as those defined in Section 1.
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We define the tanp function as in Section 1:

tanp(φ) :=
sinp(φ)
cosp(φ)

and we have, as in the l2 case,

φ = tan−1
p (y/x), when x, y > 0.

3 An integral operator and generalized trigono-
metric functions

In this section we concentrate on the most simple integral operator. On the
interval I = [0, 1] let

Tf(x) :=
∫ x

0

f(t)dt. (16)

At first we consider T as a map from L2(0, 1) into L2(0, 1). It is obvious
that T is compact and that there exists a function in L2(0, 1) at which the
norm of T is attained. In this case it is quite simple to show that ‖T |L2(0, 1)→
L2(0, 1)‖ = 2/π and that the norm is attained when:

f(t) = cos
(πx

2

) π
2

so that
Tf(t) = sin

(πx
2

)
.

When p 6= 2 then again T is a compact map from Lp(0, 1) into Lp(0, 1) and
there exists a function at which the norm is attained. In [6] it was proved that

‖T |Lp(0, 1)→ Lp(0, 1)‖ =
(p′ + p)1−

1
p′ +

1
p (p′)1/pp1/p′

B( 1
p′ ,

1
p )

and that the norm is attained when:

f(t) = cosp
(πpx

2

) πp
2

and Tf(t) = sinp
(πpx

2

)
.

This leads us, again, to the generalized trigonometric functions.

4 Eigenfunctions for the p-Laplacian

Consider the following classical Dirichlet problem on (0, 1) :

∆u+ λu = 0 on (0, 1),
u(0) = 0, u(1) = 0.

}
(17)
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It is well known that all eigenvalues are of the form:

λn = (nπ)2, n ∈ N

with corresponding eigenfunctions

un(t) = sin (nπt) , n ∈ N.

We recall the definition of the p-Laplacian which is a natural extension of
the Laplacian:

∆pu = (|u′|p−2u′)′.

Evidently ∆2u = ∆u. Then the analogue of (17) is the eigenvalue problem

∆pu+ λ|u|p−2u = 0 on (0, 1),
u(0) = 0, u(1) = 0.

}
(18)

In [4] it is shown that all eigenvalues of this problem are of the form

λn = (nπp)p
p

p′

with corresponding eigenfunctions

un(t) = sinp(nπpt).

Once more we see the appearance of our generalized trigonometric functions.
Let us note that the literature on the p-Laplacian and operators that resem-

ble it in some sense is enormous. Here we mention only a few works, beyond
those already cited, that seem of particular relevance to our approach. Of par-
ticular interest is the excellent survey paper by Lindqvist [11]; see also the
book [5]. In [1] a Sturm-Liouville theory is developed for the one-dimensional
p-Laplacian, following on from the work of [3]; see also [12].

5 The approximation theory point of view and
the generalization of trigonometric functions

Let 1 < p < ∞ and −∞ < a < b < ∞. Consider the Sobolev embedding on
I = [a, b],

E : W 1,p
0 (I)→ Lp(I), (19)

where W 1,p
0 (I) is the Sobolev space of functions on the interval I with zero trace

equipped with the following norm:

‖u|W 1,p
0 (I)‖ :=

(∫ 1

0

|u′(t)|pdt
)1/p

.

The Sobolev embedding is one of the most useful maps in Analysis. It is well
known that (19) is a compact map and that more detailed information about its
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compactness plays an important role in different branches of mathematics. The
properties of compact maps can be well described by using the Kolmogorov,
Bernstein and Gel’fand n-widths together with the approximation numbers.

We recall the definitions of these quantities:

Definition 5.1 Let T : X → Y be a bounded operator, where X and Y are
Banach spaces, and let n ∈ N.

(i) The Kolmogorov n-width dn(T ) of T is

dn(T ) = dn(T (X), Y ) = inf
Xn

sup
‖x‖X≤1

inf
y∈Xn

‖Tx− y‖Y

where the infimum is taken over all n-dimensional subspaces Xn of X.

(ii) The Gel’fand n-width dn(T ) of T is

dn(T ) = dn(T (X), Y ) = inf
Ln

sup
‖x‖X≤1,x∈Ln

‖Tx‖Y

where the infimum is taken over all subspaces Ln of codimension n of X.

(iii) The Bernstein n-width bn(T ) of T is

bn(T ) = bN (T (X), Y ) = sup
Xn+1

inf
Tx∈Xn+1,Tx6=0

‖Tx‖Y /‖x‖X

where Xn+1 is any subspace of span{Tx : x ∈ X} of dimension ≥ n+ 1.

(iv) The approximation number an(T ) of T is

an(T ) = inf ‖T − F |X → Y ‖,

where the infimum is taken over all bounded linear maps F : X → Y with rank
less than n.

In our case we have X = W 1,p
0 (I) and Y = Lp(I). Then since Lp(I) has the

approximation property for 1 ≤ p ≤ ∞, E is compact if and only if am(E)→ 0
as m→∞.

Define I0 =
[
a, a+ |I|

2n

]
, In =

[
b− 1

2
|I|
n , b

]
and Ii =

[
a+ (i− 1

2 ) |I|n , a+ (i+ 1
2 ) |I|n

]
for 1 < i < n. Then {Ii}ni=0 is a covering of I and we use it to define the following
map:

Rnf =
n−1∑
i=1

Pif

where

Pif(x) = χIi
(x)f

(
a+ i

|I|
n

)
.

It is obvious that Rn is a map from W 1,p
0 (I) into Lp(I) with rank = n− 1.

The following theorem was proved in [2].
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Theorem 5.2 Let 1 < p <∞. Then

sn(E) =
|I|
nπp
·
(
p′

p

)1/p

and

sn(E) = ‖(E −Rn)g|Lp(I)‖, where g(x) = sinp

(
x− a
πp

|I|
n

)
and sn(E) stands for any of the following: an(E), dn(E), dn(E) or bn(E).

This theorem provides us with information about the image of the unit ball
of W 1,p

0 (I) in the space Lp(I).
We can see from this theorem that the largest element in BW 1,p

0 (I) :=
{f ; ‖f |W 1,p

0 ‖ ≤ 1} in the Lp(I) norm is

f1(x) :=
sinp

(
x−a
πp
|I|
)

‖ sinp
(
x−a
πp
|I|
)
|W 1,p

0 (I)‖
.

Let us approximate BW 1,p
0 (I) by a one-dimensional subspace in Lp(I). The

most distant element from the optimal one-dimensional approximation is

f2(x) :=
sinp

(
x−a
πp
· |I|2

)
‖ sinp

(
x−a
πp

|I|
2

)
|W 1,p

0 (I)‖
.

More generally, if we approximate BW 1,p
0 (I) by an n-dimensional subspace

in Lp(I), then the most distant element from the optimal n-dimensional approx-
imation is

fn(x) :=
sinp

(
x−a
πp
· |I|n

)
‖ sinp

(
x−a
πp

|I|
n

)
|W 1,p

0 (I)‖
.

Also from the previous theorem we have that ‖fi‖Lp(I) = sn(E)
We can see that the functions fi are playing, in some sense, roles similar to

those of the semi-axes of an ellipsoid.
We present below figures which show an image of BW 1,p

0 (I) restricted to a
linear subspace span{f1, f2, f3} in Lp(I).

In the case p = 2 we obtain an ellipsoid (here the x, y, z axes correspond to
f1, f2, f3).
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Figure 5: p = 2

When p = 10 and p = 1.1 we have the images below:

Figure 6: p = 10 p = 1.1

We can see that the main difference between Fig. 5 and Fig 6 is that the
pictures in Fig. 6 are not convex. This suggests that possibly the functions
f1, f2, f3 are not orthogonal in the James sense.

We recall the definition of this orthogonality. Let a, b be elements of a Banach
space X. We say that a is orthogonal to b in the James sense, written a ⊥j b,
if ‖a‖X ≤ ‖a + λb‖X for every λ ∈ R. In some literature this orthogonality is
called Birkhoff orthogonality.

Fig. 7 indicates that for p = 6 (similar graphs can be obtained for other
p 6= 2) the function f1 is not orthogonal to f3 and also f3 is not orthogonal to
f1.
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Figure 7: f(t) = ‖f1 + tf3‖p f(t) = ‖f3 + tf1‖p

6 Some other definitions of generalized trigono-
metric functions

The definition of the generalised trigonometric functions that we have chosen
is only one of several that can be found in the literature, which is now quite
extensive and goes back at least as far as the 1879 work of Lundberg (see [10]):
details of the various approaches can be found in the papers of Lindqvist [9]
and of Lindqvist and Peetre [7] ; see also [8]. In [10] a beautiful account is given
of the history of such work, with especial reference to that of Lundberg. To
illustrate these alternative methods we consider first the approach taken in [7],
[8]. Let p∈ (1,∞) and set

π̃p = p

∫ 1

0

dt

(1− tp)(p−1)/p
.

On (0, π̃p/p) define functions Sp, Cp, and Tp by:

x =
∫ Sp(x)

0

dt

(1− tp)(p−1)/p
, x =

∫ 1

Cp(x)

dt

(1− tp)(p−1)/p
, x =

∫ Tp(x)

0

dt

(1 + tp)2/p

and extend them to R as was done in Section 1. Note that π̃p = pS−1
p (1) =

pC−1
p (0).
Then we have, on (0, π̃p/p),

Sp(x)p + Cp(x)p = 1, Tp(x) =
Sp(x)
Cp(x)

S′p(x) = C(x)p−1, C ′p(x) = −S(x)p−1

Sp

(
π̃p
p
− x
)

= Cp(x), (20)
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Sp

(
π̃p
2p

)
=

1
p
√

2
= Cp

(
π̃p
2p

)
. (21)

When p = 2, we see that S2(x) = sin(x), C2(x) = cos(x), T2(x) = tan(x).

Another way of proceeding is given in [9] (see also the earlier paper [13]). In
this we set

π̂p =
2 p
√
p− 1

p sin π
p

π.

On (0, π̂p/2) we define functions Ŝp(x), Ĉp(x), and T̂p(x) by:

x =
∫ Ŝp(x)

0

dt

(1− tp

p−1 )1/p
, x =

∫ p
√
p−1

Ĉp(x)

dt

(1− tp

p−1 )1/p
,

x =
∫ T̂p(x)

0

dt

1 + tp

p−1

and extend them to R as in Section 1. Note that

p
√
p− 1 = Ŝp(

π̂p
2

) = Ĉp(0).

When p = 2 clearly Ŝ2(x) = sin(x), Ĉ2(x) = cos(x), T̂2(x) = tan(x).
We have on (0, π̂p/2):

(Ĉp′(x))p
′

p′ − 1
+

(Ŝp(x))p

p− 1
= 1

and
dŜp(x)
dx

= (p− 1)1/p(Ĉp′(x))p
′−1

dĈp(x)
dx

= −(p− 1)1/p(Ŝp′(x))p
′−1

Ŝp(x) = Ĉp

(
π̂

2
− x
)
, Ĉp(x) = Ŝp

(
π̂

2
− x
)
,

while for T̂p we have

T̂p(x) =
Ŝp(x)

d
dx (Ŝp(x))

=
Ŝp(x)

(p− 1)1/p(Ĉp′)p′−1
,

and also
d

dx

(
T̂p(x)

)
= 1 +

(T̂p(x))p

p− 1
.

However, it is important to recognise that whatever definition is adopted,
good features will be accompanied by less pleasant ones. For example, the
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definition used in the earlier sections leads to the fine Pythagorean identity (7)
and has a close connection with the Dirichlet problem for the p−Laplacian,
but the derivative of cosp is given by a somewhat complicated formula and
πp → ∞ as p → 1. The definition given first in the present section leads to
the Pythagorean relation and to the property (20), but the derivative of Sp
involves a power of Cp. As for the last definition, while π̂p remains bounded
as p varies, to set against that is the fact that the Pythagorean relation is not
aesthetically pleasing and the derivatives of Ŝp and Ĉp are given by expressions
without much appeal. The choice of definition to be made depends on how best
the features of the corresponding generalised function fit in with the particular
application envisaged.
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