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Abstract: The global scale of Point Cloud Data (PCD) generated through monocular 4 

photo/videogrammetry is unknown, and can be calculated using at least one known 5 

dimension of the scene. Measuring one or more dimensions for this purpose induces a manual 6 

step in the 3D reconstruction process; this increases the effort and reduces the speed of 7 

reconstructing scenes, and induces substantial human error in the process due to the high 8 

level of measurement accuracy needed. Other ways of measuring such dimensions are based 9 

on acquiring additional information by either using extra sensors or specific classes of objects 10 

existing in the scene; we found that these solutions are not simple, cost effective or general 11 

enough to be considered practical for reconstructing both indoor and outdoor built 12 

infrastructure scenes. To address the issue, in this paper, we propose a novel method for 13 

automatically calculating the absolute scale of built infrastructure PCD. We use a pre-14 

measured cube for outdoor scenes and a sheet of paper for indoor environments as the 15 

calibration patterns. Assuming that the dimensions of these objects are known, the proposed 16 

method extracts the objects’ corner points in 2D video frames using a novel algorithm.  The 17 
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extracted corner points are then matched between the consecutive frames. Finally, the 18 

corresponding corner points are reconstructed along with other features of the scenes to 19 

determine the real world scale. To evaluate the performance of the method, ten indoor and ten 20 

outdoor cases were selected and the absolute-scale PCD for each case was computed. Results 21 

illustrated the proposed algorithm is able to reconstruct the predefined objects with a high 22 

success rate while the generated absolute scale PCD is sufficiently accurate. 23 

Keywords: Absolute scale; Monocular videogrammetry; Point Cloud Data; 3D reconstruction 24 

 25 

Introduction 26 

According to the results of current studies conducted by Golparvar-Fard et al. (2013) and 27 

Becerik-Gerber et al. (2013), monitoring the health of infrastructure is one of the most 28 

imposing challenges faced by civil engineers in the 21st century. Lack of viable methods to 29 

map and label existing built infrastructure is an important component of this challenge. As-30 

built 3D geometry comprises a significant portion of the total as-built information and any 31 

efforts towards automating its acquisition will translate to cost savings and improved quality 32 

assurance in the delivery and maintenance of the built environment.  33 

The current state-of-the-art approach to collecting spatial data and converting it to as-built 34 

geometry of built environment scenes is through active sensors (total stations and laser 35 

scanners) and surveying methods. This approach encapsulates the 3D geometry in a set/cloud 36 

of 3D points. Although as-built geometry generation is assisted by recent technological 37 

advancements both in hardware and software, most of its steps are costly, both in terms of 38 
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equipment and labor, and time consuming. As a result, there is increasing demand for 39 

automated, cost effective methods for collecting spatial data of built infrastructure scenes and 40 

converting the data to as-built models (Brilakis et al. 2011). 41 

Within the last two decades, advances in high resolution digital photography and 42 

increased computing capacity, have made it possible for image/video-based 3D 43 

reconstruction methods to produce promising results. Over the past few years, researchers in 44 

the fields of computer vision and civil engineering have heavily focused on developing 45 

algorithms to improve the performance of this technology.  46 

Based on the number of cameras, photo/videogrammetric-based algorithms are divided 47 

into two major categories: a) monocular, defined as using a single camera; and b) binocular, 48 

defined as using a stereo set of cameras.  Additional cameras can also be used if needed in 49 

multi camera systems. For binocular, the relative position and orientation of one camera in 50 

relation to the other camera is measured in advance and considered as a known parameter, 51 

thus making it directly possible to obtain 3D measurements in Euclidian space. However, 52 

stereo cameras are specialized equipment, and far less feasible hardware solutions than 53 

monocular setups, such as the cameras in most smart phones that on-site personnel carry. In 54 

general, a single camera (monocular setting) is a much more practical way to capture 55 

images/video data since most individuals on a jobsite has access to a single digital camera or 56 

smart phone. However, implementing a monocular camera setup only generates unknown 57 

global scale PCD (Scaramuzza et al. 2009). In order to compute the absolute scale, the 58 

operator needs to know the base line of the camera motion or at least one dimension of the 59 

scene. The traditional way of solving the problem is measuring the distances between a set of 60 
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predominant points in the scene before or after the data collection. The corresponding 3D 61 

locations of these predominant points should be manually identified by the operator from the 62 

generated PCD. The ratio of the real Euclidian distance between the predominant points 63 

compared to the computed distance in the PCD is the absolute scale of the scene.    64 

Measuring such dimensions in a job site is a manual task that increases the time and effort 65 

needed to collect the geometry and induces human error in one of the most sensitive parts of 66 

the 3D reconstruction process; consequently, the results can be inaccurate. Furthermore, there 67 

is no guarantee that the corresponding measured points are successfully reconstructed and 68 

already exist in the PCD. As explained in section 6 of this paper, the authors conducted 69 

experiments and measured a number of dimensions in outdoor built environments using a 70 

total station. These experiments indicate that it takes an average of 15 minutes to manually 71 

measure one dimension of the scene, find the corresponding points in PCD and calculate the 72 

scale factor within a reasonable error tolerance.  73 

Several new methods have been proposed for automatically retrieving the absolute scale 74 

of a scene using a monocular setup. These methods, however, either lose the practicality of 75 

the monocular setup by adding extra sensors or are limited to explicit scenes and are not 76 

general enough to be useful by Architecture/Engineering/Construction (A/E/C) practitioners 77 

in their daily tasks (Scaramuzza et al. 2009). In this paper, we propose a general method for 78 

automatically computing the absolute scale of PCD from monocular video, without the use of 79 

additional sensors. The proposed method is based on using pre-measured, simple 80 

standardized objects that are commonly available or easily obtained; in particular, a letter-81 

size sheet of paper for indoor settings (up to approximately 7 meters distance from target), 82 
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and a simple colored cube made of plywood material for outdoor environments (up to 25 83 

meters distance from target). The vertices of these predefined objects are detected in video 84 

frames using a novel algorithm. The detected vertices in 2D frames are then reconstructed 85 

along with the other feature points extracted from the scene. Knowing the distance between 86 

the vertices, the entire PCD is then scaled up using an existing method. The paper is 87 

organized as follows: the background section summarizes the existing states of 88 

practice/research on absolute scale calculation for monocular photo/videogrammetry. Our 89 

method for automating the absolute scale calculation is presented in the next section. In the 90 

experiments section, tests are conducted to test the validity of the proposed algorithms and 91 

the entire pipeline. Finally, conclusions are drawn in the last section. 92 

State of practice: recovering absolute measurements in photo/videogrammetry 93 

In computer vision, 3D reconstruction of different scenes is achievable in different levels and 94 

based on the priori available knowledge about the scene/camera (Table 1). 95 

Insert Table 1 here 96 

Many of the available commercial software packages (Photosynth, Photo-Modoler and 97 

Photofly) fall into the second category, i.e. the intrinsic camera parameters can be achieved 98 

by calibration; however, the camera motion is unknown. As the result, the obtained PCD is 99 

up to an unknown global scale. Nowadays, applications of commercial 3D reconstruction 100 

software packages (Photosynth, Photo-Modoler and Photofly), which work by processing 101 

taken images/captured videos, vary from accident reconstruction and forensics to archeology, 102 

geology and surveying (Overview of applications for Photo-Modeler 2013, Fathi and 103 

Brilakis, 2014). However, all of these packages suffer from one issue: it is not possible to 104 
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directly extract real measurements since the global scale is unknown. This limitation is of 105 

great significance since almost all measurements take place in Euclidean space with real 106 

values in both civil and infrastructure engineering applications. 107 

In manufacturing practices, the entire measurement procedure takes place in indoor, 108 

controlled settings so it is feasible to arrange specific settings for directly extracting real 109 

dimensions of objects. One popular approach is using specific target projectors called PRO-110 

SPOT. This structured-light system works like an ordinary slide projector. A light source 111 

illuminates a target slide. As the next step, the illuminated pattern (usually a dot pattern) 112 

passes through a number of lenses which magnify the slide and project it onto the object’s 113 

surface. By knowing the dimensions of the pattern, it is possible to extract the actual 114 

dimensions of the objects (Figure 1). 115 

Insert Figure 1 here 116 

The proposed solution is feasible for indoor, controlled manufacturing environments; 117 

though, it does not practically fit the random, uncontrolled built infrastructure scenes. 118 

Theoretically, for built infrastructure scenes, it is possible to compute the global scale of the 119 

PCD by measuring only one dimension in the scene.  However, in practice, a number of 120 

issues would occur: 121 

- The common practice to precisely measuring dimensions in a built infrastructure 122 

jobsite is using a total station (Coaker 2009). Using total stations for measurement 123 

purposes leads to very accurate results (average error = ±1 mm); yet, the entire 124 

procedure is not straight forward and requires certain levels of training. A surveyor 125 

should carefully setup the equipment in a proper location of the job site and conduct 126 
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the measurements (Coaker 2009). The surveyor then goes back to the office and 127 

implements relevant software for post processing steps including visualization of PCD, 128 

extracting corresponding measured dimensions from it and scaling up the entire PCD. 129 

Obviously this procedure is time consuming and labor-intensive.  130 

- Unlike scanning senses using laser scanners, in some cases, processing images and 131 

video frames does not result in generating PCD that are uniformly dense enough 132 

(Rashidi et al, 2013). There might be poorly reconstructed areas (due to several 133 

reasons, e.g. insufficient coverage during sensing, reconstruction errors and texture-134 

less areas), and there is no guarantee that the corresponding points used for actual 135 

measurements already exist in the PCD.  136 

- The devices used for measuring dimensions of the scene are either expensive, e.g. laser 137 

measurer and total stations, or inaccurate, e.g. tape measurer (Dai et al. 2013). 138 

 139 

State of research: absolute scale PCD for monocular settings 140 

As stated before, manually measuring dimensions of a scene or implementing a stereo 141 

camera setup are two feasible solutions for calculating the absolute scale of a scene. For 142 

monocular camera settings, two major approaches are suggested to automatically recovering 143 

the absolute scale:  144 

The first approach relies on the application of supplemental electronic sensors for 145 

acquiring extra information about the scene or motion of the camera.  Global Positioning 146 

System (GPS), inertial measurement units (accelerometers, gyroscopes, magnetometers), and 147 

odometry measurements are examples of the applied sensors for providing supplemental 148 

measurements for absolute scale computation purposes (Tribou 2009). Nutzi et al. (2011) 149 
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fused inertial measurement unit (IMU) and visual data for absolute scale estimation in 150 

monocular SLAM (Simultaneous Localization and Mapping). Eudes et al. (2010) solved the 151 

scale drift problem observed in long monocular video sequence using a standard odometer 152 

installed on a car. Kneip et al. (2011) combined accelerometer and attitude measurements 153 

with feature observations in order to compute the metric velocity estimation of a single 154 

camera. Supplemental sensors can also be applied in the form of range measurement devices 155 

or additional monocular cameras (Gutierrez-Gomez and Guerrero, 2012). Jung et al. (2008) 156 

implemented a range finding device for use in a SLAM context by projecting a structured 157 

light on the environment and measuring the resulting distortions with a monocular camera. 158 

2D laser range finder (LRF) is another popular sensor used by the robotics and computer 159 

vision community to address the global scale issue (Castellanos et al. 2000). 160 

Applying additional sensors is not always a cost effective solution, so other researchers 161 

have tried to use prior knowledge about the scene obtained through predefined existing 162 

objects and visual fiducials (Tribou 2009). In the SLAM area, different classes of objects and 163 

artificial landmarks are utilized to acquire necessary information about the environment and 164 

therefore solve the robot positioning or localization problem. Olson (2011) proposed a visual 165 

fiducially system based on 2D planar targets with specific bar code patterns for accurate 166 

localization of robots. Obtained results for localizing groups of robots in indoor and outdoor 167 

settings have been promising. Botterill et al. (2012) proposed an innovative solution to the 168 

problem of scale drift in single camera SLAM based on recognizing and measuring different 169 

classes of objects. Anati et al. (2012) developed a robot which can localize itself by 170 

recognizing specific groups of objects (bins, clocks, ticket machines) on a simple map of a 171 
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train station. Li et al. (2011) incorporated the structure of instances of known objects into the 172 

3D reconstruction of a scene. Specific poles have been used for 3D reconstruction of large 173 

scale, cultural heritage in absolute scales (Pavlidis, et al., 2007) 174 

Acquiring extra information from existing objects in the scene or visual fiducials is a 175 

feasible solution. However, the selected objects are not simple enough (from points of 176 

material, shape and pattern) to be commonly found (built) in regular jobsites. Furthermore, 177 

the success rate of the suggested algorithms for reconstructing the predefined object(s) should 178 

be high enough to be reliably used in various conditions and environments.    179 

Other than the two major approaches, there have been attempts to mathematically solve 180 

the problem for explicit settings by imposing extra constraints/assumptions. Kuhl et al. 181 

(2006) proposed a method based on a Depth-from-Defocus approach to calculate the absolute 182 

scale of monocular settings by combination of geometric and real-aperture methods. The 183 

proposed method does not require any prior knowledge about the scene; however, it is based 184 

on tracking objects and, hence, is not a feasible solution for large scale civil infrastructure 185 

scenes. Scaramuzza et al. (2009) mounted a single camera on a specific wheeled vehicle to 186 

automatically recover the absolute scale of the scene. The method is applicable for large scale 187 

scenes; though, mounting the camera on a wheeled vehicle is not feasible in common 188 

construction job sites. 189 

In the area of A/E/C, specific settings might be applied to solve particular problems. 190 

Golparvar-Fard et al. (2012) used 3D coordinates of predominant benchmarks, e.g. corners of 191 

walls and columns, and the building information modeling (BIM) of the built infrastructure to 192 

solve the absolute scale calculation and registration problems. Later on, Golparvar-Fard et al. 193 
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(2012) proposed a solution based on placing specific registration targets on rebar meshes to 194 

compute the absolute scale and 3D locations of rebars and embedments. In a NIST report, 195 

Saidi et.al, (2011), introduced the application of fiduciary markers combined with specific 196 

elaborated patterns to extract the absolute scale of built infrastructure PCD. The proposed 197 

solutions are all practical, yet limited to specific settings and are not general enough to be 198 

considered for a vast range of indoor and outdoor built infrastructure scenes, e.g. fiduciary 199 

markers with specific elaborated patterns cannot easily be found at job sites.  In addition, 200 

there is no guarantee that the corners of walls and columns are reconstructed properly.  201 

In the area of structural health monitoring, Jahanshahi et al. (2011) proposed an 202 

innovative approach for measuring dimensions of cracks on concrete surfaces. They assumed 203 

that the working distance (the distance between camera and the object) is known. This extra 204 

known dimension was implied to calculate the Euclidian dimensions of cracks. Zhang et al. 205 

(2012) utilized an unmanned aerial vehicle-based imaging system, equipped with GPS and 206 

INS for 3D measurement of unpaved road surface distresses. Carozza et al. (2012) proposed a 207 

mark-less monocular vision based approach for localization within an urban scene based on 208 

an offline map of the environment. Their method requires a manual learning stage and 209 

manually matching several 3D model points with their corresponding image points.  210 

As observed, most of the proposed solutions either required specific extra electronic 211 

sensors/equipment or are limited to particular settings/scenarios and are not generic enough to 212 

immensely be applied by practitioners in the areas of construction engineering and facility 213 

management. 214 

Problem statement and research objectives 215 



 

11 

 

As mentioned in the previous section, there are three major issues associated with the current 216 

approaches for automatically calculating the absolute scale factor for monocular settings. 217 

First, adding extra sensors to the setup defeats the value of monocular setups and is not 218 

always cost effective (precise accelerometer sensors usually cost more than $300), thus is 219 

not a feasible alternative to stereo setups for routine tasks in the A/E/C domain. Second, 220 

acquiring extra information from specific classes of objects in the scene is not a reliable 221 

approach since objects vary from one built infrastructure scene to another (Rashidi et al. 222 

2013). Finally, there is no guarantee that certain classes of objects can be successfully 223 

reconstructed during the processing stages. As the result, there is significant demand for a 224 

simple, accurate, yet practical solution applicable for regular built infrastructure scenes 225 

(Nutzi et al. 2011).  226 

The research objective of this paper is to test whether the method proposed by the authors 227 

is able to successfully and accurately compute the absolute scale of various built 228 

infrastructure scenes in both indoor and outdoor environments.  The presented solution relies 229 

on using predefined objects, with known dimensions, for each indoor and outdoor scenario in 230 

order to extract the necessary prior knowledge about the scene. Theoretically, our approach is 231 

similar to other existing methods using pre-defined objects for extracting absolute 232 

measurements.  However, the following advantages differentiate our work compared to the 233 

existing methods within the literature: 234 

- We have tried to simplify the calibration objects as much as we can. The chosen objects 235 

could be easily found, or built, in almost all jobsites with lowest efforts and costs. 236 
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- By implementing robust techniques for detecting and reconstructing calibration objects, 237 

accurately computing the absolute scale is guaranteed in almost all cases.  238 

Proposed solution for automated absolute scale computation for outdoor settings  239 

Many A/E/C practices take place in outdoor settings, so it is necessary to choose a simple, 240 

consistent object which is easily detectable and easy to use at most job sites. Among 241 

geometrical objects, a cube is the simplest. The dimensions of a cube are equal and it is 242 

typically possible to view three of its surfaces from various perspectives simultaneously. We 243 

chose a cube made of plywood, which is solid and light weight, noting that it can be built at 244 

nearly any job sites. The size of the cube should be big enough to use in large scale 245 

infrastructure scenes, yet small enough to be carried out and handled by only one person. 246 

Considering those factors we choose 0.8 meter as the standard dimension for the cube. 247 

In order to better detect the object in the scene we chose three different colors for the 248 

cube’s surfaces. Two criteria should be considered while choosing the right colors for the 249 

cube surfaces: 1) the colors should be distinct from the colors of existing features in the 250 

scene, and 2) there should be a maximum difference between RGB (HSV) values of the 251 

selected colors so they can easily be identified using color detection algorithms. Considering 252 

the above constraints, we remove colors close to blue and green since those colors frequently 253 

appear in outdoor settings. Examining what remains, and distributing the color values as 254 

evenly as possible across the remaining spectrum, leads to the three distinct colors whose 255 

HSV values are depicted in Figure 2. 256 

Given the selected colors, the overall method for calculating absolute scale mainly relies 257 

on detecting the cube in video key frames; identifying, matching and reconstructing the cube 258 
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vertices along with other feature points of the scene; and scaling the obtained PCD given the 259 

known dimensions of the cube (distances between the vertices). Figure 3 depicts the proposed 260 

framework for absolute scale estimation. 261 

Insert Figure 2 here 262 

Insert Figure 3 here 263 

The proposed algorithm consists of the following three steps: 264 

Step 1: Detection of the cube’s vertices  265 

Figure 4 describes the necessary steps for detecting the vertices of the cube in 2D video 266 

frames captured from the scene. 267 

Insert Figure 4 here 268 

The procedure starts with detecting the surfaces of the cube by filtering the HSV values. 269 

For each detected surface, the connected components are analyzed and an opening 270 

morphology operator (size of structuring element = 3×3 pixels; two iterations) is applied to 271 

remove small areas with the same color values which do not belong to the cube’s surface (Chi 272 

and Caldas 2011). To ensure that detected areas belong to the cube surfaces, the following 273 

constraints should be met: 274 

- The area of the surface should be bigger than 0.005 times the area of the entire image. This 275 

criterion removes false detections of small areas that might match, and also ignores detected 276 

boxes that are too far from the camera which often introduce estimation error. As explained 277 

later, the threshold value, 0.005, was experimentally obtained. 278 
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- It is assumed that each surface of the cube should look neither too long nor too circular in 279 

the image. Accordingly, the roundness of the surface, calculated by the following equation, 280 

should be located between an upper and a lower threshold: 281                                  (1) 282 

- Due to the perspective projection equations describing image formation, the imaged 283 

surfaces of a cube are trapezoidal in shape, which is convex. To isolate potential cubes by 284 

removing non-convex objects, the real area of the surface should be approximately equal to 285 

the convex hull of the surface (Figure 5). 286 

After identifying the surfaces of the cube, the edges of the cube are detected using a 287 

modified version of the Hough transform. Due to nonlinear lens distortions, the cube edges 288 

may not appear straight in the 2D images, but will be slightly curved. In order to address the 289 

issue, a modified Hough transform algorithm was implemented. The details of the modified 290 

algorithm are below: 291 

A dilation procedure, which is a common function in image processing applications, is 292 

applied to remove some of the noises. In the modified Hough transform algorithm, all edges 293 

in different directions with a radial resolution equal to 2 degrees are recognized in the polar 294 

coordination system (range:         ( 295 

The other approach for dealing with this type of distortion is using undistorted images by 296 

applying the lens radial distortion factors computed through the SfM.  297 

 Finally, the cube vertices are identified by determining neighboring edges through their 298 

intersection points.  To this end, edges on all different surfaces are extended into both 299 
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directions until they intersect the first other edge (neighboring edge) . It is possible that 3 300 

edges do not exactly intersect at the same point so we consider the point with the minimum 301 

distance to all corresponding edges as the intersection point.  302 

Insert Figure 5 here 303 

Step 2: Matching the cube’s vertices across key frame views  304 

In parallel with extracting cube’s vertices, other feature points of the scene are also 305 

recognized using SURF feature detection algorithm (Rashidi et al. 2013). As the next step, 306 

camera intrinsic and extrinsic parameters are computed using two standard approaches:  307 

camera calibration and structure from motion (SfM). In our study, we calibrated the camera 308 

offline (using a calibration pattern); however, In the case of processing images, instead of 309 

manually calibrating the camera, it is possible to automatically extract the initial values of the 310 

intrinsic parameters using the Exchangeable image file format (Exif) (Golparvar-Fard, et al. 311 

2012). Values obtained from the Exif tags are then used as the initial estimates for the bundle 312 

adjustment procedure. In this case, the camera calibration step, which might be a slightly 313 

challenging task for job site personal, is eliminated.  314 

After detection of the cube’s vertices and calculating the camera parameters, the next step 315 

is to match these vertices within two key frame views. For this purpose, we followed a 316 

specific matching strategy explained below. Our matching strategy consists of two 317 

components: 318 

1) The corresponding point for each vertex in one key frame view should be located on the 319 

epipolar line for the other view (Dias 2006). If P and P’ are the camera matrices for the first 320 

and second view, the ray which is projected onto the point x in the first view is defined as: 321 
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             (2) 322 

 323 

Where C is the common camera center for both P and P’,λ is a scaler,  P+ is the pseudo 324 

inverse to P, i.e, PP+=I and PC=0. The line       intersects the points P+x and C. These 325 

points are mapped into the other camera P’ at P’P+x and P’C. The epipolar line l’ intersects 326 

these projected points and can be written as: 327                   (3) 328 

The point P’C is the epipole e’ or the projection of the first camera center into the second 329 

camera. Thus the epipolar line can be formulated as: 330                                    (4) 331 

Where,       is the corresponding skew-symmetric of e’ and F is a 3×3 non-zero matrix 332 

known as the fundamental matrix. Applying this criterion always limit the search area into a 333 

few candidates (usually 1 or 2) located on the corresponding epipolar line on the second view 334 

(Figure 6). 335 

 336 

Insert Figure 6 here 337 

 338 

2) Applying the color differences is the second criterion. We consider a rectangular window 339 

around each vertex. Since the motion of the camera between two consecutive key video 340 

frames is small, we expect that the corresponding window in the other frame also contains 341 

similar color values. In other words, the best corresponding window is selected by following 342 

a differentiation and cross correlation approach between the color values of the two windows 343 

in two consecutive frames and calculating the similarity score as following (Rashidi et al. 344 

2011): 345                 ∑ ∑  |        |     |         |  |        |  |        |            (5) 346 
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 347             ∑ ∑  |       |     |       |  |       |  |       |                (6) 348 

 349                                                                                          (7) 350 

 351 

Where Rxy, Gxy, Bxy and Ixy are the individual color channel and intensity values of the 352 

neighborhood pixels of the windows constructed around each vertex and n is the size of the 353 

window in pixels. W and W’ refer to the first and second windows respectively. 354 

It is necessary to emphasize that using fiduciary markers or more distinguishable 355 

patterns on the sides of cube would improve the performance of the detection algorithms; 356 

however, for two reasons we did not choose this solution. First, it is more practical to keep 357 

the calibration object as simple as possible.  Second, our experiments indicate that the 358 

performance of the proposed algorithm for detecting the cube in current shape is very 359 

promising.  360 

 361 

Step 3: 3D reconstruction of the cube’s vertices along with other features of the scene  362 

We use a standard 3D reconstruction pipeline, as introduced in (Rashidi et al. 2013), to 363 

reconstruct the vertices of the cube as well as other features of the scene. We used the Patch-364 

Based Multi-view Stereo (PMVS) approach to reconstruct the entire scene and compute the 365 

PCD. Assuming that the dimensions of the cube are known, we can scale up the entire PCD. 366 

As explained in the previous sections, the matches for the vertices come from using epipolar 367 

geometry + window search, while the others come from standard SURF matching algorithm. 368 

Since the number of reconstructed edges is usually more than one, a least square error (LSE) 369 

approach is applied to obtain a unique scaling factor for the entire scene as described below:  370 
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Assuming n is the number of reconstructed edges, Xi is the ith computed dimension with the 371 

actual length of Yi; the scale factor (S.F.) relates Xi and Yi as: 372 

Yi= (S.F.) × Xi +B             (8) 373 

Where B is the computed error (in ideal situation: B=0) and we assume that the distribution 374 

of errors in the 3D space is uniform. Considering the linearity assumption, the scale factor 375 

(S.F.) is calculated using the following regression-based equations (Montgomery et al, 2012): 376        ∑          ∑       ∑        ∑          ∑             (9) 377 

 378    ∑            ∑              (10) 379 

 380 

One important issue that needs to be taken into account is the drift problem. It is well known 381 

that scaling a large infrastructure scene using a relatively small object is error prone (Botterill 382 

et al., 2012). To address the issue, a weighting function has been added to the cost function of 383 

the Bundle Adjustment. The cost function of the Bundle Adjustment is the sum of the 384 

distance between detected points and projected points. We set the weight of the cost function 385 

as 2 for vertices of the cube and kept the cost function weight of other points of the scene as 386 

1; this way we give priority to the important points of the scene, corner points and vertices, 387 

and reconstruct them more accurately.  Another feasible solution to handle the drift problem 388 

is using multiple objects located in different parts of the scene. Using multiple objects would 389 

result in more uniform distribution of errors instead of cumulative. That being said, numbers, 390 

locations and sizes of calibration objects play important roles in drift problem. The authors 391 

plan to focus more on this issue in future research. 392 

Proposed solution for automated absolute scale computation for indoor settings  393 
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 394 

Our suggestion for a proper object for use in indoor settings is a simple letter-size sheet of 395 

paper. Letter-size paper can be found in almost every indoor environment, including homes 396 

and offices. The paper should be placed on a darker uniform surface to maximize detection 397 

(Figure 7).  398 

Insert Figure 7 here 399 

The algorithm for detecting, matching and reconstructing the corners of the sheet of the 400 

paper is the same as those of the cube with the exception of the matching stage.  All four 401 

corner points of the paper have almost the same color values; thus, it is not possible to 402 

effectively use the color differentiation criterion. The solution is straight forward: since we 403 

are only dealing with four points as the corners of the paper, it suffices to implement the 404 

epipolar geometry constraint, and taking note that the four corners in the first view and their 405 

correspondences in the second view are located based on a same clockwise order (Figure 8). 406 

Insert Figure 8 here 407 

It is important to mention that using more distinctive objects such as printed sheets with 408 

elaborated patterns and codes might also lead to very accurate results, but the advantage of 409 

our method lays on the simplicity of the chosen object, as well the sufficient accuracy of the 410 

results. 411 

Implementation and experimental setup 412 

A C# based prototype was implemented to test the validity of the proposed algorithm. It was 413 

written in Visual Studio 2010 using Windows Presentation Foundation (WPF) and publicly 414 

available libraries such as OpenCV 2.0 (wrapped by EmguCV) for access to computer vision 415 

tools and DirectX 10 for the graphic display of results. The Open CV’s image structure was 416 
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the primary data structure. It removed the conversion needs of the image processing tools 417 

from that library, which significantly reduced the processing speed. The aim of the 418 

experimental setups is two folds: 1) identifying the thresholds for applying in the proposed 419 

algorithms and 2) evaluating the performance of the implemented algorithms as well as the 420 

overall performance of the proposed method.  Each step is explained in the following 421 

sections: 422 

Identifying thresholds for the minimum acceptable area of the cube in images 423 

As previously explained, if the areas of the cube surfaces in images were too small, i.e. the 424 

cube is located too far from the camera, the estimated errors in detecting and reconstructing 425 

the cube corner points would increase significantly. To tackle this issue, we implement a 426 

specific threshold as the minimum acceptable area of a surface of the cube, compared to the 427 

total area of the image. Frames including the cube surfaces smaller than the calculated 428 

threshold are removed from further processing. It is important to mention that discarding 429 

some frames from further processing might have effects on different part of the algorithms; 430 

however, smooth, sequential videotaping the scene would minimize those effects ( e.g. 431 

instead of arbitrary moving the camera, we either move forward or backward toward the 432 

cube). On the other hand, different faces of the cube are sufficiently differentiable so 433 

disregarding some of the frames or changes in cube surfaces’ views does not affect the 434 

performance of the matching algorithm.   435 

In order to identify a proper threshold, we conducted a number of experiments. 436 

Considering the variety in built infrastructure scenes, we placed the cube and the sheet of 437 

paper in 10 outdoor and 10 indoor built infrastructure scenes. The scenes were videotaped 438 
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from different views with varying distance of the camera from the calibration object. As the 439 

first step, the video clips were processed and the surfaces of cubes were detected. The success 440 

rates of detecting the surfaces were measured using the precision and recall values as defined 441 

in the following equations: 442                    (10) 443 

                (11) 444 

In these equations, TP is the number of correctly detected cube surfaces’ (paper) pixels; 445 

(TP+FP) is the number of detected cube surfaces’ (paper) pixels; and (TP+FN) is the number 446 

of actual cube surfaces’ (paper) pixels. Precision basically means the area of correctly 447 

recognized cube region divided by the total area of recognized cube regions and measures the 448 

“exactness” of the detection algorithm. Recall is known as the area of correctly recognized 449 

cube regions divided by the area of actual cube regions and shows the “completeness” of the 450 

detection algorithm. 451 

The results of calculating precision and recall ratios for different sizes of the calibration 452 

objects compared to the entire size of the frames are illustrated in Figure 9.  453 

As the next step, the corner points of the calibration objects were detected and 454 

reconstructed. The average errors in computing the 2D locations of the extracted corner 455 

points compared to the actual locations, as well as the re-projection errors for calculating the 456 

3D locations of the corner points in the space were computed and demonstrated in Figure 10. 457 

In this study, the 2D location error (%) was calculated by dividing the distance between the 458 

computed and actual locations of the vertex on the image to the length of the longer edge of 459 



 

22 

 

the cube (paper) to where the vertex is located. The same approach, but in 3D, was 460 

implemented for computing the re-projection errors. 461 

To determine the threshold, the minimum precision and recall rates set to 95% and 90% 462 

respectively (based on the collective evaluations of Figures 9 and 10). In addition, maximum 463 

allowable error in 2D location of corner points and re-projection errors are considered as 2% 464 

and 1%. As shown in figures 9 and 10, the smallest ratio for achieving the above mentioned 465 

levels of accuracy is between 0.5-1 percentages. As the result, the minimum ratio of each 466 

component surface to the entire image surface was set to 0.005 (0.5%).   467 

Insert Figure 9 here 468 

 469 

Insert Figure 10 here 470 

Identifying thresholds for the maximum and minimum roundness factors    471 

Using the same video data as the previous section, the roundness factors for the cube surfaces 472 

(paper) in 437 frames were computed. Upper and lower thresholds for the roundness factor 473 

can be identified by calculating the confidence intervals for this set of the measured 474 

roundness factors: 475                                   √          √          (13) 476 

Where the confidence level is 95%, µ is the mean and σ is the standard deviation of the 477 

measured roundness factors. After plugging the observed values, the upper and lower 478 

thresholds were set to 0.85 and 0.1 respectively. 479 

 480 

Validation of the proposed methodology 481 

The validation procedure took place in two steps: 482 

 483 
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Step 1: Validating the performance of the corner points’ detection and matching 484 

algorithm 485 

To evaluate the performance of the corner points’ detection and matching algorithms, we 486 

selected ten indoor and ten outdoor cases as our case studies (these case studies are different 487 

from the initial scenes which were used for computing different thresholds). The indoor cases 488 

include offices and different locations of homes, e.g. bathroom, living room and kitchen, 489 

while the outdoor cases cover a variety of civil infrastructure scenes including campus 490 

buildings, highway bridges, a train station building, a sport facility and an under-construction 491 

wall in a construction jobsite. Each scene was videotaped as completely as possible, with 492 

sensing from multiple viewpoints to minimize occlusions. An off-the-shelf Canon Vixia-HF 493 

S100 was utilized for data collection purposes. The corners point detection and matching 494 

algorithms were implemented for each captured video clip separately (Figure 11) and the 495 

associated errors were measured in terms of precision and recall values for the surface 496 

detection algorithm, deviation between computed and actual 2D location of corner points for 497 

corner point detection algorithm and percentage of successfully corresponded corner points 498 

for the matching algorithm. The summary of the results are presented in Table 2. 499 

As shown in Table 2, the performance of the detection algorithm was the best for yellow 500 

surfaces. It is necessary to highlight that we do not need to detect and reconstruct all the cube 501 

vertices in all frames. It is only sufficient to successfully detect and reconstruct three vertices 502 

of the cube for the entire video clip. 503 

Insert Figure 11 here 504 

Insert Table 2 here 505 
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Step 2: Validating the overall performance of the proposed algorithm for computing the 506 

absolute scale PCD of the scenes 507 

To validate the overall performance of the proposed methods, the captured video clips were 508 

processed and the absolute scale PCD for each built infrastructure scene was generated 509 

following the procedures explained in the methodology section. For each case study, we 510 

consider the deviation between a number of real dimensions and computed dimensions of the 511 

scene as the metric for measuring the accuracy of the presented methods. For each scene, 512 

several dimensions and distances were identified and measured by a TC805 total station for 513 

outdoor cases and a Leica DISTO D5 Laser measurer for indoor environment (Figure 12). 514 

The average measuring time for measuring each dimension of the outdoor setting is around 515 

15 minutes. This time includes possible traversing between different locations within the 516 

jobsite (for large scale jobsites or the cases that data should be collected from different sides 517 

of a building), setting up and adjusting the total station, conducting measurements, converting 518 

the files into the computer, manually finding the corresponding dimensions on the PCD and 519 

calculating the scale factor.   520 

Samples of generated PCD for both indoor and outdoor case studies are presented in 521 

Figures 13 and 14. 522 

The results of computing the accuracy of the proposed methods in measuring different 523 

dimensions within built infrastructure case studies are summarized in Table 3.  524 

Insert Figure 12 here 525 

Insert Figure 13 here 526 

Insert Figure 14 here 527 
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Insert Table 3 here 528 

Illustrated results in table 3 indicate that the performance of the algorithm is promising (<4 529 

mm per meter error for outdoor settings and <2 mm per meter error for indoor case studies). 530 

Compared to other common measurement devices, e.g. measurement tape and total station, 531 

this approach is not the most accurate method.  However, based on experts’ opinions, the 532 

obtained level of accuracy is sufficient for a number of applications in the area of A/E/C. For 533 

example, the obtained level of accuracy would suffice for rough quantity take offs, e.g. 534 

calculating surfaces of wall for painting or surface of the floor for carpeting; or interior layout 535 

design, e.g. comparing the dimensions of different elements in a room or office and making 536 

decisions about new furniture which fits properly.  Automating the procedure is the biggest 537 

advantage of the proposed approach over the traditional measurement devices.  538 

 539 

Summary and conclusions 540 

Calculating the absolute scale of PCD generated by monocular photo/videogrammetry is a 541 

challenging task for practitioners in the field of A/E/C. The potential solution should entail 542 

the following characteristics: 543 

- It should not rely on any specific hardware settings or extra sensors for measurements so 544 

it can be easily applied in almost all built infrastructure job sites. 545 

- It should be simple, yet general enough to cover a variety of applications in both indoor 546 

and outdoor environments. 547 

- The solution should be cost effective with the minimal amount of human involvement in 548 

the pre/post processing stages. 549 
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- In the case of using predefined objects as the registration targets, the applied objects 550 

should be easily used in almost every job site. In addition, considering the dynamic and 551 

cluttered environments of built infrastructure job sites, high success rates for detecting 552 

and reconstructing the registration targets, as well as minimized amounts of error in 553 

computing absolute scale, is crucial.  554 

In this paper, an effective method for automatically computing the absolute scale of 555 

PCD’s obtained from indoor/outdoor built infrastructure scenes was presented and validated. 556 

Computing the absolute scale of PCD is a major issue faced by civil engineers and facility 557 

managers since they need to extract the real measurements from video-generated PCD with 558 

scale uncertainty. The proposed algorithm is based on detecting, matching and reconstructing 559 

the corner points of two simple categories of objects: a letter size piece of paper for indoor 560 

applications and a plywood cube for outdoor, large scale cases. The average length 561 

measurement errors resulted by implementing the proposed method for indoor and outdoor 562 

scenarios were 0.14cm and 0.37 cm per meter respectively. The experiment results revealed 563 

that the proposed method enables A/E/C practitioners to accurately scale up PCD with least 564 

amount of manual work and without the need for extra sensor/prior knowledge about the 565 

scene. As the extension of the current research, the authors will conduct more experiments in 566 

both indoor and outdoor settings to better evaluate the performance of the method and reduce 567 

the errors. In particular, the authors will focus on the drift problem and the effects of the 568 

number, size and location of calibration objects on the accuracy of computed measurements.   569 
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Table 1: Different types of 3D reconstruction approaches 686 

 687 

Known parameters Reconstruction level 

Intrinsic and extrinsic Absolute scale reconstruction 

Only intrinsic Metric reconstruction ( up to 
an unknown scale) 

No information Projective reconstruction 
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Table 2: Summary of the results obtained from implementing the corner detection and 708 

matching algorithms. 709 

Experimental setting 

Average error in 2D 

corner points 

detection algorithm* 
Average error in 2D 

corner points 

detection algorithm * 

Average accuracy of 

2D matching 

algorithm (%)  Surface Precision 
(%) 

Recall 
(%) 

Outdoor 

setting 

(cube) 

Red 92.1 90.8 

0.03 98.7 Yellow 96.5 94.1 

Purple 91.8 89.9 

Indoor setting  

(sheet of paper) 
98.3 92.1 0.01 100 

*error is calculated as Δl/l where Δl is the deviation between actual and computed 2D locations of the corner 710 
points (in pixel) and l is the longest associated vertex. 711 

 712 

 713 

 714 

 715 
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 720 

 721 

 722 

 723 
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 725 

 726 

 727 
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Table 3: Summary of the results obtained from evaluating the overall performance of the 728 

proposed method 729 

Experimental setting Indoor Outdoor 

 Average number of measurements for 
each case study 

107 281 

Average error* (mm per meter) 1.4 3.7 

Maximum error (mm per meter) 4.2 8.5 

Standard Deviation 0.7 1.8 

*error is measured based on the ratio of computed dimensions to actual dimensions per unit of length (meter) 730 
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Figure 1: Projector and camera setup for extracting absolute measurements in manufacturing 797 

industry (Ganci and Brown, 2008) 798 
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Figure 2: Selected colors for surfaces of the cube (top) and snapshots of the cube (bottom) 811 
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Figure 3: Overall workflow of the proposed algorithm for computing absolute scale of PCD 822 
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Figure 4: Necessary steps for detection of the cube vertices 834 
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 841 

Figure 5: Convex hull algorithm: a) non-convex shape, b) constructing an equal convex hull 842 

for the initial shape and c) reconstructed convex hull shape 843 
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Figure 6: Corresponding corner points for the first view (left), are located on epipolar line in 857 

the next view (right) 858 
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Figure 7: Possible locations for the letter-size sheet of paper in indoor settings 872 
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Figure 8: Locations of corner points of the sheet of paper follow the same clockwise order in 886 

different views 887 
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Figure 9: Precision and recall ratios for detection of the cube surfaces (top) and sheet of paper 897 

(bottom) 898 
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 904 

Figure 10: 2D location errors (top) and re-projection errors (bottom) for both indoor and 905 

outdoor settings 906 
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 913 

Figure 11: Sample of the implementation results for the cube corners detection algorithm: 914 

from top left: the original image of the cube-the result of filtering the image based on HSV 915 

thresholds- Detected red, yellow and purple surfaces- detected lines based on the improved 916 

Hough transform - and the intersections of the cube edges as the final result. 917 

 918 

 919 
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 920 

Figure 12: Actual distance measurements and preparation of ground truth: Leica TC805 total 921 

station (left) and Leica DISTO D5Laser measurer (middle and right) 922 
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Figure 13: A sample of the generated PCD for indoor settings: bathroom- Sparse PCD 947 

generated by SfM (left) and PCD generated by PMVS (right)  948 
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Figure 14: Samples of the generated PCD for outdoor settings: Campus building (top) and 969 

construction wall (bottom) 970 
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