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Abstract

GENERATING ACOUSTIC PROJECTIONS USING 3D MODELS

Jacob A. Brazelton

James Madison University, 2020

Thesis Director: John Bowers, Ph.D.

Raytracing is used in commercial graphics engines most commonly for lighting ef-

fects, but it also has many uses when it comes to acoustic simulation. Adopted directly

from these computer graphics programs, the formulas presented herein enable the vi-

sualization of acoustic intensity levels throughout a 3D space using Python 3 and the

OpenGL library. In addition to visualization, they also provide the ability to calcu-

late the reverberation time and critical distance of an enclosed space in relation to its

size and material makeup. The described application bundles all of these components

together in a Qt5 application that allows users to view the aforementioned properties

of provided 3D room models as well as manipulate the surface materials to desired

effects. The application has a mainly educational purpose and is intended to allow

students to better understand acoustic concepts through hands-on manipulation and

visualization while also providing relevant information on how these results are cal-

culated.
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Chapter 1: Introduction

Computers have been in use for decades to calculate and model the acoustics of rooms.

They can often provide information like the reverberation time, dead zones, reso-

nant frequencies, and other quantities that are quite difficult to calculate without

explicit real-time testing. These findings can aid architects and acousticians in de-

signing spaces from classrooms to cathedrals with the exact acoustic properties that

they want. Despite the potential importance of these calculations, programs that do

these kinds of calculations don’t often describe the computations that are actually

being done.

The objective of this program is to have software that calculates the acoustic prop-

erties (of 3D models) that can be used to analyze a given room. This software is not

intended to reinvent an entire architectural design program like AutoCAD, SketchUp,

or replace the few acoustic simulation programs out today. Instead, its aim is to pro-

vide an easy to use, free, standalone tool for presenting acoustic room properties for

use by anyone. Despite dealing with many complex acoustic concepts, like decibel

drop-offs and room reverberances, the software is aimed at users who are not nec-

essarily professional Acousticians or Architects, but instead meant for anyone who

wishes to make informed decisions or simply know more about the spaces they use,

by providing important acoustic information. This information could aid them in

key decisions like choosing acoustic treatments, determining speaker and microphone

placements, or even modifying the structural make-up of the space entirely. Since this
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software is aimed at non-professional users, it will provide easy to understand infor-

mation about the spaces it is analyzing, while also defining the acoustic jargon to help

users learn many of these important acoustic concepts.

The software can have many educational uses because it explains the acoustic concepts

and can supplement in-class learning with visualization of the very same concepts in

a program easily used by students as well as instructors. This may provide a major

benefit compared to the few major architectural applications that already have acous-

tic rendering plug-ins. These applications are quite complicated to use and have steep

learning curves for new users, making them not ideal for educational purposes; to use

the desired acoustic plug-ins, instructor and student must already be proficient in the

base application effectively. These programs, along with the few standalone acoustic

simulation programs already out, can also be quite expensive (some cost upwards of

$2,000 [1, 2],) which may put off instructors and users.

This paper is organized as follows: Chapter 2 discusses the current literature in the

field that relates to the calculations performed by the provided software. Chapter 3

gives the technical descriptions of the formulas and designs used in relation to current

literature. Chapter 4 provides a detailed description of the software and its implica-

tions. Finally, conclusions and future work are discussed in Chapter 5.
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Chapter 2: Literature Review

Acoustic calculation methods generally fall into two distinct categories: wave-based

methods and geometric methods [3]. Wave-based methods are based on finite equa-

tions that are numerically solved to represent the sound waves being simulated. These

kinds of methods are often implemented using finite element methods (FEM) or 3D

waveguide meshes, which both provide very accurate acoustic calculations with the

ability to model wave properties such as interference, diffraction, and scattering [4,5].

Though quite accurate, both of these methods are very computationally expensive,

with time complexities of O(n3logn3) where n is proportional to the frequency of

the sound wave being modeled [6]. This makes wave-based methods quite useful

for low-frequency sound, which is greatly affected by wave properties such as diffu-

sion and diffraction, but far too time intensive for use with mid- and high-frequency

sounds.

The second category of acoustic calculations, geometrical methods, is far better equipped

for the modeling and acoustic calculations that involve higher frequency sounds. Much

of the basis for these methods comes from optical fundamentals where rays are good

approximations for light waves, and most of the properties of these methods translate

to acoustics as well. Geometrical methods treat sound waves as particles moving along

directed rays emanating from a source rather than a complicated waveform and as-

sume boundaries (surfaces) to be locally reacting, meaning that the surface impedance

is the same regardless of angle of incidence [7]. This greatly simplifies the calculations

of geometrical methods and helps keep them running faster than wave-based methods
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Figure 2.1: Raytracing a simple theater.

as frequencies increase, since frequency is not a strong factor in the ray representation

of a wave. The downsides to geometric methods are that since waves are approximated

as rays, their wave properties such as wavelength, phase, diffraction, and diffusion

are often disregarded, unlike wave-based methods. Ignoring certain wave properties

is the trade-off geometric methods have in exchange for being faster than wave-based

methods, which often makes them ideal choices for simulating acoustic environments

in video games and other graphics based applications.

Raytracing is a relatively common concept in graphics based applications such as

video games and modeling tools such as AutoDesk and Maya. As stated, it involves

tracing n rays from a source within a space, usually represented as a point source or

spherical sound source of uniform distribution. Each of these rays is followed out-

wards until it intersects with a surface of the modeled room, whereupon its reflections

are typically calculated using the Phong BRDF algorithm that represents a surface’s
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specular and diffuse properties. This process can recursively follow ray reflections to

allow for an infinite number of reflections to be calculated where the point of reflec-

tion is treated as the new ray’s origin. Since rays can diverge greatly upon reflection,

raytracing can be very space intensive as the number of reflections increases, which

is why, to keep memory costs down, there is often a cutoff point at which rays are no

longer considered, such as if its energy level drops below a certain threshold. Raytrac-

ing may also take into account absorption properties of a space’s surfaces, allowing

for more realistic modeling since most surfaces are not 100% reflective and their levels

of absorption can drastically affect how reflected rays behave.

Another more recent approach to acoustic modeling in 3D space is that of phonon

mapping, which is typically used more for the auralization of a scene rather than

finding certain acoustic properties and is adapted from how photons are perceived.

This method traces phonons from the sound source throughout the space, where each

phonon retains its energy spectrum, distance traversed from the source and other po-

sitional information [6, 8]. The phonons emanate from the source until they intersect

with a surface where they stop and record the information on how far they’ve trav-

elled. A listener point is then chosen and the phonon map of the room that was created

is used to determine the acoustic levels at the listener’s position. This method is ex-

tremely good at handling the specular and diffuse properties of sound waves when in-

teracting with different surface materials, but its main advantage is that the phonon

map can be reused for any listener point once it is generated. This is a step above

pure raytracing where rays must be retraced every time the listener point moves, and

is therefore a very good method to use in static 3D environments in video games and

similar applications where the sound source does not move.
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Figure 2.2: BRDF visualization.

Our method of calculating the acoustic properties of spaces pulls bits and pieces from

the common raytracing technique and phonon mapping to provide the efficiency of

raytracing and the specular and diffuse characteristics modeled by phonon maps

utilizing the Phong BRDF model. Bidirectional reflectance distribution functions

(BRDFs) model how sound reflects from a surface in accordance with the surface’s

diffuse and specular properties [9]. Since most surfaces are not pure mirrors to sound,

the sound waves are not reflected only in the perfect reflection direction but more often

outwards in a lobe defined by the surface specularity, along with some scattering of

reflections defined by the diffuse properties of the surface. The Phong model is com-

monly used in modern graphics shaders to decide how much light intensity is present

at a given point in relation to the viewer. This model can easily be applied to acoustics

in this project by calculating many reflected rays per reflection and tracing them out,

rather than only vetting for those that are viewable from a certain point.
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Chapter 3: Project Statement

Many different pieces of software exist that attempt to perform the acoustic analysis

that is the focus of this project. Despite this, many of these programs are locked

behind price walls and learning curves that do not make them very appealing to the

average user who just wants to learn about acoustics or analyze a given space with

ease. In this project we attempt to remedy this by providing an accessible application

that only deals with room acoustics while explaining the calculations to further the

user’s knowledge.

3.1 Raytracing

The core of the application is the raytracing algorithm that handles modeling sound

waves and their interactions with room surfaces. The algorithm used is a fairly com-

mon implementation, first popularized by Arthur Appel, that utilizes the Möller–Trumbore

intersection algorithm to determine with which surface a ray intersects. To simplify

the calculations, all rooms are assumed to already have their surfaces triangulated

when running intersection algorithms. Before any raytracing can take place, a set of

n rays are generated using the Fibonacci Sphere algorithm to approximate an even

distribution of ray directions radiating outwards from the sound source in a spherical

distribution (See Figure A.1 in Appendix A). Each of the generated rays then has its

intersection point calculated, and the resulting reflection rays are recursively evalu-

ated for as many levels as desired.
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3.1.1 Möller–Trumbore Intersection Algorithm

def isInside(self, point: Vec3, v0: Vec3, v1: Vec3,
v2: Vec3, normal: Vec3) -> bool:
"""
Determines if the point is inside the given triangle
bounds and on the same plane
"""
edge0 = v1.sub(v0)
edge1 = v2.sub(v1)
edge2 = v0.sub(v2)
C0 = point.sub(v0)
C1 = point.sub(v1)
C2 = point.sub(v2)

return
normal.dot(edge0.cross(C0)) >= 0
and normal.dot(edge1.cross(C1)) >= 0
and normal.dot(edge2.cross(C2)) >= 0
and C0.dot(C1.cross(C2)) == 0.0

Figure 3.1: (Python) Point-Plain Intersection

The adapted Möller–Trumbore intersection algorithm used in this program checks

each ray against every surface of the room until it finds the intersection. First, each

surface is verified to make sure that the ray origin does not lie on that surface (See

Figure 3.1). Once a surface is determined to not house the ray’s origin, the rest of the

Möller–Trumbore intersection algorithm is carried out (See Figure 3.2). The barycen-

tric coordinates of the ray intersection point with each surface is computed, which

determines if a ray actually intersects the surface, which is a triangular face, and

from which direction in relation to the surface normal. Once the intersection point is

proved to be within the triangular face, the barycentric coordinates can be converted

to (x,y,z) coordinates, which allows the software to calculate reflections.
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# Check if ray is parallel to plane
pvec = ray.direction.cross(face.edge2)
det = face.edge1.dot(pvec)
if det > -EPSILON and det < EPSILON:

continue

invDet = 1.0 / det
# Find barycentric coordinates
tvec = ray.origin.sub(face.vertices[0])
u = tvec.dot(pvec) * invDet
if u < 0.0 or u > 1.0:

continue

qvec = tvec.cross(face.edge1)
v = ray.direction.dot(qvec) * invDet
if v < 0.0 or u + v > 1.0:

continue

# Distance from ray origin
t = face.edge2.dot(qvec) * invDet
# Ray moves away from the plane
if t < EPSILON:

continue

# Intersection point
phit = ray.origin.add(Vec3(*(ray.direction * t)))

Figure 3.2: (Python) Möller–Trumbore intersection algorithm

15



3.1.2 Acoustic BRDF

Bidirectional Reflectance Distribution Functions, referred to as BRDFs, are an ap-

proximation of the reflections of waves when they make contact with a surface. Every

surface has a diffuse/specular/absorption ratio that describes how, and how much, a

wave’s energy is dispersed after surface contact, with the three values adding up to 1.

The simplification of the Phong reflection model that is used in this program can be

presented as such:

Ix =
∑

m∈reflections

(kd( ~Sm · ~N) + ks( ~Rm · ~V )α) (3.1)

where Ix is the percentage of acoustic energy (in dB) of ~Sm at the point of incidence

that a reflected ray ~V possesses. kd is the diffuse reflection constant, which is the

proportion of reflected rays that are scattered away from the perfectly reflected ray

~Rm. ks is the specular reflection constant, which is the proportion of reflected rays

that are located near the perfectly reflected ray ~Rm. ~Sm is the incoming ray, which

will be the same for all reflections in m tested for that ray. ~N is the surface normal at

the point of incidence. ~V is the current reflected ray for which Ix is being calculated.

α is the shininess constant for the surface material and is larger the more mirror-like

the surface. All vectors are normalized and the perfect reflection ~Rm is calculated

using:

~Rm = 2( ~Sm · ~N) ~N − ~Sm (3.2)

Figure 3.3 shows the code implementation of the described Phong reflection model

with a known incidence ray.
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def generate_brdf(Sm: Ray, phit: Vec3, startdB: float,
distanceFromOrigin: float, face: Face):
"""
Generates an array of rays whose starting dB levels are
calculated using the Phong BRDF model
"""
Rm = Sm.calcReflection(phit, face.normal,

distanceFromOrigin, startdB)

V = generateV(phit, face.normal,
face.normal.dot(Rm.direction), startdB,
distanceFromOrigin, 100)

diffuse = face.kd * Sm.direction.dot(face.normal)

for ray in V:
specular = face.ks * Rm.direction.dot(ray.direction)
ray.startdB = startdB * (diffuse + (specular**face.a))

V = [Rm] + V
return Rm

Figure 3.3: (Python) BRDF algorithm

The function calcReflection implements the described perfect reflection equa-

tion (3.2) with Rm storing both its origin and direction vectors. generateV returns a

list of rays in a hemisphere around the surface normal utilizing the Fibonacci Sphere

algorithm mentioned in Section 3.1. V is then iterated through with Ix being calcu-

lated each time and then multiplied by the incoming ray’s acoustic energy level (in

dB) at the point of incidence after absorption to determine how much acoustic energy

each reflected ray possesses.
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3.2 Acoustic Calculations

Despite the raytracing algorithms making up the core of the computations in this pro-

gram, the resulting data needs to be converted to acoustic properties for the user to

understand the it. Acoustics is the study of mechanical waves in gases, liquids and

solids most often referred to as vibrations or sound. The most common objective unit

for measuring acoustic intensity is the decibel (dB), which is measured on a logarith-

mic scale with base 10. An important property of the decibel is the change in level

by +/- 6dB when the listener halves or doubles their distance from the sound source,

respectively. This means that decibel level changes also occur on a logarithmic scale,

meaning intensity levels of sound appear to change far more rapidly in close proxim-

ity to the sound source rather than far away. Decibels are an accurate measurement of

what the human ear perceives as ”loudness” and will be used in this paper to convey

sound intensity.

3.2.1 Decibel Calculations

As previously stated, decibels are measured on a logarithmic scale to better represent

the hearing patterns of the human ear. How decibel levels change as the listener’s

position changes is represented by:

L2 = L1 + 20 log10 (
r1

r2

) (3.3)

where L2 is the new sound pressure level in dB, L1 is the sound pressure level in dB at

distance r1 from the sound source, and r2 is the new distance from the sound source.
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This equation is valid for any distance r1, r2 where neither are≤ 0 and by default deci-

bel levels of sound sources are measured at 1 unit (typically meters) from the source.

Due to the Law of Superposition, sound waves do not distort when passing through

each other but instead combine amplitudes while occupying the same space. The com-

bination of amplitudes, known as interference, can be positive when the wave-forms

are in phase and negative (destructive) when they are out-of-phase. This can lead to

an effect referred to as phasing, where ”beats” can be heard when two or more sound

waves that are close in frequency combine due to the interference patterns produced.

The decibel level of two or more sounds waves combined is not as easily calculated as

simply summing the decibel levels of all waves involved and is represented as:

LΣ = 10 log10

n∑
i=1

(10
Li
10 ) (3.4)

where LΣ is the summed decibel level, n is the number of waves being summed and Li

is the decibel level of each wave. From this equation it can be seen that when two sound

waves with the same decibel level intersect, the sum of their levels is 3 dB higher than

their individual level. It is also notable that if sound waves differ in decibel level by

more than 10 dB, the lower level will add a negligible amount to the higher, allowing

for code optimization by vetting decibel levels before summing.

3.2.2 RT60 and Critical Distance

Reverberation is the persistence of sound in a room after it is produced. For example,

in a large space, like a church, you can hear the sound in the room well after you

stopped making it. The reverberation of a room is dependent on the frequency band

of the sound produced, the area of the room, and its makeup, i.e. what materials its
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reflective surfaces are made of and how much sound energy they absorb. A common

objective measurement of reverberation is known as RT60 (Reverberation Time 60dB),

which is the measure of how long the sound pressure level of a room takes to drop by

60dB after it was generated. The equation for calculating the RT60 of a space is:

RT60 = k ∗ V
A

(3.5)

where k is a constant factor, V is the volume of the room in m3 and A is the total

absorption surface area of a room in m2. k is derived from:

k =
24 ln 10

c20

(3.6)

where c20 is the speed of sound in air at 20 degrees Celsius, meaning k = 0.161 when

using meters (c20 = 343m/s). A is derived from:

A =
∑

S ∗ α (3.7)

where it is the summation of each room surface’s absorption area with S being the

area of the surface in m2 and α being the Sabine absorption coefficient of the surface

with α ∈ [0, 1].

Knowing the RT60 of a space also allows for the space’s critical distance to be easily

calculated. The critical distance of a room is the point within it where the sound

pressure level of the reverberant (reflected) sounds are equal to the sound pressure

level directly from the source. This ‘sweet spot’ can be found manually if you move

around a room while a speaker is playing and find a spot where the sound is much
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louder than everywhere around it. This location is dependent on the area of the room

as well as the makeup of its reflective surfaces and is conveniently calculated with the

RT60 value of a room. The equation for finding the critical distance is:

dc =

√
24 ln (10) ∗ V

16π ∗ c20 ∗RT60

= 0.057 ∗
√

V

RT60

(3.8)

where V is the volume of the room in m3, c20 is the speed of sound in air at 20 degrees

Celsius, and RT60 is the reverberation time of the room in seconds. Both of these

calculations are very useful in designing spaces meant to have specific rates of sound

decay and are easily done in addition to the ray-based calculations of the program.
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Chapter 4: Analysis

4.1 Graphical User Interface

Figure 4.1: Application GUI

This project is intended for use by everyday users and teachers to help learn more

about room acoustics. To meet the easy-use goal of this endeavor, the graphical user

interface (GUI) of the application had to be simple in design and apparent in its func-

tionality. Figure 4.1 shows the main GUI of the application, which is broken into four

major components: the taskbar, the OpenGL window, the acoustic calculations box,

and the materials box.
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4.1.1 The Taskbar

Figure 4.2: GUI Taskar

The taskbar of the application GUI provides the basic functionality that users would

expect to find. Under the File tab there are two options: Open and Export.... Both open

up a file explorer dialog where the user can select a .obj file to open or give the name

and location of a .png file that is a screenshot of the OpenGL window. The Edit tab

contains the physical options for Undo and Redo which can also be hot-keyed using

CTRL-Z and CTRL-Y respectively. Lastly, the View tab gives the user the option

of hiding the acoustic calculations and materials boxes to optimize viewing of the

OpenGL window.

4.1.2 The OpenGL Window

The OpenGL window is the main visual tool of the application and also allows the

most interaction by the user. Any .obj file opened in the application is rendered there

in wireframe, allowing the user to see the clean visualization of the space. Once ren-

dered, the user is able to manipulate it by moving the object around using the mouse,

rotating it on the x- and y-axis with the left mouse button while holding shift, and

rotating it on the z-axis with the right mouse button while holding shift. The user can

also zoom in and out of the object using the scroll wheel. When the decibel map is cal-

culated for the object, the OpenGL window will also show the color mapping across

the surface of the object for a visual representation of how sound decays throughout

the room (See Figure 4.3).
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Figure 4.3: OpenGL Window

4.1.3 The Acoustic Calculations Box

The Acoustic Calculations Box controls the running of the acoustic analysis func-

tions described in Sections 3.1 and 3.2. Clicking the Calculate button in the Generate

Decibel Map section runs the raytracing algorithm that calculates decibel drop-off

throughout the room and renders that as a color map in the OpenGL window. The

Calculate button in the Reverberation Time and Critical Distance section run their

respective calculations and present them in their respective text boxes. The View De-

tails button for each section is more educational and provides a brief description of

the section’s topic, how it’s calculated, and provides a link to an external source where

the user can learn more about the topic.
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Figure 4.4: Acoustic Calculations Box

4.1.4 The Materials Box

The Materials box controls what type of material makes up each surface of the room.

Changing these allows users to test out how different materials absorb acoustic energy

at different rates and also gives a more accurate view of the room they are modeling.

This is a rather rudimentary implementation that lets the user select from a drop–

down menu of surfaces and a drop-down menu of material options and then set the

material to the surface using the Set Material button. After the desired materials have

been set, the Regenerate Model button reruns the raytracing algorithm to generate

the updated decibel mapping, basically acting as a duplicate of the Calculate button

in the Acoustic Calculations box. The materials provided for selection are common

room materials with well known absorption ratios, making them easy to calculate and

recognizable to the user.

25



Figure 4.5: Materials Box

4.2 Application Design

Coding this project was just as much a learning experience as was researching the

acoustics, and it was constantly revised throughout the process. The project began in

Java utilizing the Processing framework, a wrapper for the OpenGL library, which

is often used for interactive animations and 3D rendering. Despite its promising fea-

tures, Processing fell short for its lack of transparency to underlying OpenGL ele-

ments that were necessary to access and its lack of easy UI integration. These issues

ultimately led to the switch to Python 3, which allowed direct access to OpenGL and

the use of the robust UI framework Qt [10].

4.2.1 Qt Framework

The Qt framework is a robust UI design system that is used across many platforms

by major companies like LG, Mercedes Benz, AMD, and Valve, in desktop applica-

tions like AutoDesk Maya, Electrum, and Telegram, and even desktop environments
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like KDE Plasma. Qt also has the added benefit that it directly supports OpenGL,

making it the perfect framework to build the application and ensure ease of use and

easy access by many users. The GUI described in Section 4.1 is built entirely us-

ing the Qt framework, which provides the necessary components of buttons, menus,

drop-downs, and even the OpenGL window with minimal code, allowing for little time

needed to be spent figuring out all of the framework’s ins and outs and more time for

coding the complex algorithms needed for the acoustic calculations that use raytrac-

ing.

4.2.2 OpenGL

This application relies heavily on the fact that users can see the room models that

they wish to analyze and be able to manipulate them, which drives the need for the

OpenGL library. OpenGL is another cross-platform library that provides an API for

rendering 2D and 3D vector graphics used across many industries that utilize embed-

ded graphics processing. Being an industry standard, there were plenty of resources

for learning how to use the OpenGL library, which helped immensely in fast track-

ing its integration into the program. As mentioned before, the fact that it integrated

seamlessly into the Qt framework only made it more useful, allowing the code to flow

seamlessly together while writing it.
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4.3 Code Development

4.3.1 Reading .OBJ Files

The first hurdle of the code development process was determining the acceptable file

formats of the 3D room models and how to parse them for use in the application.

The .obj file format was the obvious choice to use due to its simplicity and wide use

in other 3D modeling software, making it easy for users to export room models from

their favorite software and import them into the application. The format provides the

vertices of the model, the vertex normal of each and the faces comprised of vertices,

giving the program everything it needs to construct the model in OpenGL. Figure A.2

in the Appendix shows an example .obj file that constructs a cube. The v means vertex,

vn means vertex normal, and f means face, where each input to a face is v/vt/vn. (vt

means texture vertex, which is not used in the application)

4.3.2 Storing Object Data

When a room model is parsed from a .obj file, its many geometric components are

stored in a way that makes them easy to reference during later calculations.

Vertices and Vectors

The most basic geometric property of a model is its vertices, which in 3D space are

vectors comprised of three coordinates (x,y,z). The Vec3 class fills this role by being a

wrapper for the numpy library’s array that only holds three floating point numbers

which can handle storing coordinates and direction vectors. The class provides the
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functionality to add and subtract vectors, calculate dot and cross products, normal-

ize vectors and more to allow easy manipulation of coordinate and direction vectors

without repeated, cluttering numpy code.

Faces

All rooms have surfaces, which are comprised of a set of at least three connected ver-

tices, referred to in the program as a face. The Face class assumes this functionality,

storing an array of its vertices as Vec3 objects and a Vec3 representing the face’s

surface normal, which is calculated from the vertex normals (vn) of the .obj file or

manually from the vertices. Each Face also stores the edge vectors ~AB and ~AC for

use in the Möller–Trumbore intersection algorithm (see Figure 3.2), its surface area

for RT60 and Critical Distance calculations, and the surface material (by default hard-

wood.)

Rays

The last main component for modeling a space and performing raytracing on it is the

ray itself. The Ray class represents all rays used in the application and is what the

Fibonacci Sphere algorithm (see Figure A.1 in the Appendix) outputs to model rays

being sent in all directions from the initial sound source. The Ray class keeps track

of each ray’s origin as a Vec3, direction vector as a Vec3, distance traveled from the

sound source, and decibel level at the ray’s origin.

4.3.3 The Raytracing Process
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# Intersection point
phit = ray.origin.add(Vec3(*(ray.direction * t)))

# Calcualate the dB level at the intersection
newDistanceFromOrigin = ray.distanceFromOrigin +

ray.origin.distance(phit)
dbChange = dropOff(ray.distanceFromOrigin,

newDistanceFromOrigin)
newdB = ray.startdB - dbChange

# Log Point
currPointdB = self.pointDict.get((phit.x, phit.y, phit.z))
if currPointdB is not None:

self.pointDict[(phit.x, phit.y, phit.z)] = sumLevels(
[newdB, currPointdB]

)
else:

self.pointDict[(phit.x, phit.y, phit.z)] = newdB

if rNum > 0:
# Calculate the reflected rays
reflections = generate_brdf(

ray, phit, newdB, newDistanceFromOrigin, face
)

for ray in reflections:
if ray.startdB > 0:

self.intersect(ray, rNum - 1)

Figure 4.6: (Python) Point Decibel Level Calculation
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The process of raytracing inside of a room model begins with the selection of a point–

source from which the rays emanate, representing an omnidirectional sound source.

This is entered manually and can be anywhere in the space, including on a surface to

represent in-wall speakers. From that point the spherical distribution of rays gener-

ated by the Fibonacci Sphere algorithm is iterated over to determine which face each

ray intersects using the Möller–Trumbore intersection algorithm. Each ray from the

sound source has its distance from the sound source set to ”1” and starting decibel set

to a user-determined level.

Intersection Decibel Calculations

Upon finding an intersection with a Face object of the model, the intersection point’s

distance from the origin and decibel level for each ray is calculated (See Figure 4.6,

continuation of Figure 3.2). A dict object is used to store the intersection point and

decibel level at that point every time a ray intersects with a surface. That dict object

is checked to see if there was any other ray that previously hit the same point, and if

so the decibel levels are summed (see Equation 3.4), otherwise, the intersection point

and its decibel level are added to the dict.

BRDF Reflections

Material 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz
Hardwood 0.19 0.23 0.25 0.30 0.37 0.42
Carpet 0.03 0.09 0.20 0.54 0.70 0.72
Drywall 0.29 0.10 0.05 0.04 0.07 0.09
Brick 0.05 0.04 0.02 0.04 0.05 0.05
Concrete 0.01 0.01 0.01 0.02 0.02 0.02
Foam 0.25 0.50 0.85 0.95 0.90 0.90

Table 4.1: Absorption Coefficients
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After the decibel level calculations at an intersection point occur, the reflections of the

ray-surface intersection are computed using the BRDF algorithm described in Equa-

tion 3.1 and implemented in Figure 3.3. The material of the Face object involved also

comes into play as its absorption level determines how much acoustic energy actually

leaves the surface in a perfect reflection. Table 4.1 shows the absorption coefficients of

common materials used in the application[11]. Each of the reflections generated are

then iterated through and run through the same Möller–Trumbore intersection algo-

rithm to find their intersections, calculate the distance traveled from the sound source

and the decibel level at that point, add it to the dict and repeat for the desired num-

ber of reflection levels, denoted by rNum. This process calculates the ray intersections

in a depth-first order, removing the need to store rays and their intersection points

in large arrays that would be necessary in a breadth-first implementation, which was

used initially before realizing how much unnecessary information was being stored.

4.3.4 Rendering the Model

Once all of the raytracing and point-decibel calculations are completed, the last task of

the program is to display the newly computed decibel map in an understandable way.

To convey decibel levels as colors, it made sense to represent them on a spectrum from

red to cyan, avoiding blues and purples due to them being generally darker colors,

thus ruining the transition from dark to light. The Hue, Saturation, Value (HSV)

color system provided the perfect functionality, as the hue (color) is represented in

degrees 0-360, making it easily mappable to the range 0-120 used for decibels. This

allows for any decibel level to be converted to HSV, inversely so that 120dB equals red

(hue 0), and then from HSV to Red, Green, Blue (RGB) values (see Figure A.3) that

OpenGL could render.
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Initially, the decibel levels were displayed as rays themselves, changing colors as they

moved further away from the sound source, but when reflections were added, the vi-

sual became a jumbled mess of colored lines that conveyed no real information due

to the sheer number of them. The solution to making the results visually understand-

able was to change to just coloring the points where rays intersected with a surface,

providing a cleaner view of the model that more resembled a heat map of decibel lev-

els. To clean up the visualization even further, points also become more transparent

the lower the decibel level, to ensure that higher decibel level points are more promi-

nent. Without adjusting the transparency of the lower level points, the high number

of them created by diffuse angles from the BRDF algorithm cloaked every model in

greens and light blues, providing an inaccurate view of a room’s decibel drop-off.
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def render(self):
gl_list = gl.glGenLists(1)
gl.glNewList(gl_list, gl.GL_COMPILE)
gl.glShadeModel(gl.GL_SMOOTH)
gl.glPointSize(5)
gl.glBegin(gl.GL_POINTS)
# Sort the intersection points by dB level
points = sorted(

self.pointDict.items(), key=lambda item: item[1],
reverse=True

)
# Adjust alpha values based on dB level
for vec, dB in points:

if dB > 100:
gl.glColor4f(*dBtoColor(dB), 1)

elif dB > 80:
gl.glColor4f(*dBtoColor(dB), 0.65)

elif dB > 60:
gl.glColor4f(*dBtoColor(dB), 0.25)

elif dB > 40:
gl.glColor4f(*dBtoColor(dB), 0.125)

else:
gl.glColor4f(*dBtoColor(dB), 0.0625)

gl.glVertex3fv(vec)
gl.glEnd()
gl.glEndList()
return gl_list

Figure 4.7: (Python) Rendering Ray-Surface Intersections
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Chapter 5: Conclusion and Future Work

The application created provides users with a hands-on acoustic analysis experience

that can be used to teach complex acoustic ideas or for simple utility by amateur

acousticians. Its design in Python 3 using the Qt framework and OpenGL make it

highly portable, allowing user access across most platforms, and easy for other devel-

opers to understand its code if it is open sourced and modifiable. While this applica-

tion fulfilled the goal of the project, there are a few ways that it could be modified to

improve user experience and increase the efficiency of the raytracing process.

• A glaring issue is the low quality UI that only provides the bare essentials for

user interaction. The styling does not stand out from older software and the odd

spacing detracts from the clean look that was intended. Using the Qt Designer

software rather than just hard coding the UI elements would be a potential fix

that would really clean up the UI and make it look more like a professional

product.

• Another issue is the time it takes to complete the raytracing process, as it runs

on one thread and has to handle running the Möller–Trumbore intersection al-

gorithm, which has a time complexity of O(f), where f is the number of faces

in the room. That means that the raytracer has a time complexity of O(fnr+1)

with reflections, where n is the number of rays spawned at the source and each

reflection and r is the number of reflection levels. This issue can be solved by

splitting the set of initial rays over multiple threads that run the raytracing al-

gorithm on their subset, enabling the process to return visual results to the user
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much faster.

• A more interactive way of deciding the sound source placement would also be a

useful tool, especially since it can currently only be modified in the code. Allow-

ing the user to click a speaker icon that they could move around the inside of

the model would let the raytracing operation run multiple times from different

locations in the model. Currently, the user must know how to modify the code

to change the speaker location.

• The last major improvement to the program would be to smooth out the decibel

heat map. The current iteration where colored dots are placed on the model’s

surface works, but processing the points and creating smooth gradients would

remove the clutter of lighter color dots that don’t mean much energy-wise when

next to dots greater than 10dB higher. A possible solution to this would be to

create a triangulation of each face’s dots and vertices, treat each triangle as

an individual face, and use OpenGL’s vertex color interpolation to create the

gradient.
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Appendix A: Code Samples

def generateRays(self) -> list:
"""
Generates an array of rays to use for the raytracing
"""
points = []
offset = 2.0 / self.raynum
increment = math.pi * (3.0 - math.sqrt(5.0))

for i in range(self.raynum):
y = ((i * offset) - 1) + (offset / 2)
r = math.sqrt(1 - pow(y, 2))

phi = ((i + 1) % self.raynum) * increment

x = math.cos(phi) * r
z = math.sin(phi) * r

points.append(Ray(self.origin,
Vec3(x, y, z).normalize(), 1, self.startdB))

return points

Figure A.1: (Python) Fibonacci Sphere Algorithm
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# cube.obj

v 0.0 0.0 0.0
v 0.0 0.0 1.0
v 0.0 1.0 0.0
v 0.0 1.0 1.0
v 1.0 0.0 0.0
v 1.0 0.0 1.0
v 1.0 1.0 0.0
v 1.0 1.0 1.0

vn 0.0 0.0 1.0
vn 0.0 0.0 -1.0
vn 0.0 1.0 0.0
vn 0.0 -1.0 0.0
vn 1.0 0.0 0.0
vn -1.0 0.0 0.0

f 1//2 7//2 5//2
f 1//2 3//2 7//2
f 1//6 4//6 3//6
f 1//6 2//6 4//6
f 3//3 8//3 7//3
f 3//3 4//3 8//3
f 5//5 7//5 8//5
f 5//5 8//5 6//5
f 1//4 5//4 6//4
f 1//4 6//4 2//4
f 2//1 6//1 8//1
f 2//1 8//1 4//1

Figure A.2: (.OBJ) Cube.obj

38



def dBtoColor(level):
"""
Converts given dB level (0-120) to RGB using HSV values
- Range from Red to Cyan
- Red ( >= 120dB ) = (0, 1, 1) HSV
- Cyan ( <= 0dB ) = (180, 1, 1) HSV
"""

# Ensure level is in proper bounds
level = 0 if level < 0 else level
level = 120 if level > 120 else level

hue = (level - 120) * -1.5 # HSV Hue
return hsv_to_rgb(hue / 360, 1, 1)

Figure A.3: (Python) Decibel to RGB Color Conversion
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