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ABSTRACT

Deep neural networks (DNNs) have been found to be vulnerable to adversarial
examples resulting from adding small-magnitude perturbations to inputs. Such
adversarial examples can mislead DNNs to produce adversary-selected results.
Different attack strategies have been proposed to generate adversarial examples,
but how to produce them with high perceptual quality and more efficiently requires
more research efforts. In this paper, we propose AdvGAN to generate adversarial
examples with generative adversarial networks (GANs), which can learn and ap-
proximate the distribution of original instances. For AdvGAN, once the generator
is trained, it can generate adversarial perturbations efficiently for any instance, so
as to potentially accelerate adversarial training as defenses. We apply AdvGAN
in both semi-whitebox and black-box attack settings. In semi-whitebox attacks,
there is no need to access the original target model after the generator is trained,
in contrast to traditional white-box attacks. In black-box attacks, we dynamically
train a distilled model for the black-box model and optimize the generator accord-
ingly. Adversarial examples generated by AdvGAN on different target models
have high attack success rate under state-of-the-art defenses compared to other
attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST
black-box attack challenge (Mądry et al., 2017b).

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved great successes in a variety of applications ranging
from image recognition (Krizhevsky et al., 2012; He et al., 2016) to speech processing (Hinton
et al., 2012) and from robotics training (Levine et al., 2016) to medical diagnostics (Ciresan et al.,
2012). However, recent work has demonstrated that DNNs are vulnerable to adversarial pertur-
bations (Szegedy et al., 2014; Goodfellow et al., 2015). An adversary can add small-magnitude
perturbations to inputs and generate adversarial examples to mislead DNNs. Such maliciously per-
turbed instances can cause the learning system to misclassify them into either a maliciously-chosen
target class (in a targeted attack) or classes that are different from the ground truth (in an untargeted
attack). Different algorithms have been proposed for generating such adversarial examples, such as
the fast gradient sign method (FGSM) (Goodfellow et al., 2015) and optimization-based methods
(Opt.) (Carlini & Wagner, 2017a; Liu et al., 2017).

Most of the the current attack algorithms (Carlini & Wagner, 2017a; Liu et al., 2017) rely on op-
timization schemes with simple pixel space metrics, such as L∞ distance from a benign image, to
encourage visual realism. To generate more perceptually realistic adversarial examples, in this paper,
we propose to train a feed-forward network to generate perturbations such that the resulting example
must be realistic according to a discriminator network. We apply generative adversarial networks
(GANs) (Goodfellow et al., 2014) to produce adversarial examples in both the semi-whitebox and
black-box settings. As conditional GANs are capable of producing high-quality images (Isola et al.,
2017), we apply a similar paradigm to produce perceptually realistic adversarial instances. We name
our method AdvGAN.

Note that in the previous white-box attacks, such as FGSM and optimization methods, the adver-
sary needs to have white-box access to the architecture and parameters of the model all the time.
However, by deploying AdvGAN, once the feed-forward network is trained, it can instantly pro-
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duce adversarial perturbations for any input instances without requiring access to the model itself
anymore. We name this attack setting semi-whitebox.

To evaluate the effectiveness of our attack strategy AdvGAN, we first generate adversarial instances
based on AdvGAN and other attack strategies on different target models. We then apply the state-
of-the-art defenses to defend against these generated adversarial examples (Goodfellow et al., 2015;
Tramèr et al., 2017a; Mądry et al., 2017a). We evaluate these attack strategies in both semi-whitebox
and black-box settings. We show that adversarial examples generated by AdvGAN can achieve a
high attack success rate, potentially due to the fact that these adversarial instances appear closer to
real instances compared to other recent attack strategies.

Our contributions are listed as follows.

• Different from the previous optimization-based methods, we train a conditional adversarial
network to directly produce adversarial examples, which are both perceptually realistic and
achieve state-of-the-art attack success rate against different target models.

• We show that AdvGAN can attack black-box models by training a distilled model. We
propose to dynamically train the distilled model with query information and achieve high
black-box attack success rate and targeted black-box attack, which is difficult to achieve
for transferability-based black-box attacks.

• We use the state-of-the-art defense methods to defend against adversarial examples and
show that AdvGAN achieves much higher attack success rate under current defenses.

• We apply AdvGAN on Mądry et al.’s MNIST challenge (2017a) and achieve 88.93% accu-
racy on the published robust model in the semi-whitebox setting and 92.76% in the black-
box setting, which wins the top position in the challenge (Mądry et al., 2017b).

2 RELATED WORK

Here we review recent work on adversarial examples and generative adversarial networks.

Adversarial Examples A number of attack strategies to generate adversarial examples have been
proposed in the white-box setting, where the adversary has full access to the classifier (Szegedy et al.,
2014; Goodfellow et al., 2015; Carlini & Wagner, 2017a; Moosavi-Dezfooli et al., 2015; Papernot
et al., 2016; Biggio et al., 2013; Kurakin et al., 2016). Goodfellow et al. propose the fast gradient
sign method (FGSM), which applies a first-order approximation of the loss function to construct
adversarial samples. Formally, given an instance x, an adversary generates adversarial example
xA = x+ η with L∞ constraints in the untargeted attack setting as η = ǫ · sign(∇xℓf (x, y)), where
ℓf (·) is the cross-entropy loss used to train the neural network f , and y represents the ground truth
of x. Optimization based methods have also been proposed to optimize adversarial perturbation for
targeted attacks while satisfying certain constraints (Carlini & Wagner, 2017a; Liu et al., 2017). Its
goal is to minimize the objective function as ||η||+λℓf (xA, y), where ||·|| is an appropriately chosen
norm function. However, the optimization process is slow and can only optimize perturbation for
one specific instance each time. In contrast, our feed-forward network can produce perturbation for
any instance. It achieves higher attack success rate against different defenses and performs much
faster than the current attack algorithms.

Independently from our work, feed-forward networks have been applied to generate adversarial
perturbation (Baluja & Fischer, 2017). However, Baluja & Fischer combine the re-ranking loss and
an L2 norm loss, aiming to constrain the generated adversarial instance to be close to the original
one in terms of L2; while we apply a deep neural network as a discriminator to help distinguish
the instance with other real images to encourage the perceptual quality of the generated adversarial
examples.

Black-box Attacks Current learning systems usually do not allow white-box accesses against the
model for security reasons. Therefore, there is a great need for black-box attacks analysis. Most of
the black-box attack strategies are based on the transferability phenomenon (Papernot et al., 2017),
where an adversary can train a local model first and generate adversarial examples against it, hoping
the same adversarial examples will also be able to attack the other models. Many learning systems
allow query accesses to the model. However, there is little work that can leverage query-based
access to target models to construct adversarial samples and move beyond transferability. Papernot
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Figure 1: Overview of AdvGAN

et al. (2017) proposed to train a local substitute model with queries to the target model to generate
adversarial samples, but this strategy still relies on transferability. In contrast, we show that the
proposed AdvGAN can perform black-box attacks without depending on transferability.

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have achieved visually ap-
pealing results in both image generation (Radford et al., 2015; Gulrajani et al., 2017; Berthelot
et al., 2017) and manipulation (Zhu et al., 2016) settings. Recently, image-to-image conditional
GANs have further improved the quality of synthesis results (Isola et al., 2017; Zhu et al., 2017).
We adopt a similar adversarial loss and image-to-image network architecture to learn the mapping
from an original image to a perturbed output such that the perturbed image cannot be distinguished
from real images in the original class. Different from prior work, we aim to produce output results
that are not only visually realistic but also able to mislead target learning models.

3 GENERATING ADVERSARIAL EXAMPLES WITH ADVERSARIAL NETWORKS

3.1 PROBLEM DEFINITION

Let X ⊆ Rn be the feature space, with n the number of features. Suppose that (xi, yi) is the ith
instance within the training set, which is comprised of feature vectors xi ∈ X , generated according
to some unknown distribution xi ∼ Pdata, and yi ∈ Y the corresponding true class labels. The
learning system aims to learn a classifier f : X → Y from the domain X to the set of classification
outputs Y , where |Y| denotes the number of possible classification outputs. Given an instance x,
the goal of an adversary is to generate adversarial example xA, which is classified as f(xA) 6= y
(untargeted attack), where y denotes the true label; or f(xA) = t (targeted attack) where t is the
target class. xA should also be close to the original instance x in terms of L2 or other distance
metric.

3.2 ADVGAN FRAMEWORK

Figure 1 illustrates the overall architecture of AdvGAN, which mainly consists of three parts: a
generator G, a discriminator D, and the target neural network f . Here the generator G takes the
original instance x as its input and generates a perturbation G(x). Then x + G(x) will be sent to
the discriminator D, which is used to distinguish the generated data and the original instance x.
The goal of D is to encourage that the generated instance is indistinguishable with the data from its
original class. To fulfill the goal of fooling a learning model, we first perform the white-box attack,
where the target model is f in this case. f takes x + G(x) as its input and outputs its loss Ladv ,
which represents the distance between the prediction and the target class t (targeted attack), or the
opposite of the distance between the prediction and the ground truth class (untargeted attack).
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The adversarial loss (Goodfellow et al., 2014) can be written as: 1

LGAN = Ex logD(x) + Ex log(1−D(x+ G(x))). (1)

Here, the discriminator D aims to distinguish the perturbed data x+G(x) from the original data x.2

Note that the real data is sampled from the true class, so as to encourage that the generated instances
are close to data from the original class.

The loss for fooling the target model f in a targeted attack is:

Lf
adv = Exℓf (x+ G(x), t), (2)

where t is the target class and ℓf denotes the loss function (e.g., cross-entropy loss) used to train the
original model f . The Lf

adv loss encourages the perturbed image to be misclassified as target class t.
Here we can also perform the untargeted attack by maximizing the distance between the prediction
and the ground truth, but we will focus on the targeted attack in the rest of the paper.

To bound the magnitude of the perturbation, which is a common practice in prior work (Carlini &
Wagner, 2017a; Liu et al., 2017; Bartlett & Wegkamp, 2008), we add a soft hinge loss on the L2

norm as
Lhinge = Ex max(0, ‖G(x)‖2 − c), (3)

where c denotes a user-specified bound. This can also stabilize the GAN’s training, as shown in
Isola et al. (2017). Finally, our full objective can be expressed as

L = Lf
adv + αLGAN + βLhinge, (4)

where α and β control the relative importance of each objective. Note that LGAN here is used to
encourage the perturbed data to appear similar to the original data x, while Lf

adv is leveraged to
generate adversarial examples, optimizing for the high attack success rate. We obtain our G and D
by solving the minmax game argminG maxD L.

3.3 BLACK-BOX ATTACKS WITH ADVERSARIAL NETWORKS

Static Distillation For black-box attack, we assume adversaries have no prior knowledge of train-
ing data or the model itself. In our experiments in Section 4, we randomly draw data that is disjoint
from the training data of the black-box model to distill it, since we assume the adversaries have no
prior knowledge about the training data or the model. To achieve black-box attacks, we first build
a distilled network f based on the output of the black-box model b (Hinton et al., 2015). Once we
obtain the distilled network f , we carry out the same attack strategy as described in the white-box
setting (see Equation (4)). Here, we minimize the following network distillation objective:

argmin
f

Ex H(f(x), b(x)), (5)

where f(x) and b(x) denote the output from the distilled model and black-box model respectively
for the given training image x, and H denotes the commonly used cross-entropy loss. By optimizing
the objective over all the training images, we can obtain a model f which behaves very close to the
black-box model b. We then carry out the attack on the distilled network.

Note that unlike training the discriminator D, where we only use the real data from the original
class to encourage that the generated instance is close to its original class, here we train the distilled
model with data from all classes.

Dynamic Distillation Only training the distilled model with all the pristine training data is not
enough, since it is unclear how close the black-box and distilled model perform on the generated
adversarial examples, which have not appeared in the training set before. Here we propose an
alternative minimization approach to dynamically make queries and train the distilled model f and
our generator G jointly. We perform the following two steps in each iteration. During iteration i:

1For simplicity, we denote the Ex ≡ E
x∼Pdata(x)

2Note that we only use the generator to produce the perturbation G(x).
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Table 1: Comparison with the state-of-the-art attack methods. Run time is measured for generating
1,000 adversarial instances during test time. Opt. represents the optimization based method, and
Trans. denotes black-box attacks based on transferability.

FGSM Opt. Trans. AdvGAN

Run time 0.06s >3h - <0.01s
Targeted Attack X X Ens. X

Black-box Attack X X

1. Update Gi given a fixed network fi−1: We follow the white-box setting (see Equation 4)
and train the generator and discriminator based on a previously distilled model fi−1. We
initialize the weights Gi as Gi−1.

Gi, Di = argmin
G

max
D

L
fi−1

adv + αLGAN + βLhinge (6)

2. Update fi given a fixed generator Gi: First, we use fi−1 to initialize fi. Then, given the
generated adversarial examples x + Gi(x) from Gi, the distilled model fi will be updated
based on the set of new query results for the generated adversarial examples against the
black-box model, as well as the original training images.

fi = argmin
f

ExH(f(x), b(x)) + ExH(f(x+ Gi(x)), b(x+ Gi(x))), (7)

where we use both the original images x and the newly generated adversarial examples
x+ sGi(x) to update f .

In the experiment section, we compare the performance of both the static and dynamic distillation
approaches and observe that simultaneously updating G and f produces higher attack performance.
See Table 2 for more details.

4 EXPERIMENTAL RESULTS

In this section, we first evaluate AdvGAN for both semi-whitebox and black-box settings on MNIST
(LeCun & Cortes, 1998) and CIFAR-10 (Krizhevsky et al., 2014). We also perform a semi-whitebox
attack on the ImageNet dataset(Deng et al., 2009). We then apply AdvGAN to generate adversarial
examples on different target models and test the attack success rate for them under the state-of-the-
art defenses and show that our method can achieve higher attack success rates compared to other
existing attack strategies. We generate all adversarial examples for different attack methods based
on the under L∞ bound of 0.3 on MNIST and 8 on CIFAR-10, for a fair comparison.

In general, as shown in Table 1, AdvGAN has several advantages over other white-box and black-
box attacks. For instance, regarding computation efficiency, AdvGAN performs much faster than
others even including the efficient FGSM, although AdvGAN needs extra training time to train
the generator. All these strategies can perform targeted attack except transferability based attack,
although the ensemble strategy can help to improve. Besides, FGSM and optimization methods can
only perform white-box attack, while AdvGAN is able to attack in semi-whitebox setting.

Implementation Details Our code and models will be available upon publication. We adopt a
similar architecture from image-to-image translation literature (Isola et al., 2017; Zhu et al., 2017).
In particular, we use the architecture of generator G from Johnson et al. (2016), and our discriminator
D’s architecture is similar to model C for MNIST and ResNet-32 for CIFAR-10. We apply the loss
in Carlini & Wagner (2017c) as our loss Lf

adv
= max(maxi 6=t f(xA)i − f(xA)t, κ), where t is the

target class, and f represents the target network in the semi-whitebox setting and the distilled model
in the black-box setting. We set the confidence κ = 0 for both Opt. and AdvGAN. We use Adam as
our solver (Kingma & Ba, 2014), with a batch size of 128 and a learning rate of 0.001. For GANs
training, we use the least squares objective proposed by LSGAN (Mao et al., 2016), as it has been
shown to produce better results with more stable training.
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Table 2: Accuracy of different models on pristine data, and the attack success rate of adversarial
examples generated against different models by AdvGAN on MNIST and CIFAR-10. p: pristine
test data; w: semi-whitebox attack; b-D: black-box attack with dynamic distillation strategy; b-S:
black-box attack with static distillation strategy.

MNIST CIFAR-10
Model A B C ResNet-32 Wide ResNet-34

Accuracy (p) 98.97% 99.17% 99.09% 92.41% 95.01%

Attack Success Rate (w) 97.9% 97.1% 98.3% 94.71% 99.30%
Attack Success Rate (b-D) 93.4% 90.1% 94.02% 78.47 % 81.81%
Attack Success Rate (b-S) 30.7% 66.63% 87.3% 10.3% 13.3%

Models Used in the Experiments For MNIST, in all of our experiments, we generate adversar-
ial examples for three models whose architectures are shown in Appendix A. Models A and B are
used in Tramèr et al. (2017b), which represent different architectures. Model C is the target net-
work architecture used in (Carlini & Wagner, 2017a) for evaluating optimization based strategy. For
CIFAR-10, we select ResNet-32 and Wide ResNet-34 (He et al., 2016; Zagoruyko & Komodakis,
2016) for our experiments. Specifically, we use a 32-layer ResNet implemented in TensorFlow3

and Wide ResNet derived from the variant of “w32-10 wide.”4 We show the classification accu-
racy of pristine MNIST and CIFAR-10 test data (p) and attack success rate of adversarial examples
generated by AdvGAN on different models in Table 2.

4.1 ADVGAN IN SEMI-WHITEBOX SETTING

First, we apply different architectures for the target model f as listed in Appendix A for MNIST and
with ResNet and Wide ResNet for CIFAR-10. We first apply AdvGAN to perform semi-whitebox
attack against each model on MNIST dataset. From the performance of semi-whitebox attack (At-
tack Rate (w)) in Table 2, we can see that AdvGAN is able to generate adversarial instances to attack
all models with high attack success rate.

We also generate adversarial examples from the same original instance x, targeting other different
classes, as shown in Figures 2. In the semi-whitebox setting on MNIST (a)-(c), we can see that the
generated adversarial examples for different models appear close to the ground truth/pristine images
(lying on the diagonal of the matrix). Figure 2 (d)-(f) show the generated adversarial examples on
MNIST in black-box setting. These adversarial examples generated by AdvGAN can successfully
fool the black-box model and be misclassified as the target class shown on the top. The original
images are shown on the diagonal. We also generate adversarial examples based on random original
images, and results are shown in Appendix C.

In addition, we analyze the attack success rate based on different loss functions on MNIST. Under the
same bounded perturbations (0.3), if we replace the full loss function in (4) with L = ||G(x)||2 +

Lf
adv, which is similar to the objective used in Baluja & Fischer (2017), the attack success rate

becomes 86.2%. If we replace the loss function with L = Lhinge + Lf
adv, the attack success rate is

91.1%, compared to that of AdvGAN, 98.3%.

Similarly, on CIFAR-10, we apply the same semi-whitebox attack for ResNet and Wide ResNet
based on AdvGAN, and Figure 3(a) shows some adversarial examples, which are perceptually real-
istic. We show adversarial examples for the same original instance targeting different other classes.
It is clear that with different targets, the adversarial examples keep similar visual quality compared
to the pristine instances on the diagonal.

We also apply AdvGAN to generate adversarial examples on the ImageNet as shown in Figure 4
with L∞ bound as 8. The added perturbation is unnoticeable while all the adversarial instances are
misclassified into other target classes with high confidence.

3https://github.com/tensorflow/models/blob/master/research/ResNet/ResNet_model.py
4https://github.com/MadryLab/cifar10_challenge/blob/master/model.py
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Target class
0 1 2 3 4 5 6 7 8 9

(a) Model A, semi-whitebox

Target class
0 1 2 3 4 5 6 7 8 9

(b) Model B, semi-whitebox

Target class
0 1 2 3 4 5 6 7 8 9

(c) Model C, semi-whitebox

(d) Model A, black-box (e) Model B, black-box (f) Model C, black-box

Figure 2: Adversarial examples generated from the same original image to different targets by Adv-
GAN on MNIST with semi-whitebox attack, (a), (b), and (c), and black-box attack, (c), (d), and (e).
On the diagonal, the original images are shown.

4.2 ADVGAN IN BLACK-BOX SETTING

In this section, we evaluate the performance of AdvGAN for the black-box attack. Our black-box
attack here is based on the dynamic distillation strategy. We construct a local model to distill model
f , and we select the architecture of Model C as our local model. Note that we randomly select a
subset of instances disjoint from the training data of AdvGAN to train the local model; that is, we
assume the adversaries do not have any prior knowledge of the training data or the model itself.
With the dynamic distillation strategy, the adversarial examples generated by AdvGAN achieve an
attack success rate, above 90% for MNIST and 80% for CIFAR-10, compared to 30% and 10% with
the static distillation approach, as shown in Table 2.

We apply AdvGAN to generate adversarial examples for the same instance targeting different classes
on MNIST and randomly select some instances to show in Figure 2 (d)-(f). By comparing with the
pristine instances on the diagonal, we can see that these adversarial instances can achieve high
perceptual quality as the original digits. Specifically, the original digit is somewhat highlighted by
adversarial perturbations, which implies a type of perceptually realistic manipulation. Figure 3 (b)
shows similar results for adversarial examples generated on CIFAR-10. These adversarial instances
appear photo-realistic compared with the original ones on the diagonal. We show additional results
in Appendix C.

4.3 ATTACK EFFECTIVENESS UNDER DEFENSES

Facing different types of attack strategies, various defenses have been provided. Among them,
different types of adversarial training methods are the most effective. Goodfellow et al. (2015) first
propose adversarial training as an effective way to improve the robustness of DNNs, and Tramèr
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(a) Semi-whitebox attack (b) Black-box attack

(c) Perturbations generated in semi-whitebox attack (d) Perturbations generated in black-box attack

Figure 3: Adversarial examples generated by AdvGAN on CIFAR-10 for (a) semi-whitebox attack
and (b) black-box attack. Image from each class is perturbed to other different classes. On the
diagonal, the original images are shown. The corresponding perturbations (amplified by 10×) are
shown in (c) and (d).

et al. (2017a) extend it to ensemble adversarial learning. Mądry et al. (2017a) have also proposed
robust networks against adversarial examples based on well-defined adversaries. Given the fact
that AdvGAN strives to generate adversarial instances from the underlying true data distribution, it
can essentially produce more photo-realistic adversarial perturbations compared with other attack
strategies. Thus, AdvGAN could have a higher chance to produce adversarial examples that are
resilient under different defense methods. In this section, we quantitatively evaluate this property
for AdvGAN compared with other attack strategies.

Threat Model As shown in the literature, most of the current defense strategies are not robust
when attacking against them (Carlini & Wagner, 2017b; He et al., 2017). Here we consider a weaker
threat model, where the adversary is not aware of the defenses and directly tries to attack the original
learning model, which is also the first threat model analyzed in Carlini & Wagner (2017b). In this
case, if an adversary can still successfully attack the model, it implies the robustness of the attack
strategy. Under this setting, we first apply different attack methods to generate adversarial examples

8



Under review as a conference paper at ICLR 2018

(a) Adversarial examples (b) Corresponding perturbations (amplified by 10×)

Figure 4: Adversarial examples (a) generated by AdvGAN on ImageNet in the semi-whitebox set-
ting, which are classified as (from left to right) poodle, ambulance, basketball, and electric guitar.
Corresponding perturbations are visualized in (b).

based on the original model without being aware of any defense. Then we apply different defenses
to directly defend against these adversarial instances.

Semi-whitebox Attack First, we consider the semi-whitebox attack setting, where the adversary
has white-box access to the model architecture as well as the parameters. Here, we replace f in Fig-
ure 1 with our model A, B, and C, respectively. As a result, adversarial examples will be generated
against different models. We use three adversarial training defenses to train different models for each
model architecture: standard FGSM adversarial training (Adv.) (Goodfellow et al., 2015), ensemble
adversarial training (Ensemble) (Tramèr et al., 2017b), and iterative training (Iter. Adv.) (Mądry
et al., 2017a).5 We evaluate the effectiveness of these attacks against these defended models. In
Table 3, we show that the attack success rate of adversarial examples generated by AdvGAN on
different models is higher than those of the fast gradient sign method (FGSM) and optimization
methods (Opt.) (Carlini & Wagner, 2017a).

Black-box Attack For AdvGAN, we use model B as the black-box model and train a distilled
model to perform black-box attack against model B and report the attack success rate in Table 4.
For the black-box attack comparison purpose, transferability based attack is applied for FGSM and
optimization-based methods (Opt.). We use FGSM and optimization-based methods (Opt.) to at-
tack model A on MNIST, and we use these adversarial examples to test on model B and report
the corresponding classification accuracy. We can see that the adversarial examples generated by
the black-box AdvGAN consistently achieve much higher attack success rate compared with other
attack methods. For CIFAR-10, we use ResNet as black-box model and train a distilled model to
perform black-box attack against ResNet. To evaluate black-box attack for optimization method and
FGSM, we use adversarial examples generated by attacking Wide ResNet and test them on ResNet
to report black-box attack results for these two methods.

In addition, we apply AdvGAN to the MNIST challenge (Mądry et al., 2017b). Among all the
methods, for white-box attack we achieve 88.93% accuracy on the published local model as shown
in Table 5. For the reported black-box attack, we achieved the accuracy as 92.76%, outperforming
all other state-of-the-art attack strategies.

5 Each ensemble adversarially trained model is trained using (i) pristine training data, (ii) FGSM adversarial
examples generated for the current model under training, and (iii) FGSM adversarial examples generated for
naturally trained models of two architectures different from the model under training.
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Table 3: Attack success rate of adversarial examples generated by AdvGAN in semi-whitebox set-
ting, and other white-box attacks under defenses on MNIST and CIFAR-10.

Data Model Defense FGSM Opt. AdvGAN

MNIST

A
Adv. 4.3% 4.6% 8.0%

Ensemble 1.6% 4.2% 6.3%
Iter.Adv. 4.4% 2.96% 5.6%

B
Adv. 6.0% 4.5% 7.2%

Ensemble 2.7% 3.18% 5.8%
Iter.Adv. 9.0% 3.0% 6.6%

C
Adv. 2.7% 2.95% 18.7%

Ensemble 1.6% 2.2% 13.5%
Iter.Adv. 1.6% 1.9% 12.6%

CIFAR

ResNet
Adv. 13.10% 11.9% 16.03%

Ensemble. 10.00% 10.3% 14.32%
Iter.Adv 22.8% 21.4% 29.47%

Wide ResNet
Adv. 5.04% 7.61% 14.26%

Ensemble 4.65% 8.43% 13.94 %
Iter.Adv. 14.9% 13.90% 20.75%

Table 4: Attack success rate of adversarial examples generated by different black-box adversarial
strategies under defenses on MNIST and CIFAR-10

MNIST CIFAR-10
Defense FGSM Opt. AdvGAN FGSM Opt. AdvGAN

Adv. 3.1% 3.5% 11.5% 13.58% 10.8% 15.96%
Ensemble 2.5% 3.4% 10.3% 10.49% 9.6% 12.47%

Iterative Adv. 2.4% 2.5% 12.2% 22.96% 21.70% 24.28%

Table 5: Accuracy of the MadryLab public model under different attacks in white-box setting. The
AdvGAN here achieved the best performance.

Method Accuracy (xent loss) Accuracy (cw loss)

FGSM 95.23% 96.29%
PGD 93.66% 93.79%
Opt - 91.69%
AdvGAN - 88.93%

4.4 ADVERSARIAL PERTURBATION ANALYSIS.

To understand the adversarial perturbation pattern better, we plot out corresponding perturbations
(amplified by a factor of 10) for CIFAR-10 in Figure 3 (c) and (d) and ImageNet in Figure 4 (b).
From the visualization of perturbation, it shows that the perturbations do not resemble anything in
particular about the original image or the target class. Although training AdvGAN exposes it to
realistic instances, the perturbations it generates do not simply interpolate towards an example of
the target class.

4.5 HIGH RESOLUTION ADVERSARIAL EXAMPLES ANALYSIS

To evaluate AdvGAN’s ability to generate high resolution adversarial examples, we generate the
high resolution adversarial examples for Inception_v3 and quantify their attack success rate and
perceptual realism.

Experiment settings. In the following experiments, we select toy poodle as our target label for
all images. We select 100 benign images from the DEV set of the NIPS 2017 targeted adversarial

10
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attack competition.6 This competition provided a dataset compatible with ImageNet. We generate
adversarial examples (299×299 pixels) under an L∞ perturbation bound of 0.01 (pixels values are
in the range ∈ [0, 1]) for the Inception_v3 model, whose input size is 299×299. The details of
architectures for generator and discriminator we used are listed in Appendix D.

Table 6: Parameters of generated high resolution adversarial examples

Dateset Model Target Label Resolution L∞ bound Attack Success Rate

ImageNet Inception_v3 toy poodle 299× 299 0.01 100%

In Figure 8 in the appendix, we show the original images on the left with the correct label, and we
show adversarial examples generated by AdvGAN on the right with the target label.

Human Perceptual Study. We validate the realism of AdvGAN’s adversarial examples with a
user study on Amazon Mechanical Turk (AMT). We use 100 pairs of original images and adversarial
examples (generated as described above) and ask workers to choose which image of a pair is more
visually realistic.

Our study follows a protocol from Zhang et al. (2016) and Isola et al. (2017), where a worker is
shown a pair of images for 2 seconds, then the worker has unlimited time to choose. We limit each
worker to at most 20 of these tasks. We collected 500 choices, about 5 per pair of images, from 50
workers on AMT.

The AdvGAN examples were chosen as more realistic than the original image in 49.4%± 1.96% of
the tasks (random guessing would result in about 50%). This result show that these high-resolution
AdvGAN adversarial examples are about as realistic as benign images.

5 CONCLUSION

In this paper, we propose AdvGAN to generate adversarial examples using generative adversarial
networks (GANs). In our AdvGAN framework, once trained, the feed-forward generator can pro-
duce adversarial perturbations efficiently. It can also perform both semi-whitebox and black-box
attacks with high attack success rate. In addition, when we apply AdvGAN to generate adversarial
instances on different models without knowledge of the defenses in place, the generated adversar-
ial examples can attack the state-of-the-art defenses with higher attack success rate than examples
generated by the competing methods. This property makes AdvGAN a promising candidate for
improving adversarial training defense methods. The generated adversarial examples produced by
AdvGAN preserve high perceptual quality due to GANs’ distribution approximation property.
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A ARCHITECTURE OF MODELS

Table 7: Model architectures for the MNIST

A B C

Conv(64,5,5)+Relu Conv(64,8,8)+Relu Conv(32,3,3)+Relu
Conv(64,5,5)+Relu Dropout(0.2) Conv(32,3,3)+Relu

Dropout(0.25) Conv(128, 6, 6)+Relu MaxPooling(2,2)
FC(128)+Relu Conv(128, 5, 5)+Relu Conv(64,3,3)+Relu
Dropout(0.5) Dropout(0.5) Conv(64,3,3)+Relu

FC(10)+Softmax FC(10)+Softma MaxPooling(2,2)
FC(200)+Relu

FC(200)+Softmax

B NETWORK ARCHITECTURES

Generator architecture We follow the naming rules used in Johnson et al. (2016)’s Github repos-
itory7 as well as Zhu et al. (2017) . Let c3s1-k denotes 3 × 3 Convolution-InstanceNorm-ReLU
layer with k filter and stride 1. Rk means residual block that contains two 3 × 3 convolution layers
with the same numbers of filters. dk denotes the 3× 3 Convolution-InstanceNorm-ReLU layer with
k filters and stride 2. uk denotes a 3 × 3 fractional-strided-ConvolutionInstanceNorm-ReLU layer
with k filters, and stride 1

2
. .

The generator structures consists of:
c3s1-8, d16, d32, r32, r32, r32, r32, u16, u8, c3s1-3

Discriminator architecture We use CNNs as our discriminator network (Radford et al., 2015). Let
Ck denote a 4×4 Convolution-InstanceNorm-LeakyReLU layer with k filters and stride 2. After the
last conv layer, we apply a FC layer to produce a 1 dimensional output. We do not use InstanceNorm
for the first C8 layer. We use leaky ReLUs with slope 0.2.

The discriminator architecture is:
C8, C16, C32, FC

C ADDITIONAL ADVERSARIAL EXAMPLES

Target class
0 1 2 3 4 5 6 7 8 9

(a) Model A

Target class
0 1 2 3 4 5 6 7 8 9

(b) Model B

Target class
0 1 2 3 4 5 6 7 8 9

(c) Model C

Figure 5: Adversarial examples generated by AdvGAN on MNIST against different models in the
semi-whitebox setting. Here the adversarial examples are randomly sampled corresponding to dif-
ferent original images.

7https://github.com/jcjohnson/fast-neural-style.
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(a) Model A (b) Model B (c) Model C

Figure 6: Adversarial examples generated by AdvGAN on MNIST against different models in the
black-box setting. Here the adversarial examples are randomly sampled corresponding to different
original images.

(a) White-box setting (b) Black-box setting

Figure 7: Adversarial examples generated by AdvGAN on CIFAR-10. Here the adversarial exam-
ples are randomly sampled corresponding to different original images.

Table 8: Comparisons of perturbations generated by AdvGAN and the state-of-the-art algorithms
on MNIST and CIFAR-10. We report the mean value of perturbation amount as “mean” and attack
success rate as “prob.”

Method MNIST CIFAR-10
A B C ResNet-32 Wide ResNet-34

mean prob mean prob mean prob mean prob mean prob

AdvGAN 0.149 98% 0.157 97% 0.144 98% 0.025 95% 0.024 99%
CW 0.089 99% 0.100 99% 0.070 100% 0.023 100% 0.020 98%
FGSM 0.202 55% 0.193 49% 0.192 18% 0.0301 23% 0.031 26%

D HIGH RESOLUTION ADVERSARIAL EXAMPLES FOR AN

IMAGENET-COMPATIBLE SET

The structure of generator for ImageNet consists of:
c7s1-8, d16, d32, d64, d64, d64, d64, r64, r64, r64, r64, u64,

u64, u64, u64, u32, u16, u8, c7s1-3
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The architecture of discriminator for ImageNet is:
C8, C16, C32, FC
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(a) Benign image (labeled as dung beetle) (b) Adversarial image (labeled as toy poodle)

(c) Benign image (labeled as vase) (d) Adversarial image (labeled as toy poodle)

(e) Benign image (labeled as bottlecap) (f) Adversarial image (labeled as toy poodle)
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(g) Benign image (labeled as folding chair) (h) Adversarial image (labeled as toy poodle)

(i) Benign image (labeled as yurt) (j) Adversarial image (labeled as toy poodle)

(k) Benign image (labeled as buckeye) (l) Adversarial image (labeled as toy poodle)
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(m) Benign image (labeled as strawberry) (n) Adversarial image (labeled as toy poodle)

(o) Benign image (labeled as thatch) (p) Adversarial image (labeled as toy poodle)

(q) Benign image (labeled as jeep) (r) Adversarial image (labeled as toy poodle)

Figure 8: Examples from an ImageNet-compatible set. Left: original image; right: adversarial
image generated by AdvGAN against Inception_v3.
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