

Generating all maximal independent sets : NP-hardness and
polynomial-time algorithms
Citation for published version (APA):
Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1980). Generating all maximal independent sets : NP-
hardness and polynomial-time algorithms. SIAM Journal on Computing, 9(3), 558-565.
https://doi.org/10.1137/0209042

DOI:
10.1137/0209042

Document status and date:
Published: 01/01/1980

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.1137/0209042
https://doi.org/10.1137/0209042
https://research.tue.nl/en/publications/a4b8731e-7a3f-4f84-8aa1-1c2f076cbc5a

SIAM J. COMPUT.
Vol. 9, No. 3, August 1980

1980 Society for Industrial and Applied Mathematics
0097-5397/80/0903-0009 $01.00/0

GENERATING ALL MAXIMAL INDEPENDENT SETS:
NP-HARDNESS AND POLYNOMIAL-TIME ALGORITHMS*

E. L. LAWLERS", J. K. LENSTRA$ AND A. H. G. RINNOOY KAN

Abstract. Suppose that an independence system (E,) is characterized by a subroutine which indicates
in unit time whether or not a given subset of E is independent. It is shown that there is no algorithm for
generating all the K maximal independent sets of such an independence system in time polynomial in IEI and
K, unless V. However, it is possible to apply ideas of Paull and Unger and of Tsukiyama et al. to obtain
polynomial-time algorithms for a number of special cases, e.g. the efficient generation of all maximal feasible
solutions to a knapsack problem. The algorithmic techniques bear an interesting relationship with those of
Read for the enumeration of graphs and other combinatorial configurations.

Key words, independence system, satisfiability, maximality test, lexicography test, set packing, clique,
complete k-partite subgraph, knapsack problem, on-time set of jobs, inequality system, facet generation,
matroid intersection

1. Introduction. Let E be a finite set of elements and let 5 be a nonempty family
of subsets of E satisfying a single axiom" if 16 5 and I’

I, then I’ 5. Under these

conditions, (E, 5) is said to be an independence system and 5 is its family of independent
sets. An independent set I is said to be maximal if there is no I’ 5 such that I’ = I. The
subsets of E that are not contained in 5 are dependent sets. A dependent set J is called
minimal if J’ for each J’ c J.

Suppose that IEI- n and that (E, 5) is characterized by a computer subroutine
which indicates in unit time whether or not a given subset ofE is an independent set. All
independent sets can be generated in O(nll) time: given an independent set, O(n)
applications of the subroutine suffice to determine the next independent set in a
lexicographic listing. But suppose that one is interested only in all the maximal
independent sets, of which there are K, K =< I 1, These can be found in time polynomial
in n and K only in the unlikely event that , as we show in 2.

There are, however, a number of special types of independence systems for which it
is possible to generate all the maximal independent sets efficiently. In 3, an analysis of
a procedure due to Paull and Unger [5] reveals that there is a polynomial-time
algorithm for this purpose, provided that a certain subproblem can be solved in
polynomial time. Improvements in running time and storage requirements suggested by
Tsukiyama et al. [8] are discussed as well. In 4, we investigate some of these
independence systems. Typical of these special cases is the problem of generating all the
maximal feasible solutions to a knapsack problem. In 5, we examine the relationship
between our approach and a technique for the enumeration of graphs and other
combinatorial configurations, recently proposed by Read [6].

2. Complexity. We shall show that the problem of generating all the K maximal
independent sets of an arbitrary independence system is NP-hard, i.e., if there is an
algorithm for the problem which runs in time polynomial in n and K, then there is a
polynomial-time algorithm for solving the satisfiability problem [2].

* Received by the editors May 16, 1978. This research was partially supported by the National Science
Foundation under Grant MC.S 76-17605, and by NATO under Special Research Grant 9.2.02 (SRG. 7).

"t Computer Science Division, University of California, Berkeley, California 94720.
Mathematisch Centrum, Amsterdam, The Netherlands.
Erasmus University, Rotterdam, The Netherlands.

558

GENERATING ALL MAXIMAL INDEPENDENT SETS 559

Let F(X1,... ,XN) be a Boolean expression in conjunctive normal form. Let
E { T1, F,. , TN, F}, and for any/" { 1, , N} and any J

E, define

true if T/e J, F. J,

xj(J) false if F. e J, T/ J,

undefined otherwise.

Let I if either
(i) there exists a j {1,. , N} such that both Tjg I, F. I, or
(ii) each clause of F contains a letter X. or X. whose defined value is true, i.e.,

F(x(i), Xl(I))= true.
It is easily seen that (E,) is an independence system. Moreover, F is not satisfiable if
and only if the only maximal independent sets are E- {T., F.} for j 1,..., N.

Assume there exists a general procedure for generating all the maximal indepen-
dent sets of an arbitrary independence system with running time b (n, K), where b is a
polynomial function of n and K. Apply this procedure to the independence system
defined above and allow it to run for time b (2N, N). Then F is satisfiable if and only if
either

(i) F(Xl(I),"’, Xlv(I))= true for some generated I, or
(ii) the procedure fails to halt within the allotted time, establishing that there are

more than N maximal independent sets.
For any given J

_
E, the conjunctive normal form Can be evaluated in time proportional

to its length. Appropriate modification of the unit-time assumption for independence
testing thus establishes that the procedure solves the satisfiability problem in poly-
nomial time. Since the latter problem is NP-complete, it can be solved in polynomial
time if and only if [2]. Hence, we have the following theorem.

THEOREM 1. If there exists an algorithm for generating all the maximal independent
sets of an arbitrary independence system in time polynomial in n and K, then Aft.

To obtain a reduction to, rather than from, the satisfiability problem, we now
consider the problem of generating all maximal independent sets and all minimal
dependent sets of an independence system. Letthere be L such sets. We shall show that
if there is a polynomial-time algorithm for the satisfiability problem, then there is an
algorithm for generating all these sets in time polynomial in n and L. Each step of the
latter algorithm yields a new set on the list.

Suppose then, that at a certain point sets Ia,..., i have been generated. Let

{1,..., l} indicate the generated sets which are maximal independent and
{1,. , l}- those which are minimal dependent. Any new set I must satisfy I: Ii for
all and Ii ! for all . Form the Boolean expression

(Ai.zV.,,rxl) ^ (Ai.V.,x.).

The length of this expression is O(nl) and by our assumption one can determine if it is
satisfiable in 6(nl) time, for some polynomial function 6. If the expression is not
satisfiable, then =L and the algorithm terminates. Otherwise, construct a truth
assignment in polynomial time, by successively fixing the value of each variable and
determining if the reduced expression is satisfiable. Next define ! {/’IX. true} and
test 1 for independence in unit time. If ! is independent, augment it until a maximal
independent set results; if I is dependent, remove elements until a minimal dependent
set is found. Either procedure requires O(n) time. Since clearly I # Ii for 1, , l, I
is the new set on the list. We thus have the following theorem.

560 E. L. LAWLER, J. K. LENSTRA AND A. H. G. RINNOOY KAN

THEOREM 2. /f N, then there exists an algorithm]:or generating all the maximal
independent sets and all the minimal dependent sets of an arbitrary independence system
in time polynomial in n and L.

3. An algorithm.
3.1. A generalized Pauil-Unger procedure. We now assume that E {1, , n}

and that independence testing requires time c. Let j be the family of all independent
sets that are maximal within {1, ,/’}. By definition,o {}. We seek to construct
from -1 in order to obtain n, the family of all K independent sets that are maximal
within E.

Suppose that I i-1. If I U {/} , then clearly I U {/} i. If I U {j}g, then
I i. It follows that

Observing that the elements of E can be numbered arbitrarily, we obtain the following
result.

THEOREM 3. For any J
_
E, the number of independent sets maximal within J does

not exceed K.
.Suppose that I’. and /’el’. Since I’-{j} is independent and included in

{1,...,j-l}, there must be some IN._I such that I’-{j}c_L Moreover, I’ is an
independent set that is maximal within I LI {/’}. This observation suggests the following
procedure to obtain . from i_1, which is a generalization of an algorithm due to Paull
and Unger [5].

Step 1. For each I ._a, find all independent sets I’ that are maximal within
{/}.

Step 2. For each such I’, test I’ for maximality within {1, , j}. Each set I’ that is
maximal within {1, , f} is a member of ., and we have seen that each member of .
can be found in this way. However, a given I’ may be obtained from more than one
I -1. In order to eliminate duplications, we need one further step.

Step 3. Reject each I’ that passes the maximality test if it appears among the sets
already found to be in. Suppose that in Step 1, for each I -1, at most K’ sets I’ are
found in time c’; by Theorem 3, we have K’ =< K. For each I’, the maximality test in Step
2 requires O(nc) time, and the duplication test in Step 3 can be accomplished with
O(K) pairwise set comparisons, each of which requires O(n) time. It follows that, for
fixed j, O(c’K) time suffices for the first step, O(ncKK’) time for the second step, and
O(nK2K ’) time for the third step. Thus, the overall running time to obtain n is
O(nc’K + n2cKK’+ n:KK’). This yields the following theorem.

THEOREM 4. All the maximal independent sets of an independence system can be
generated in time polynomial in n, c and K, if it is possible to list in polynomial time all
independent sets that are maximal within I (_J {/’}, for arbitrary I _, j 1,. , n.

In 4, we investigate several cases in which the subproblem referred to in Theorem
4 (the "I U {j} problem") can be solved in polynomial time.

3.2. Improvements of Tsukiyama et al. A technique suggested by Tsukiyama et
al. [8] enables one to eliminate duplications more efficiently. It yields significant
improvements in both running time and storage requirements of the Paull-Unger
procedure.

Instead of comparing a set I’ with all members of 5. found previously, one retains I’
only if it is obtained from the lexicographically smallest I

_
from which it can be

produced. Hence Step 3 is modified in the following way.

GENERATING ALL MAXIMAL INDEPENDENT SETS 561

Step 3’. For each I’ obtained from I o,_1 that is maximal within {1, ,/’}, test
for each </’, i’ I, the set (I’- {/’}) (I f3 {1,. , 1}) t.J {i} for independence. Reject
I’ if any of these tests yields an affirmative answer.

If, indeed, any affirmative answer is obtained, then I’-{} is included in an
independent set that is lexicographically smaller than I, and hence in a lexicographically
smaller maximal independent set from 5.-1.

For each I’, the lexicography test in Step 3’ requires O(nc) time, which is the same
as required by the maximality test in Step 2. Hence, the overall running time of the
revised procedure is O(nc’K + n2cKK’).

Possibly of even greater interest for some applications is the fact that storage
requirements can be greatly reduced by organizing the computation as a depth-first
search of a tree. Nodes at level/" correspond to members of 5i, with the tree rooted at,
the unique member of 5o. Since for each 16 5._, either I {/’} 5. or I 5i, each node
has at least one and at most K’ children. Whenever in the depth-first search a member of
5, is encountered, it is outputted. The maximum number of subproblems that must be
maintained in stack to allow backtracking is O(nK’). A further decrease in storage
requirements can be obtained at the expense of an increase in running time.

4. Applications. In this section we investigate various independence systems for
which all maximal independent sets can be generated in polynomial time.

4.1. Set packing. Let S be a finite set with [Sl m and let 5 {SI," Sn} be a
family of (not necessarily distinct) subsets of S. A subfamily I

_
5g is a packing in S if the

sets in I are pairwise disjoint. The packings correspond to the independent sets of an
independence system withE 5. All maximal packings can be generated in polynomial
time, as shown below.

First consider the "I kJ {j} problem". Let A.
__
6 consists of the sets S for which

Sg fq S. # 5. Given I -1, the only sets which can possibly be maximal within I tA {S;}
are I itself and (I A.) LI {Si}. Thus K’ _-< 2. It follows that, given Ai, the ILI {]} problem
can be solved in O(n) time.

Assuming the sets S are specified by ordered lists of indices, one can find the sets
A1, ’, A, in O(mn 2) time. It follows that Step 1 requires O(mn 2 + n2K) time.

The maximality test for I’ is equivalent to verifying that I’fqAi # for all
<j, Sd.gL Since each such test can be carried out in O(n 2) time, Step 2 requires
O(n3K) time.

The lexicography test is easily seen to be equivalent to verifying that [I-
(Aj f3 {Si+I, Sj-1})] [" Ai # for all </’, SiL Thus, Step 3’ requires O(n3K) time
as well.

It follows that the overall running time of the procedure is O(mn 2 + n3K). Since it
is possible to implement the search tree in O(n) space, O(mn) space is sufficient overall.

Suppose Y’ is induced by an undirected m-edge n-vertex graph G with edge set $.

Si denotes the set of edges incident to vertex/" and A. denotes the set of vertices
adjacent to vertex]. Then each packing I

_
is an independent or stable set of vertices

of G, or, equivalently, a clique of the complementary graph G. It was in this context that
the Paull-Unger procedure and the improvements of Tsukiyama et al. were originally
proposed.

For the graph problem, it is natural for the sets Ai to be given as input in the form of
ordered lists. Under this assumption, and noting that i=1 IA I- 2m, one can reduce the
time bound to O(mnK) and the space bound to O(m + n), as shown in [8].

4.2. Complete k-partite subgraphs. Let G be an undirected graph with vertex set
V {vl,..., vn} and edge set S with IS[m. A complete k-partite subgraph of G is

562 E. L. LAWLER, J. K. LENSTRA AND A. H. G. RINNOOY KAN

defined by a collection {V1,’’’, Vk} of pairwise disjoint subsets of V such that
{vi, v.}e $ for vi e Vg, vie Vh, if and only if g h. Note that an independent set of
vertices defines a complete 1-partite subgraph and that a complete k’-partite subgraph
is also a complete k-partite subgraph for k k’+ 1,. , n.

The complete k-partite subgraphs of G correspond to the independent sets of the
following independence system. Let E V and let I e if there exists a partition
P(I) {V1," , Vk} of I (i.e., U=I Vh I and Vg f’l Vh for 1 <-- g < h _-< k) that
defines a complete k-partite graph on L We will show how to generate all maximal
complete k-partite subgraphs of G in polynomial time.

Again consider the "/t.J{/’} problem". Let P(I)={VI,..., Vk,} with Vh #
(h 1,..., k’) and k ’<-k.,

First, suppose that {vi, vi} e S for all v e L If k’ < k, then the single independent set
I’ that is maximal within I U {vi} is ! LI {vj} itself, with P(! t_J {vi}) P(I) t_J {vi}. If k’ k,
then there are k + 1 sets I’, for which P(I’) is obtained by deleting any one of the
members of P(I) t_J {vj}.

Suppose now that {v, v}e S only for all v e V’h
_

Vh (h 1,’", k’), where
V= for h=l,’’’,a,CV’hCVh for h=a+l,...,b and V=Vh for h=
b +1, , k’, with 0=<a =<b <-k’ and b >0. In this case, b+l independent sets I’
that are maximal within I t_J{vi} are defined by P(I’)=P(I) and P(I’)=
{ V’I,"’, V’h-I,(Vh--V’h) U {Vi}, V’h/,’’’, V’b, Vb/l,’’’, Vk,} for h=l,...,b. In
the special case that a =0, even more sets I’ may exist. If k’< k, then the single
additional set I’ is defined by P(I’)= { V’,..., V’Vb/,’’ ", Vk’, {Vi}}. If k’ k, then
there are k- b additional set I’, for which P(I’) is obtained by deleting any one of the
sets Vb/l,’’’, Vk’ from {V’I,’", V’, Vb/,’’’, Vk,, {vi}}. (Note that these sets are
not maximal in the case that a > 0.)

Since K’= O(k) and independence testing requires O(m) time, the overall running
time of the procedure is O(n2mkK).

4.3. Knapsack problems. Next consider the knapsack inequality --1 ajxi <=
b, xi e {0, 1} (j 1,. ., n), where al =>a2=>" ->an >0. The feasible solutions to this
inequality correspond in a natural way to the independent sets of an independence
system with E {1, , n } and I e 5 if ix ai <= b. We are interested in generating all
maximal feasible solutions.

Consider the ! LI {j} problem and assume that I LI {j}g i. Feasibility is restored by
removing any element h from I t.J{j}. Thus K’ =<j, and the ! U{j} problem can be
solved in O(n) time.

For a given ! e 5_, define re(h)= max {i[i < h, i I}; let amax 00. A set I’
(I-{h})U{j} (h el) passes the maximality test if and only if Y’.gx, ai-b a,(i> b, and it
passes the lexicography test if and only if 1ag- ah + a,(h > b. Moreover, for all I’
arising from I LI {/’}, these tests can be carried out in O(n) time altogether. It follows that
the overall running time of the procedure is O(n2K).

The unbounded knapsack inequality, in which the x. are allowed to take on any
nonnegative integer value, is reducible to the 0-1 case by introducing 2a., 4ai, , 2kai
into the problem in addition to ai, where k is the smallest integer such that 2k+lai > b.
Then E contains O(n log b) elements, and the algorithm is still strictly polynomial.

4.4. On-time sets of jobs. Suppose there are n jobs to be processed, one at a time,
by a single machine starting at time 0. Job/" requires an uninterrupted processing time of
p units and has a deadline dr. Let E {1, , n } and let I e if all the jobs in I can be
scheduled for completion by their deadlines. It is well known that such a schedule exists
if and only if the jobs in I are all completed on time when sequenced in order of
nondecreasing deadlines. Hereafter, assume d _-< d2-<’ <= dn.

GENERATING ALL MAXIMAL INDEPENDENT SETS 563

Again consider the I U {j} problem and assume that I U {/’}g 5j. In this case, we
have ,ixPi +Pj > di. Independence is restored by removing job j from I (.J {j} or by
removing some jobs from I such that job j, which can be assumed to remain in the last
position, is completed on time. It follows that solving the I LI {j} problem is equivalent
to finding all maximal subsets H

_
I such that iHPi <= di-pi, which can be accom-

plished by applying the knapsack procedure of 4.3. By Theorem 3, the number of
maximal subsets H does not exceed K- 1. Hence the I (A {j} problem can be solved in
O(neK) time.

Since maximality and lexicography tests require O(n) time, it follows that the
overall running time of the procedure is O(n3K2).

4.5. Inequality systems. The problems considered in 4.1, 4.3 and 4.4 can all be
viewed a special instances of the general problem of finding all maximal feasible
solutions to an inequality system of the form Ax <= b, xi {0, 1}(j 1, , n), where the
m n-matrix A (aij) and the m-vector b (bg) have nonnegative components.

For example, given a et $ {1, , m} and a family 6e {$1, , Sn} of subsets of
$, define aii-- 1 if $i, a0 0 otherwise. In the case that bg 1 (i 1,..., m), the
maximal feasible solutions correspond to the maximal packings in S; they can be
generated in polynomial time, as has been shown in 4.1. In the case that bi-
i-_la0-I (i=l,...,m), the maximal feasible solutions correspond to the
complements of the minimal coverings of S. We have not been able to devise a
polynomial-time algorithm for this problem. Nor have we been able to obtain an
NP-hardness result similar to Theorem 1 for this case or even for a general inequality
system, although we conjecture that no polynomial-time algorithm exists unless

For the scheduling problem discussed in 4.4, we have m n, aii P if >-- j, ai 0
otherwise, and bg dg (cf. [4]). The same technique as above can be applied to a slightly
wider class of inequality systems, where b is an m-vector with nondecreasing
components and A is a nonnegative rn n-matrix such that

(i) aii > 0 implies aij, > 0 for all j’< j, and
(ii) the strictly positive entries in each column are nonincreasing.

In this case, the I U {/’} problem with I U {/’} 5i can be solved by applying the knapsack
procedure of 4.3 to the constraint of smallest index h such that ahi > O. Any maximal
subset of I ID {j} that satisfies constraint h will then satisfy the remaining constraints as
well.

The reader may be able to construct other examples in which a certain property of
A permits one to restrict attention to a single constraint when independence has to be
restored. In each such case, the knapsack procedure can be applied to solve the I t_J {j}
problem in polynomial time.

4.6. Facet generation. Consider the convex hull P of all 0-1 vectors x satisfying
the general inequality system Ax <-b, where A->_0. Balas and Zemel [1] have
established a correspondence between the facets of P and the minimal covers of A, i.e.
the minimal feasible solutions to Ax; b. Such covers are in one-one correspondence to
the maximal feasible solutions to Ax’ ; b ’, where b ==1 ai-b-I (i= 1,..., m),
under the assumption that all data are integers.

Thus, in order to generate the facets of P, it suffices to generate the K maximal
feasible solutions to Ax’; b’. This inequality system can be considered as the disjunc-
tion ofm knapsack inequalities --1 axi (i 1," ", m), the ith such inequality
having Ki maximal feasible solutions. In the case that m 1, the procedure of 4.3 can
be applied to yield all minimal covers in polynomial time. In the general case, the

564 E. L. LAWLER, J. K. LENSTRA AND A. H. G. RINNOOY KAN

following procedure may have some practical value, even though it is not polynomial in
K.

A maximal feasible solution to the entire system has to be feasible and maximal
with respect to at least one of the separate inequalities. The procedure of 4.3 is now
applied to each of these inequalities in turn. However, a maximal feasible solution to
inequality is accepted as a maximal feasible solution to Ax’; b’ only if it is

(i) infeasible for each of the inequalities 1,..., i-1, and
(ii) infeasible or maximal feasible for each of the inequalities + 1,..., m.

It is not hard to see that this procedure generates all minimal covers without dupli-
cation.

For inequality i, application of the knapsack procedure requires O(n2Ki) time, and
conditions (i) and (ii) can be checked in O(mn) time for any candidate solution, or in
O(mnKi) time altogether. It follows that the overall running time of the procedure is
O((rnn +n 2) .Ki). Unfortunately, there exist inequality systems for which Ki is
exponentially related to K. For example, in the simple case that m n 1, aij 1, b
(i 1,.. , m, j 1,. , n), we have Ki (i) (i 1,. , m), . Ki 2 1, andK n.

For some special cases, truly polynomial-time algorithms can still be obtained. For
example, suppose A is such that the entries in each row are monotone nonincreasing. If
ILI {j}’, then removal of any element from I U {j} restores feasibility, so that K’ <= n.

In analogy to the above approach, one might view a general inequality system
Ax <= b as the conjunction of m knapsack inequalities. In this case, however, a maximal
feasible solution to the entire system can be feasible but nonmaximal with respect to
each of the separate inequalities. It seems hard to make any significant progress beyond
the special cases discussed in 4..5.

4.7. Matroid intersections. A matroidM (E,) is an independence system such
that for all J

E, all independent sets maximal within J have the same cardinality [3].

Given rn matroids Mi (E,) (i 1, , m) with E {1, , n}, their intersection
(E,) is an independence system defined by f’l% i. We are interested in generat-
ing all maximal independent sets in (E,), assuming that independence testing inM
requires timeci (i=l,...,m).

Consider the ! U {j} problem. If ! U {j} ., then addition of j must have destroyed
independence in some of the m matroids, say, in M1, , Ml. Each of these matroids M,.
contains a unique minimal dependent set or circuit Ci, and independence in Mi is
restored by removing any one element from C.

It follows that, in order to solve the ILI {j} problem, it is necessary to find all
minimal subsets of LI i--1Ci that contain at least one element from each circuit, i.e., all
minimal coverings of (C1, , C). In view of our remark in 4.5, we settle for a brute
force approach: consider all n possible solutions. This yields an overall running time of
O(nm+2K ci), which is, at least, polynomial for fixed m.

For certain special cases, e.g. the generation of all spanning trees [7], the special
structure of the system can be exploited and significant improvements made.

5. An enumeration procedure of Read. We conclude by noting a relationship
between our techniques and those proposed by Read [6] for the enumeration of graphs,
digraphs, and other combinatorial configurations. We restate the essential features of
Read’s procedure in our terms, as follows.

The family 5. is to be obtained from the family j-1 by applying an augmentation
operation to each set in 3_1. These sets are processed in a canonical linear order "<"
and the augmentation routine produces sets I’ from each I 5i-1 in this same order. For

GENERATING ALL MAXIMAL INDEPENDENT SETS 565

each I’ 6 i, let f(I’) denote the first set in -1 which produces I’ when subjected to the
augmentation operation. Suppose that the canonical order is weakly monotonic in the
sense that for all I’, I" j, I’<I" implies f(I’)<=f(I"). Then it is simple to avoid
duplications: when applying the augmentation operation, retain the next set produced
only if it follows the member of 5j that has been obtained lastly.

Consider, for example, how this procedure is applied by Read to generate all the
nonisomorphic digraphs on five vertices. The nondiagonal elements of the adjacency
matrix are written as a string of 20 bits, which can be interpreted as a binary integer. A
canonical digraph is one which has the largest such integer of all digraphs in its
isomorphism class, and this integer is its code. Let 5.-1 be the family of all canonical
digraphs with j- 1 arcs; their codes specify the canonical linear order. For each ! ._

1,

the augmentation operation produces digraphs I’ with/" arcs by systematically changing
a 0 to a 1 in the 20-bit representation of L Each such 1’ is tested for canonicity. Each I’
that passes the canonicity test is added to the list . if and only if its code is strictly
greater than that of the most recently obtained member of i. It can be shown that the
property of weak monotonicity is satisfied. Thus, all canonical digraphs with j arcs are
generated in this way, without duplication.

We have been unable to devise a weakly monotonic ordering for the problems
considered in this paper. The lexicography test of Tsukiyama et al. is, in effect, an
alternative to Read’s technique for eliminating duplications and amounts to an analysis
of the inverse of the augmentation operation. That is, when I’ is obtained from
I ,-/-1, I’ is retained only if f(I’) L where f(I’) denotes the lexicographically smallest
set in 5.-1 which produces I’ when subjected to the augmentation operation.

REFERENCES

[1 E. BALAS AND E. ZEMEL, All the facets of zero-one programming polytopes with positive coefficients,
Management Sciences Research Report 374, Carnegie-Mellon University, Pittsburgh, 1975.

[2] S. A. COOK, The complexity of theorem-proving procedures, Proc. 3rd Annual ACM Symp. Theory
Comput., (1971), pp. 151-158.

[3] E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New
York, 1976.

[4] E. L. LAWLER AND J. M. MOORE, A functional equation and its application to resource allocation and
sequencing problems, Management Sci., 16 (1969), pp. 77-84.

[5] M. C. PAULL AND S. H. UNGER, Minimizing the number of states in incompletely specified sequential
switching functions, IRE Trans. Electron. Comput., EC-8 (1959), 356-367.

[6] R. C. READ, Every one a winner, or how to avoid isomorphism search when cataloguing combinatorial
configurations, Ann. Discrete Math, 2 (1978), pp. 107-120.

[7] R. C. READ AND R. E. TARJAN, Bounds on backtrack algorithms for listing cycles, paths, and spanning
trees, Networks, 5 (1975), pp. 237-252.

[8] S. TSUKIYAMA, M. IDE, M. ARIYOSHI AND I. SHIRAWAKA, A new algorithm for generating all the
maximal independent sets, this Journal, 6 (1977), pp. 505-517.

