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Abstract 

We show that any monotone function with a 

read-k CNF representation can be learned in 

terms of its DNF representation with member- 

ship queries alone in time polynomial in the 

DNF size and n (the number of variables) as- 

suming k is some fixed constant. The problem 

is motivated by the well-studied open problem 

of enumerating all maximal independent sets 

of a given hypergraph. Our algorithm gives a 

solution for the bounded degree case and works 

even if the hypergraph is not input, but rather 

only queries are available as to which sets are 

independent. 

1 INTRODUCTION 

A hypergraph H is a collection of subsets (edges) E of a 

finite set of vertices V. An independent set of a hyper- 

graph is a subset of vertices, V’ c V such that no edge in 

E is contained in V’. An independent set I is maximal 

if no superset I’ of I is also an independent set. Given a 

hypergraph H, the hypergraph independent set problem 

is that of enumerating all maximal independent sets of 

H. Note that while finding the maximum cardinality 

independent set is NP-hard [GJ79], finding a maximal 

independent set I is easy: iteratively add vertices to I 

while maintaining the property that I is an independent 

set. We consider here the problem of enumerating all 

maximal independent sets. It can be shown (see Sec- 

tion 2) that the hypergraph independent set problem 

is equivalent to the following: Given a monotone CNF 

formula f find a (reduced) monotone DNF formula g 

such that g is equivalent to f. 

A more demanding problem is the setting in which 

the CNF description (equivalently, the hypergraph) is 

not explicitly given, but rather is hidden inside a “black 

box” to which only membership queries may be nosed. 
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A membership query for a Boolean function f is a vector 

z E (0, l)“, and is answered “yes” if f(z) = 1, and 

“no” otherwise. A membership query for a hypergraph 

H = (V, E) is a subset S C_ V, and is answered “yes” if 

S is an independent set, and “no” otherwise. 

Membership queries have been widely studied in the 

context of learning. In Angluin’s seminal paper (Ang88], 

information theoretic barriers are given showing that 

there is no algorithm for learning monotone DNF (or 

CNF) formulas from membership queries alone, in time 

polynomial in the size of the target DNF (or CNF) for- 

mula. However, these lower bounds do not apply here, 

as the learning problem derived from the hypergraph 

independent set problem is that of finding a monotone 

DNF formula for a monotone function (available in CNF 

form, or via membership queries only) in time polyno- 

mial in the sum of the CNF and DNF sizes. Put another 

way, the problem to be solved is that of exhibiting a 

polynomial total time algorithm for finding a monotone 

DNF formula. (A polynomial total time algorithm is one 

that runs in time polynomial in the sum of the lengths of 

the input and output. There are other notions of poly- 

nomial time. See (JPY88] for a discussion.) We often 

omit the adjective “total” with the understanding that 

all of our algorithms run in polynomial total time. Ap- 

plications of the hypergraph independent set problem 

abound, hence a general solution to the problem has 

been sought. After describing some of the applications 

and some recent results, we present a polynomial-time 

algorithm for the restricted case of bounded degree hy- 

pergraphs, using membership queries alone. 

Motivation: In the context of data mining, an algo- 

rithm for the independent set problem could be used to 

find all the keys’ in a relation. In addition to providing 

high-level information about a relation, the keys can be 

used for verifying that a collection of mined rules are in 

fact all the interesting rules in a relation [MT96]. Simi- 

larly, key enumeration is related to the problem of find- 

ing a small cover for the set of functional dependencies 

that hold in a database, a problem useful in database 

design or query processing [MR92b, MR92a, KM95]. 

Another example of the utility of the independent 

‘For a relation over attributes R, the keys are the minimal 

subsets X of R such that no two rows in the relation agree 

on all attributes in X. 
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set problem arises in the context of reasoning. Given a 

knowledge base that can be represented as a conjunc- 

tion of propositional Horn clauses (with empty conse- 

quents), a solution to the independent set problem could 

be used to generate a collection of characteristic mod- 

els [KKS93, KR94] to use in various reasoning tasks (for 

example, determining whether a query is entailed by the 

knowledge base) [Kha95, KMR95]. 

The independent set problem is also related to the 

problem of determining if a version space has converged. 

For a concept class C the version space [Mit82] induced 

by positives P and negatives N is the set of concepts 

in C consistent with P and N. A version space V has 

converged if IV] = 1. A solution to the CNF to DNF 

translation problem could be used to determine if a ver- 

sion space has converged for the class of monotone func- 

tions [HMP97] (the idea being to translate examples in 

P into terms in a DNF formula and examples in N into 

clauses in a CNF formula). 

Finally, we note that the independent set problem 

is an example of knowledge compilation. The compila- 

tion process is often used to translate one representation 

of knowledge into another so as to make it easier to use 

that knowledge. One example, discussed in [SK91], con- 

siders compiling arbitrary (non-monotone) CNF formu- 

las into Horn lower and upper bounds in order to make 

answering entailment questions easier. The independent 

set problem is also a form of compilation since we are 

given a CNF (hypergraph) and wish to compile that 

information into a DNF (all the maximal independent 

sets). Our membership query result strengthens this 

statement since it implies that regardless of what form 

the function is provided to us (e.g., it could be an ar- 

bitrary Boolean formula) as long as that representation 

is polynomially evaluable (and, of course, corresponds 

to a monotone read-k CNF), we can efficiently compile 

the function into its DNF form. 

A more thorough review of applications of the max- 

imal independent set problem can be found in [EG95]. 

Related Work: To date, however, there is no known 

polynomial-time algorithm for the general independent 

set problem. Some work has investigated relationships 

between the maximal independent set problem and other 

open problems [BI95, EG95]. Others have given super- 

polynomial time algorithms for the problem. For exam- 

ple, Bshouty et al. [BCGf96] have shown that with an 

NP-oracle and membership queries, both the minterms 

and maxterms (that is, all the maximal independent sets 

and the hypergraph itself) can be efficiently enumer- 

ated. More recently, Fredman and Khachiyan [FK96] 

have given the fastest known algorithm for the prob- 

lem: Their algorithm runs in time O(mO(l”sml) (where 

m is the sum of the size of the hypergraph H (CNF), 

and the size of all the maximal independent sets of H 

(DNF)), hence providing evidence that the problem is 

unlikely to be NP-hard. 

Since an efficient solution to the general problem is 

not known, some research has focussed on determining 

which natural subcases of the general problem have effi- 

cient solutions. For example, in the event that each edge 

consists of two vertices (i.e., when the hypergraph is a 

graph) efficent solutions have been given under various 

definitions of polynomial time [JPYBB, LLKBO, TIAS77, 

KW85]. Extending this work, when the cardinality of 

each edge of the hypergraph is bounded by some con- 

stant or when the hypergraph is acylic, there is a known 

efficient solution to the independent set problem [EG95]. 

The restriction considered in this paper is based on 

limiting the degree of each vertex in the hypergraph - 

the maximum number of edges in which any vertex is 

contained. In Boolean terminology, the restriction lim- 

its the number of “reads” (occurrences of a variable) in a 

formula, a restriction that has been well-investigated in 

the learning-theory literature [AHK93, PR94b, PR94a, 

BHH95a, BHH95b, ABK+97, AHHPar]. Previous work 

has shown that it is possible to find the minterms of 

a read-once (A, V) formula under a stronger notion of 

polynomial time [AHK93, GK95]. In the hypergraph 

setting, this restriction trivializes to enumerating all 

maximal independent sets of degree-one (read-once) hy- 

pergraphs. We show here that if the degree of each ver- 

tex is bounded by some constant that there is an efficient 

solution to the independent set problem. In Boolean 

terminology, we show that if each variable appears in at 

most k clauses (i.e., the CNF formula is read-k), then 

there exists an efficient algorithm to generate the DNF 

formula, using membership queries alone. 

Overview: The techniques we use are based on an in- 

ductive characterization of the problem - the question 

being, when can the minterms of a subset of the clauses 

of a monotone CNF formula be used to compute all 

of the minterms of the entire CNF formula? (Alterna- 

tively, when can the maximal independent sets of a sub- 

set, E’, of the edges of a hypergraph be used to compute 

the maximal independent sets of a larger subset of edges, 

E” > E’?) In S ec t ion 3 we begin with a simple yet inef- 

ficient algorithm for the general problem based on such 

an inductive characterization. The algorithm is not nec- 

essarily efficient since no order is imposed on how larger 

and larger subsets of the clauses of the CNF formula are 

considered. We demonstrate that a possible source of 

inefficiency is when minterms of a subset of the clauses 

of the CNF formula do not correspond to minterms of 

the entire CNF formula. When we do impose an order, 

by considering minterms over larger and larger subsets 

of the variables, we can (in Section 4) show that there is 

an efficient algorithm for finding a monotone DNF rep- 

resentation of a given monotone read-k CNF formula - 

in other words, that there is an efficient solution to the 

bounded degree hypergraph independent set problem. 

We generalize the result in Section 5 by giving an al- 

gorithm that uses membership queries alone to find the 

DNF formula. 

Our results demonstrate a well-known phenomenon 

in learning theory: relaxing the hypothesis class often 

makes learning easier. An example of this fact is given 

in [PV88], where it is observed that k-term DNF formu- 

las cannot be properly PAC learned, but can be PAC 

learned in terms of k-CNF expressions. Another exam- 

ple of this fact is in learning the class of DNF formulas. 
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While there is currently no known polynomial-time al- 

gorithm for this concept class, Bshouty shows that any 

Boolean function can be learned with equivalence and 

membership queries, using the hypothesis class of dis- 

junctions of unate CNF formulas, in time polynomial in 

the sum of the sizes of the DNF and CNF representa- 

tions [Bsh95]. 

For the class of read-k CNF formulas, Angluin shows 

that finding a description of the read-k CNF formula 

with membership queries only requires at least 2”f2 - 1 

membership queries (where n is the number of vari- 

ables) [Anggg]. (Actually, she gives the equivalent dual 

result for DNF formulas.) We show here that when 

we expand the hypothesis space to arbitrary monotone 

DNF formulas, there is an efficient algorithm for learn- 

ing the class of read-k CNF formulas with a number of 

membership queries polynomial in the DNF size and n, 

for k some fixed constant. 

2 PRELIMINARIES 

Let V = {~,...,v~ } be a collection of Boolean vari- 

ables. A Boolean function f(vi, . . , v,) is a function 

f : {O,l}” -+ {O,l}. A ( monotone, since no negations 

are allowed) term t is the function represented by a con- 

junction (AND) t = o,, An,, A. . . AV,~ of variables. The 

term t evaluates to 1 if and only if each of the variables 

v11, vz,, . . ’ > 211.. have value 1. Similarly, a (monotone) 

clause c is the function represented by a disjunction 

(OR) c = Vj, V Vj2 V ’ ’ ’ V vj,,, of variables. The clause c 

evaluates to 1 if and only if at least one of the variables 

V 31, IJ~, , . . 7 vj,, has value 1. 

A monotone DNF expression is a disjunction (OR) 

of monotone terms tl V t2 V- . . V t,, and evaluates to 1 iff 

at least one of the terms has value 1. If T = (ti, . . . , to} 

is a set of terms, then VT is the DNF expression ti V 

tz v . v t,. Similarly, a monotone CNF expression is a 

conjunction of monotone clauses cl A cz A . .. A cb, and 

evaluates to 1 iff each of the clauses has value 1. If 

C={q,... , cb} is a set of clauses then AC is the CNF 

expression cl A c2 A A cb. 

A term t implies a function f iff for any boolean 

assignment v’to the variables of V, (t(G) = 1) -+ (f(q = 

1). Any such term is called an implicant. A prime 

implicant, or minterm, of f, is an implicant t such that 

no implicant of f can be formed by removing one or 

more variables from the conjunction t. It is easily shown 

and well-known that every monotone Boolean function 

has a unique monotone DNF expression, formed by the 

disjunction of all of its minterms. We call such a DNF 

expression reduced. 

A hypergraph H is a pair H = (E,V), where V is 

a finite set of vertices, and E C 2’ is a set of subsets 

(“hyperedges”) of V. A subset I & V is independent in 

H if for every e E E, e - I # 9. An independent set I is 

maximal if no superset of 1 is also an independent set 

of H. 

A hitting set (or vertex cover) of a hypergraph H 

is a subset of vertices V’ C V such that for each edge 

e E E, ]e n I/‘( 2 1. A hitting set S is minimal if no 

proper subset of S is also a hitting set of H. 

It is well known and easily observed that I is a maxi- 

mal independent set of H if and only if V-I is a minimal 

hitting set of H. Consequently, the problem of gener- 

ating all maximal independent sets trivially reduces to 

that of generating all minimal hitting sets. (In the liter- 

ature, generating all minimal hitting sets is also referred 

to as the hypergraph transversal problem [EGSS].) 

It is now easy to see that this problem is also equiv- 

alent to the following problem: Given a monotone CNF 

expression C, find an equivalent (reduced) monotone 

DNF D. To see this, let H = (V,E) be a hypergraph. 

We form a CNF expression C whose variables are named 

by the vertices of V. For each edge e = {vi,. . . , v,} E E, 
define the clause c, = (vi VQV.. .Vv,). Let C = A{ce : 

e E E}. It is now easily argued that {v,, , , ~1~. } is a 

minimal hitting set of H if and only if vJ1 A . . . A II,. 

is a minterm in the DNF representation of C. Conse- 

quently, the problem of generating all minimal hitting 

sets of H (and, as above, the problem of generating 

all maximal independent sets of H) reduces to that of 

generating all minterms of the DNF for C. Since C is 

monotone, generating all the minterms of the DNF for 

C is in turn equivalent to finding the unique reduced 

DNF expression equivalent to C. 

3 A FIRST STAB 

Throughout the rest of the paper, we will be manipulat- 

ing DNF/CNF expressions. We assume that any such 

expression is monotone, and that it has been put into 

reduced (minimal) form. 

We first give a simple inefficient algorithm for the 

general case which motivates the efficient solution to 

the bounded degree (read-k) case. If C = cr A. . AC, is 

a monotone CNF formula (for which we wish to find an 

equivalent DNF representation), we construct the DNF 

for C inductively by constructing the DNF expressions 

for cl A. . . A ci for each i 5 m. Assume inductively that 

g = t1 v ... v t, is the (unique, since C is monotone) 

DNF for cl A . . . A c,. Then the DNF formula for cl A 

. . . A Ci A ci+i is equivalent to 

g A ci+1 = (t* v ‘. . v ts) A cl+1 

= (tl A cl+1 ) V . V (ts A &+I) 

The above is not quite in DNF form since each dis- 

junct is not necessarily a term. Each disjunct can be 

translated to a collection of terms by a simple applica- 

tion of the distributive property. We define the func- 

tion “term-and-clause” that takes a term t and a clause 

c = (y1v. ’ ‘vy,,,) as input and returns their conjunction 

as follows: term-and-clause( t , c) = 

{ 

t if t and c share a variable 

(t A yl) V . . . V (t A y,,,) otherwise 

It is easy to see that the function term-and-clause re- 

turns the disjunction of its arguments: Independent of 

whether t and c share a variable, their conjunction, by 

the distributive property, is (t A ye) V . . . V (t A ym). In 

the special case that t and c do share a variable, say 

yl, the conjunction t A yi = t. Further, in this case t 
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would subsume the remaining terms, and consequently 

the disjunction would be equivalent to t. 

We also find useful the function “dnf-and-clause” 

that simply takes a (reduced) DNF formula and clause 

as input, and returns the (reduced) result of calling 

term-and-clause with each term of the DNF. Thus, 

dnf-and-clause(D, c) = V term-and-clause(t, c). 

tell 

We now have an algorithm to construct a DNF for- 

mula equivalent to the CNF formula cl A. . *AC~+I, given 

a DNF formula tl V.. -Vt, for cl A. . .Aci. We simply call 

dnf-and-clause on the input (tl V . . . V t,, Ci+r )a Doing 

the above for each i yields our “first stab” algorithm at 

translating a CNF formula to a DNF formula: 

first-stab(C = ci A . . . A c,) 

DcTrue 

for i:= 1 to m 

D t dnf-and-clause(D, ci) 

output D 

Observe that the order in which clauses are pro- 

cessed is irrelevant to first-stab’s correctness, since af- 

ter the last clause is processed, the DNF D produced is 

equivalent to the original CNF C. But, first-stab is not 

necessarily efficient: Let 

C= A (ZiVyj). 

i,jE{l,...,n} 

Suppose the order in which the clauses are considered is 

(Xi V f./i), i = 1,. . . , n followed by the remaining clauses 

(in any order). Then, after the first n clauses, the DNF 

formula D obtained by first-stab is exactly: 

D = v (bl A . *. A b,,) 

b;=z. or yi 

There are 2” terms in D, yet the DNF formula equiva- 

lent to C has only 2 terms, namely, 

(x1 A ... A 2,) V (~1 A . . . A yn). 

In summary, first-stab works correctly regardless of 

the ordering of clauses, but is not guaranteed to do so 

in polynomial total time. 

4 THE BOUNDED DEGREE CASE 

We now show how in some circumstances we can im- 

pose an order on the clauses so that the sizes of the 

intermediate DNFs remain small. The result implies a 

polynomial-time algorithm for the bounded degree hy- 

pergraph independent set problem. 

Let C be a monotone CNF formula over variables 

{Xl, . . . , t,}, and for each i between 0 and n define 

Ci(zl,** . y 2,) = C(Xl,. s. y Xi, 1,. . . , 1). 

Thus, C; is just C with all variables indexed greater 

than i hardwired, or projected, to 1. Note that Cs is 

the constant 1 function, represented by the empty set 

of clauses, and that C,, = C. It is readily apparent 

that the CNF Ci is obtained from C by removing any 

clause containing a variable in {zi+r , . . . , x,}. (If no 

clauses remain then Ci is equivalent to the constant 1 

function.) Analogously, if Di is the DNF for Ci, then 

Di is obtained from the DNF D for C by removing each 

of the variables {zi+l, . . . , x,} from any term in which 

it participates. (If an empty term results, the DNF 

becomes the constant 1 function.) We thus have the 

following 

Observation 1 If C, D, Ci, and Di are defined as above, 

then for 0 5 i 5 n, ICil 5 (Cl and [Dil 2 IDI. 

The example in Section 3 demonstrated that if the 

clauses of C are processed by dnf-and-clause in a “bad” 

order, an intermediate CNF C’, containing a subset of 

clauses of C, might have a DNF, D’ that is exponen- 

tially larger than the size of the actual DNF D for C. 

Observation 1 points out that if C’ is in fact a projec- 

tion of C, then the size of D’ will be bounded by the 

size of D. 

By a safe stage of first-stab, we mean a stage where 

the terms that have been passed to dnf-and-clause so 

far correspond to a projection of C. As long as we can 

ensure that the time spent by the algorithm in between 

these safe stages is small, we can guarantee that there is 

not enough opportunity for the algorithm to construct 

a DNF that is too much larger than the actual DNF D. 

We can employ these observations to our advantage 

in the case of read-k CNF formulas. We order the 

clauses in such a way so that after at most every kth 

clause passed to dnf-and-clause, the intermediate for- 

mula C’ corresponds to some projection Ci of C, hence 

is a safe stage. In between safe stages, the intermediate 

formula does not have a chance to grow by a factor of 

more than C(n”), where n is the number of variables, 

and k is constant. 

Algorithm read-k-cnf-to-dnf (Figure 1) begins with 

the projection Cs that sets all variables to 1. The al- 

gorithm then iteratively “unprojects” each variable zi 

such that at most k clauses of C that had been projected 

away because of xi, now “reappear”. We show that Al- 

gorithm read-k-cnf-todnf works correctly in polynomial 

total time. 

Theorem 2 Let C be a read-k monotone CNF formula 

over n variabIes. Then read-k-cnf-to-dnf(C) outputs the 

DNF formula D equivalent to C in time O(lDl . nk+‘). 

Proof: We first argue that the algorithm halts with 

the correct output and then discuss the algorithm’s ef- 

ficiency. Let Pi be the set of clauses of Ci that are not 

contained in Ci-1. Step 3 is executed by read-k-cnf-to- 

dnf for each value of i between 1 and n. During such 

a step, for each clause c in Pi, the statement G t dnf- 

and-clause(G, c) is executed. Since the clauses of C are 

exactly the disjoint union PI U 9 U . . . U P,,, it follows 

from the discussion in Section 3 and the correctness of 

first-stab that the algorithm processes all clauses, and 

outputs the DNF equivalent to C. 

To see that the algorithm runs within the stated 

time bound, first note that for each k, 1 5 k 5 n, 
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read-k-cnf-to-dnf(f) 

Input: read-k CNF monotone formula C 

Output: DNF formula D equivalent to C 

1. G t True 

2. for i = 1 to n 

3. for each clause c of C, that is not in Ci-1 

4. G t dnf-and-clause(G, c) 

5. return G 

Figure 1: An algorithm to obtain a DNF representation of a read-k CNF formula 

after the iteration of the for loop of step 2 with i = 

k, the algorithm is at a safe stage, because the DNF 

returned is the projection Di. We need to show that the 

formula does not grow too large in between safe stages. 

Since C (hence Ci) is read-k, during any execution of 

the for loop in step 3 dnf-and-clause is called at most 

k times, because there are at most k terms that are in 

Pi. Moreover, after each call of dnf-and-clause in step 4, 

the growth of the intermediate DNF G is bounded by 

a factor of n, since it is the result of multiplying G by 

a clause of size at most n. Consequently, after calling 

dnf-and-clause (at most) k times (i.e., until the next safe 

stage is reached), the size of each intermediate formula 

G between safe stages can grow to at most 1Dl.n”. Once 

the next safe stage is reached, the size of G is guaranteed 

again to be at most 1 DI. Since there are n iterations of 

the loop in step 2, and for each iteration of this loop, 

at most k calls are made to dnf-and-clause on a DNF 

formula of size at most 

is bounded by O(lDl . n i, 
DI . nk, the total running time 

+l). 0 

Observe that a dual statement can be made for read- 

k DNF formulas - namely, that there is a polynomial 

total time algorithm that converts read-k DNF formulas 

into their corresponding CNF formulas. 

In addition, it is possible to show that if the CNF 

formula C has the property that each variable occurs 

at most k times or at least (Cl - j times, then we can 

efficiently find a DNF representation of C. For example, 

a formula where each variable appears in at most one 

clause or all but one clause is: 

(The variables 21, x2,23, x4 appear in at most one clause 

and the variables x5,%6 appear in all but one clause.) 

To see how to obtain the DNF for such a formula, 

note that the clauses of C can be partitioned into those 

that consist exclusively of variables that occur in at 

least (Cl - j clauses (call these Tc-~) and those that 

do not. If we unproject all the variables that occur in 

all but j clauses then we obtain a subset of the clauses 

in the CNF formula C, namely Tc-J. For any subset 

of the clauses of C, each variable appears in all but j 

clauses. Thus, for Tc-j, each variable appears in all 

but j clauses. Note that any minterm of a CNF for- 

mula where each variable occurs in all but j clauses has 

length at most (j + 1) - if x occurs in all but j clauses, 

including x in a term means that all but j clauses are 

hit, and there are at most j ways to hit these remaining 

clauses. Since Tc-, has a DNF representation where 

each term has length at most (j + l), we can enumerate 

all such possible terms (there are O(nj+2) such terms) 

and eliminate those that are not consistent. Using this 

DNF formula as a starting point for algorithm read-k- 

cnf-to-dnf in Figure 1, we can iteratively unproject the 

remaining read-k variables and call dnf-and-clause for 

each new term. 

Claim 3 Let C be a monotone CNF formula where each 

variable either appears in at most k clauses or all but 

j clauses. There exists an algorithm that finds a DNF 

representation of C in time O(~ZJ+~ + )g) . nkc’). 

Finally, it is possible to show that the claim can 

be extended to the class of unate CNF formulas where 

each variable appears in at most k clauses or all but j 

clauses. (A formula is unate if each variable does not 

appear both negated and unnegated.) 

5 MEMBERSHIP QUERIES 

We now consider a more general version of the problem 

where the algorithm has access to a membership oracle 

only instead of the actual read-k CNF formula. Before 

giving an algorithm that uses membership queries ex- 

clusively, we present a few alternative approaches that 

assume we have C. These approaches shed light on how 

C can be replaced with a membership oracle. 

The algorithm read-k-cnf-to-dnf constructs the DNF 

Di from Di-1 by iteratively processing clauses in Pi 

(where, as in the proof of Theorem 2, Pi is the collection 

of clauses in C, that are not in Ci-1). An alternative 

is to process the clauses in Pi all at once to first obtain 

a DNF for the conjunction of clauses of P,, which we 

denote by DNF(APi), and then conjoin DNF(r\P,) to 

Di-1. Stated more precisely, D, is characterized by: 

D, = DNFIDipl A DNF(r\P,)] 

The first two methods of computing D, are, in fact, 

based on finding DNF(/\P,) in a different manner. 

Exhaustive Method: The obvious way to find the 

formula DNF(APi) is to simply multiply out the clauses 

in Pi. The critical observation here is that lP,l 5 k 

since C is read-k. Consequently, repeatedly distributing 
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clauses over clauses (each of length < n) requires time 

O(nk). Conjoining D;-l (whose size & bounded by IDI) 

with a formula of length nk requires time O(jDl . n”). 

After eliminating redundant terms, we know that ) DiJ 5 

JDJ, and we are once again at a safe stage, prepared to 

compute Ditl. 

k-DNF Method: Since IPil 5 k, it is easy to see that 

each term in DNF(r\Pi) has length at most k. Thus, Pi 

has a /c-DNF representation. DNF(APi) is easily com- 

puted by the following characterization: 

DNF@P;) = v{t : ItI 2 k and t + Pi} 

The remainder of the computation of Di proceeds in a 

manner similar to the Exhaustive Method. 

Projection Method: Since each term in Di is a con- 

junction of a term in Di-1 and some term of length at 

most k, every implicant u of Di (equivalently, of Ci) is 

in the set 

U = {S A t : s E Di-1, ItI 5 k,t c (~1,. . . ,xc~}}. 

Thus, we can enumerate every such u E U (there are 

only O((D( . nk) such terms) and include u in Di if and 

only if u implies Ci. If C is available, we can determine 

Ci, and check whether or not u implies Ci immediately. 

Up to this point we have assumed that the CNF C is 

provided to the algorithm. We turn now to the question 

of how C can be replaced with a membership oracle. 

Actually, we begin by showing how we can replace C 

with a membership oracle for Ci. Using the Projection 

Method, we can test whether or not u implies Ci by 

simply testing whether or not the characteristic vector 

xu of u is a positive example of Ci. (The characteristic 

vector of a term t contains a 1 in position i if Zi appears 

in t and a 0 in position i otherwise.) While a mem- 

bership oracle for Ci is not available, we can simulate 

such an oracle with a membership oracle for C, since by 

definition 

C,(X) =C(Z1,...,2i,l,...,l). 

Summarizing, the algorithm proceeds as follows: For 

each projection Ci for i ranging from 0 to n, using the 

DNF we have computed from Di-1, we test if u -+ Ci 

where u is the conjunction of some term from Di-1 and a 

term of length at most k over the variables {xl,. . . , Zi}. 

We determine if u is an implicant of Ci by posing a 

membership query on the example y, where the jth bit 

of y is (x,,)j if j 5 i and 1 otherwise. We keep the term 

u in Di if and only if the membership query returns true. 

The algorithm is given in Figure 2. Thus, we have: 

Theorem 4 The class of monotone functions f express- 

ible as read-k CNF formulas is learnable with member- 

ship queries aione in time O(JDNF(f)J .r~~+~). 
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