
Generating all Maximal Independent Sets

of Bounded-degree Hypergraphs

Nina Mishra

Computer Science Department

University of Illinois at Urbana-Champaign

Urbana, IL 61801

nmishra@uiuc.edu

Abstract

We show that any monotone function with a

read-k CNF representation can be learned in

terms of its DNF representation with member-

ship queries alone in time polynomial in the

DNF size and n (the number of variables) as-

suming k is some fixed constant. The problem

is motivated by the well-studied open problem

of enumerating all maximal independent sets

of a given hypergraph. Our algorithm gives a

solution for the bounded degree case and works

even if the hypergraph is not input, but rather

only queries are available as to which sets are

independent.

1 INTRODUCTION

A hypergraph H is a collection of subsets (edges) E of a

finite set of vertices V. An independent set of a hyper-

graph is a subset of vertices, V’ c V such that no edge in

E is contained in V’. An independent set I is maximal

if no superset I’ of I is also an independent set. Given a

hypergraph H, the hypergraph independent set problem

is that of enumerating all maximal independent sets of

H. Note that while finding the maximum cardinality

independent set is NP-hard [GJ79], finding a maximal

independent set I is easy: iteratively add vertices to I

while maintaining the property that I is an independent

set. We consider here the problem of enumerating all

maximal independent sets. It can be shown (see Sec-

tion 2) that the hypergraph independent set problem

is equivalent to the following: Given a monotone CNF

formula f find a (reduced) monotone DNF formula g

such that g is equivalent to f.

A more demanding problem is the setting in which

the CNF description (equivalently, the hypergraph) is

not explicitly given, but rather is hidden inside a “black

box” to which only membership queries may be nosed.

Leonard Pitt

Computer Science Department

University of Illinois at Urbana-Champaign

Urbana, IL 61801

pittQcs.uiuc.edu

A membership query for a Boolean function f is a vector

z E (0, l)“, and is answered “yes” if f(z) = 1, and

“no” otherwise. A membership query for a hypergraph

H = (V, E) is a subset S C_ V, and is answered “yes” if

S is an independent set, and “no” otherwise.

Membership queries have been widely studied in the

context of learning. In Angluin’s seminal paper (Ang88],

information theoretic barriers are given showing that

there is no algorithm for learning monotone DNF (or

CNF) formulas from membership queries alone, in time

polynomial in the size of the target DNF (or CNF) for-

mula. However, these lower bounds do not apply here,

as the learning problem derived from the hypergraph

independent set problem is that of finding a monotone

DNF formula for a monotone function (available in CNF

form, or via membership queries only) in time polyno-

mial in the sum of the CNF and DNF sizes. Put another

way, the problem to be solved is that of exhibiting a

polynomial total time algorithm for finding a monotone

DNF formula. (A polynomial total time algorithm is one

that runs in time polynomial in the sum of the lengths of

the input and output. There are other notions of poly-

nomial time. See (JPY88] for a discussion.) We often

omit the adjective “total” with the understanding that

all of our algorithms run in polynomial total time. Ap-

plications of the hypergraph independent set problem

abound, hence a general solution to the problem has

been sought. After describing some of the applications

and some recent results, we present a polynomial-time

algorithm for the restricted case of bounded degree hy-

pergraphs, using membership queries alone.

Motivation: In the context of data mining, an algo-

rithm for the independent set problem could be used to

find all the keys’ in a relation. In addition to providing

high-level information about a relation, the keys can be

used for verifying that a collection of mined rules are in

fact all the interesting rules in a relation [MT96]. Simi-

larly, key enumeration is related to the problem of find-

ing a small cover for the set of functional dependencies

that hold in a database, a problem useful in database

design or query processing [MR92b, MR92a, KM95].

Another example of the utility of the independent

‘For a relation over attributes R, the keys are the minimal

subsets X of R such that no two rows in the relation agree

on all attributes in X.

211

set problem arises in the context of reasoning. Given a

knowledge base that can be represented as a conjunc-

tion of propositional Horn clauses (with empty conse-

quents), a solution to the independent set problem could

be used to generate a collection of characteristic mod-

els [KKS93, KR94] to use in various reasoning tasks (for

example, determining whether a query is entailed by the

knowledge base) [Kha95, KMR95].

The independent set problem is also related to the

problem of determining if a version space has converged.

For a concept class C the version space [Mit82] induced

by positives P and negatives N is the set of concepts

in C consistent with P and N. A version space V has

converged if IV] = 1. A solution to the CNF to DNF

translation problem could be used to determine if a ver-

sion space has converged for the class of monotone func-

tions [HMP97] (the idea being to translate examples in

P into terms in a DNF formula and examples in N into

clauses in a CNF formula).

Finally, we note that the independent set problem

is an example of knowledge compilation. The compila-

tion process is often used to translate one representation

of knowledge into another so as to make it easier to use

that knowledge. One example, discussed in [SK91], con-

siders compiling arbitrary (non-monotone) CNF formu-

las into Horn lower and upper bounds in order to make

answering entailment questions easier. The independent

set problem is also a form of compilation since we are

given a CNF (hypergraph) and wish to compile that

information into a DNF (all the maximal independent

sets). Our membership query result strengthens this

statement since it implies that regardless of what form

the function is provided to us (e.g., it could be an ar-

bitrary Boolean formula) as long as that representation

is polynomially evaluable (and, of course, corresponds

to a monotone read-k CNF), we can efficiently compile

the function into its DNF form.

A more thorough review of applications of the max-

imal independent set problem can be found in [EG95].

Related Work: To date, however, there is no known

polynomial-time algorithm for the general independent

set problem. Some work has investigated relationships

between the maximal independent set problem and other

open problems [BI95, EG95]. Others have given super-

polynomial time algorithms for the problem. For exam-

ple, Bshouty et al. [BCGf96] have shown that with an

NP-oracle and membership queries, both the minterms

and maxterms (that is, all the maximal independent sets

and the hypergraph itself) can be efficiently enumer-

ated. More recently, Fredman and Khachiyan [FK96]

have given the fastest known algorithm for the prob-

lem: Their algorithm runs in time O(mO(l”sml) (where

m is the sum of the size of the hypergraph H (CNF),

and the size of all the maximal independent sets of H

(DNF)), hence providing evidence that the problem is

unlikely to be NP-hard.

Since an efficient solution to the general problem is

not known, some research has focussed on determining

which natural subcases of the general problem have effi-

cient solutions. For example, in the event that each edge

consists of two vertices (i.e., when the hypergraph is a

graph) efficent solutions have been given under various

definitions of polynomial time [JPYBB, LLKBO, TIAS77,

KW85]. Extending this work, when the cardinality of

each edge of the hypergraph is bounded by some con-

stant or when the hypergraph is acylic, there is a known

efficient solution to the independent set problem [EG95].

The restriction considered in this paper is based on

limiting the degree of each vertex in the hypergraph -

the maximum number of edges in which any vertex is

contained. In Boolean terminology, the restriction lim-

its the number of “reads” (occurrences of a variable) in a

formula, a restriction that has been well-investigated in

the learning-theory literature [AHK93, PR94b, PR94a,

BHH95a, BHH95b, ABK+97, AHHPar]. Previous work

has shown that it is possible to find the minterms of

a read-once (A, V) formula under a stronger notion of

polynomial time [AHK93, GK95]. In the hypergraph

setting, this restriction trivializes to enumerating all

maximal independent sets of degree-one (read-once) hy-

pergraphs. We show here that if the degree of each ver-

tex is bounded by some constant that there is an efficient

solution to the independent set problem. In Boolean

terminology, we show that if each variable appears in at

most k clauses (i.e., the CNF formula is read-k), then

there exists an efficient algorithm to generate the DNF

formula, using membership queries alone.

Overview: The techniques we use are based on an in-

ductive characterization of the problem - the question

being, when can the minterms of a subset of the clauses

of a monotone CNF formula be used to compute all

of the minterms of the entire CNF formula? (Alterna-

tively, when can the maximal independent sets of a sub-

set, E’, of the edges of a hypergraph be used to compute

the maximal independent sets of a larger subset of edges,

E” > E’?) In S ec t ion 3 we begin with a simple yet inef-

ficient algorithm for the general problem based on such

an inductive characterization. The algorithm is not nec-

essarily efficient since no order is imposed on how larger

and larger subsets of the clauses of the CNF formula are

considered. We demonstrate that a possible source of

inefficiency is when minterms of a subset of the clauses

of the CNF formula do not correspond to minterms of

the entire CNF formula. When we do impose an order,

by considering minterms over larger and larger subsets

of the variables, we can (in Section 4) show that there is

an efficient algorithm for finding a monotone DNF rep-

resentation of a given monotone read-k CNF formula -

in other words, that there is an efficient solution to the

bounded degree hypergraph independent set problem.

We generalize the result in Section 5 by giving an al-

gorithm that uses membership queries alone to find the

DNF formula.

Our results demonstrate a well-known phenomenon

in learning theory: relaxing the hypothesis class often

makes learning easier. An example of this fact is given

in [PV88], where it is observed that k-term DNF formu-

las cannot be properly PAC learned, but can be PAC

learned in terms of k-CNF expressions. Another exam-

ple of this fact is in learning the class of DNF formulas.

212

While there is currently no known polynomial-time al-

gorithm for this concept class, Bshouty shows that any

Boolean function can be learned with equivalence and

membership queries, using the hypothesis class of dis-

junctions of unate CNF formulas, in time polynomial in

the sum of the sizes of the DNF and CNF representa-

tions [Bsh95].

For the class of read-k CNF formulas, Angluin shows

that finding a description of the read-k CNF formula

with membership queries only requires at least 2”f2 - 1

membership queries (where n is the number of vari-

ables) [Anggg]. (Actually, she gives the equivalent dual

result for DNF formulas.) We show here that when

we expand the hypothesis space to arbitrary monotone

DNF formulas, there is an efficient algorithm for learn-

ing the class of read-k CNF formulas with a number of

membership queries polynomial in the DNF size and n,

for k some fixed constant.

2 PRELIMINARIES

Let V = {~,...,v~ } be a collection of Boolean vari-

ables. A Boolean function f(vi, . . , v,) is a function

f : {O,l}” -+ {O,l}. A (monotone, since no negations

are allowed) term t is the function represented by a con-

junction (AND) t = o,, An,, A. . . AV,~ of variables. The

term t evaluates to 1 if and only if each of the variables

v11, vz,, . . ’ > 211.. have value 1. Similarly, a (monotone)

clause c is the function represented by a disjunction

(OR) c = Vj, V Vj2 V ’ ’ ’ V vj,,, of variables. The clause c

evaluates to 1 if and only if at least one of the variables

V 31, IJ~, , . . 7 vj,, has value 1.

A monotone DNF expression is a disjunction (OR)

of monotone terms tl V t2 V- . . V t,, and evaluates to 1 iff

at least one of the terms has value 1. If T = (ti, . . . , to}

is a set of terms, then VT is the DNF expression ti V

tz v . v t,. Similarly, a monotone CNF expression is a

conjunction of monotone clauses cl A cz A . .. A cb, and

evaluates to 1 iff each of the clauses has value 1. If

C={q,... , cb} is a set of clauses then AC is the CNF

expression cl A c2 A A cb.

A term t implies a function f iff for any boolean

assignment v’to the variables of V, (t(G) = 1) -+ (f(q =

1). Any such term is called an implicant. A prime

implicant, or minterm, of f, is an implicant t such that

no implicant of f can be formed by removing one or

more variables from the conjunction t. It is easily shown

and well-known that every monotone Boolean function

has a unique monotone DNF expression, formed by the

disjunction of all of its minterms. We call such a DNF

expression reduced.

A hypergraph H is a pair H = (E,V), where V is

a finite set of vertices, and E C 2’ is a set of subsets

(“hyperedges”) of V. A subset I & V is independent in

H if for every e E E, e - I # 9. An independent set I is

maximal if no superset of 1 is also an independent set

of H.

A hitting set (or vertex cover) of a hypergraph H

is a subset of vertices V’ C V such that for each edge

e E E,]e n I/‘(2 1. A hitting set S is minimal if no

proper subset of S is also a hitting set of H.

It is well known and easily observed that I is a maxi-

mal independent set of H if and only if V-I is a minimal

hitting set of H. Consequently, the problem of gener-

ating all maximal independent sets trivially reduces to

that of generating all minimal hitting sets. (In the liter-

ature, generating all minimal hitting sets is also referred

to as the hypergraph transversal problem [EGSS].)

It is now easy to see that this problem is also equiv-

alent to the following problem: Given a monotone CNF

expression C, find an equivalent (reduced) monotone

DNF D. To see this, let H = (V,E) be a hypergraph.

We form a CNF expression C whose variables are named

by the vertices of V. For each edge e = {vi,. . . , v,} E E,
define the clause c, = (vi VQV.. .Vv,). Let C = A{ce :

e E E}. It is now easily argued that {v,, , , ~1~. } is a

minimal hitting set of H if and only if vJ1 A . . . A II,.

is a minterm in the DNF representation of C. Conse-

quently, the problem of generating all minimal hitting

sets of H (and, as above, the problem of generating

all maximal independent sets of H) reduces to that of

generating all minterms of the DNF for C. Since C is

monotone, generating all the minterms of the DNF for

C is in turn equivalent to finding the unique reduced

DNF expression equivalent to C.

3 A FIRST STAB

Throughout the rest of the paper, we will be manipulat-

ing DNF/CNF expressions. We assume that any such

expression is monotone, and that it has been put into

reduced (minimal) form.

We first give a simple inefficient algorithm for the

general case which motivates the efficient solution to

the bounded degree (read-k) case. If C = cr A. . AC, is

a monotone CNF formula (for which we wish to find an

equivalent DNF representation), we construct the DNF

for C inductively by constructing the DNF expressions

for cl A. . . A ci for each i 5 m. Assume inductively that

g = t1 v ... v t, is the (unique, since C is monotone)

DNF for cl A . . . A c,. Then the DNF formula for cl A

. . . A Ci A ci+i is equivalent to

g A ci+1 = (t* v ‘. . v ts) A cl+1

= (tl A cl+1) V . V (ts A &+I)

The above is not quite in DNF form since each dis-

junct is not necessarily a term. Each disjunct can be

translated to a collection of terms by a simple applica-

tion of the distributive property. We define the func-

tion “term-and-clause” that takes a term t and a clause

c = (y1v. ’ ‘vy,,,) as input and returns their conjunction

as follows: term-and-clause(t , c) =

{

t if t and c share a variable

(t A yl) V . . . V (t A y,,,) otherwise

It is easy to see that the function term-and-clause re-

turns the disjunction of its arguments: Independent of

whether t and c share a variable, their conjunction, by

the distributive property, is (t A ye) V . . . V (t A ym). In

the special case that t and c do share a variable, say

yl, the conjunction t A yi = t. Further, in this case t

213

would subsume the remaining terms, and consequently

the disjunction would be equivalent to t.

We also find useful the function “dnf-and-clause”

that simply takes a (reduced) DNF formula and clause

as input, and returns the (reduced) result of calling

term-and-clause with each term of the DNF. Thus,

dnf-and-clause(D, c) = V term-and-clause(t, c).

tell

We now have an algorithm to construct a DNF for-

mula equivalent to the CNF formula cl A. . *AC~+I, given

a DNF formula tl V.. -Vt, for cl A. . .Aci. We simply call

dnf-and-clause on the input (tl V . . . V t,, Ci+r)a Doing

the above for each i yields our “first stab” algorithm at

translating a CNF formula to a DNF formula:

first-stab(C = ci A . . . A c,)

DcTrue

for i:= 1 to m

D t dnf-and-clause(D, ci)

output D

Observe that the order in which clauses are pro-

cessed is irrelevant to first-stab’s correctness, since af-

ter the last clause is processed, the DNF D produced is

equivalent to the original CNF C. But, first-stab is not

necessarily efficient: Let

C= A (ZiVyj).

i,jE{l,...,n}

Suppose the order in which the clauses are considered is

(Xi V f./i), i = 1,. . . , n followed by the remaining clauses

(in any order). Then, after the first n clauses, the DNF

formula D obtained by first-stab is exactly:

D = v (bl A . *. A b,,)

b;=z. or yi

There are 2” terms in D, yet the DNF formula equiva-

lent to C has only 2 terms, namely,

(x1 A ... A 2,) V (~1 A . . . A yn).

In summary, first-stab works correctly regardless of

the ordering of clauses, but is not guaranteed to do so

in polynomial total time.

4 THE BOUNDED DEGREE CASE

We now show how in some circumstances we can im-

pose an order on the clauses so that the sizes of the

intermediate DNFs remain small. The result implies a

polynomial-time algorithm for the bounded degree hy-

pergraph independent set problem.

Let C be a monotone CNF formula over variables

{Xl, . . . , t,}, and for each i between 0 and n define

Ci(zl,** . y 2,) = C(Xl,. s. y Xi, 1,. . . , 1).

Thus, C; is just C with all variables indexed greater

than i hardwired, or projected, to 1. Note that Cs is

the constant 1 function, represented by the empty set

of clauses, and that C,, = C. It is readily apparent

that the CNF Ci is obtained from C by removing any

clause containing a variable in {zi+r , . . . , x,}. (If no

clauses remain then Ci is equivalent to the constant 1

function.) Analogously, if Di is the DNF for Ci, then

Di is obtained from the DNF D for C by removing each

of the variables {zi+l, . . . , x,} from any term in which

it participates. (If an empty term results, the DNF

becomes the constant 1 function.) We thus have the

following

Observation 1 If C, D, Ci, and Di are defined as above,

then for 0 5 i 5 n, ICil 5 (Cl and [Dil 2 IDI.

The example in Section 3 demonstrated that if the

clauses of C are processed by dnf-and-clause in a “bad”

order, an intermediate CNF C’, containing a subset of

clauses of C, might have a DNF, D’ that is exponen-

tially larger than the size of the actual DNF D for C.

Observation 1 points out that if C’ is in fact a projec-

tion of C, then the size of D’ will be bounded by the

size of D.

By a safe stage of first-stab, we mean a stage where

the terms that have been passed to dnf-and-clause so

far correspond to a projection of C. As long as we can

ensure that the time spent by the algorithm in between

these safe stages is small, we can guarantee that there is

not enough opportunity for the algorithm to construct

a DNF that is too much larger than the actual DNF D.

We can employ these observations to our advantage

in the case of read-k CNF formulas. We order the

clauses in such a way so that after at most every kth

clause passed to dnf-and-clause, the intermediate for-

mula C’ corresponds to some projection Ci of C, hence

is a safe stage. In between safe stages, the intermediate

formula does not have a chance to grow by a factor of

more than C(n”), where n is the number of variables,

and k is constant.

Algorithm read-k-cnf-to-dnf (Figure 1) begins with

the projection Cs that sets all variables to 1. The al-

gorithm then iteratively “unprojects” each variable zi

such that at most k clauses of C that had been projected

away because of xi, now “reappear”. We show that Al-

gorithm read-k-cnf-todnf works correctly in polynomial

total time.

Theorem 2 Let C be a read-k monotone CNF formula

over n variabIes. Then read-k-cnf-to-dnf(C) outputs the

DNF formula D equivalent to C in time O(lDl . nk+‘).

Proof: We first argue that the algorithm halts with

the correct output and then discuss the algorithm’s ef-

ficiency. Let Pi be the set of clauses of Ci that are not

contained in Ci-1. Step 3 is executed by read-k-cnf-to-

dnf for each value of i between 1 and n. During such

a step, for each clause c in Pi, the statement G t dnf-

and-clause(G, c) is executed. Since the clauses of C are

exactly the disjoint union PI U 9 U . . . U P,,, it follows

from the discussion in Section 3 and the correctness of

first-stab that the algorithm processes all clauses, and

outputs the DNF equivalent to C.

To see that the algorithm runs within the stated

time bound, first note that for each k, 1 5 k 5 n,

214

read-k-cnf-to-dnf(f)

Input: read-k CNF monotone formula C

Output: DNF formula D equivalent to C

1. G t True

2. for i = 1 to n

3. for each clause c of C, that is not in Ci-1

4. G t dnf-and-clause(G, c)

5. return G

Figure 1: An algorithm to obtain a DNF representation of a read-k CNF formula

after the iteration of the for loop of step 2 with i =

k, the algorithm is at a safe stage, because the DNF

returned is the projection Di. We need to show that the

formula does not grow too large in between safe stages.

Since C (hence Ci) is read-k, during any execution of

the for loop in step 3 dnf-and-clause is called at most

k times, because there are at most k terms that are in

Pi. Moreover, after each call of dnf-and-clause in step 4,

the growth of the intermediate DNF G is bounded by

a factor of n, since it is the result of multiplying G by

a clause of size at most n. Consequently, after calling

dnf-and-clause (at most) k times (i.e., until the next safe

stage is reached), the size of each intermediate formula

G between safe stages can grow to at most 1Dl.n”. Once

the next safe stage is reached, the size of G is guaranteed

again to be at most 1 DI. Since there are n iterations of

the loop in step 2, and for each iteration of this loop,

at most k calls are made to dnf-and-clause on a DNF

formula of size at most

is bounded by O(lDl . n i,
DI . nk, the total running time

+l). 0

Observe that a dual statement can be made for read-

k DNF formulas - namely, that there is a polynomial

total time algorithm that converts read-k DNF formulas

into their corresponding CNF formulas.

In addition, it is possible to show that if the CNF

formula C has the property that each variable occurs

at most k times or at least (Cl - j times, then we can

efficiently find a DNF representation of C. For example,

a formula where each variable appears in at most one

clause or all but one clause is:

(The variables 21, x2,23, x4 appear in at most one clause

and the variables x5,%6 appear in all but one clause.)

To see how to obtain the DNF for such a formula,

note that the clauses of C can be partitioned into those

that consist exclusively of variables that occur in at

least (Cl - j clauses (call these Tc-~) and those that

do not. If we unproject all the variables that occur in

all but j clauses then we obtain a subset of the clauses

in the CNF formula C, namely Tc-J. For any subset

of the clauses of C, each variable appears in all but j

clauses. Thus, for Tc-j, each variable appears in all

but j clauses. Note that any minterm of a CNF for-

mula where each variable occurs in all but j clauses has

length at most (j + 1) - if x occurs in all but j clauses,

including x in a term means that all but j clauses are

hit, and there are at most j ways to hit these remaining

clauses. Since Tc-, has a DNF representation where

each term has length at most (j + l), we can enumerate

all such possible terms (there are O(nj+2) such terms)

and eliminate those that are not consistent. Using this

DNF formula as a starting point for algorithm read-k-

cnf-to-dnf in Figure 1, we can iteratively unproject the

remaining read-k variables and call dnf-and-clause for

each new term.

Claim 3 Let C be a monotone CNF formula where each

variable either appears in at most k clauses or all but

j clauses. There exists an algorithm that finds a DNF

representation of C in time O(~ZJ+~ +)g) . nkc’).

Finally, it is possible to show that the claim can

be extended to the class of unate CNF formulas where

each variable appears in at most k clauses or all but j

clauses. (A formula is unate if each variable does not

appear both negated and unnegated.)

5 MEMBERSHIP QUERIES

We now consider a more general version of the problem

where the algorithm has access to a membership oracle

only instead of the actual read-k CNF formula. Before

giving an algorithm that uses membership queries ex-

clusively, we present a few alternative approaches that

assume we have C. These approaches shed light on how

C can be replaced with a membership oracle.

The algorithm read-k-cnf-to-dnf constructs the DNF

Di from Di-1 by iteratively processing clauses in Pi

(where, as in the proof of Theorem 2, Pi is the collection

of clauses in C, that are not in Ci-1). An alternative

is to process the clauses in Pi all at once to first obtain

a DNF for the conjunction of clauses of P,, which we

denote by DNF(APi), and then conjoin DNF(r\P,) to

Di-1. Stated more precisely, D, is characterized by:

D, = DNFIDipl A DNF(r\P,)]

The first two methods of computing D, are, in fact,

based on finding DNF(/\P,) in a different manner.

Exhaustive Method: The obvious way to find the

formula DNF(APi) is to simply multiply out the clauses

in Pi. The critical observation here is that lP,l 5 k

since C is read-k. Consequently, repeatedly distributing

215

clauses over clauses (each of length < n) requires time

O(nk). Conjoining D;-l (whose size & bounded by IDI)

with a formula of length nk requires time O(jDl . n”).

After eliminating redundant terms, we know that) DiJ 5

JDJ, and we are once again at a safe stage, prepared to

compute Ditl.

k-DNF Method: Since IPil 5 k, it is easy to see that

each term in DNF(r\Pi) has length at most k. Thus, Pi

has a /c-DNF representation. DNF(APi) is easily com-

puted by the following characterization:

DNF@P;) = v{t : ItI 2 k and t + Pi}

The remainder of the computation of Di proceeds in a

manner similar to the Exhaustive Method.

Projection Method: Since each term in Di is a con-

junction of a term in Di-1 and some term of length at

most k, every implicant u of Di (equivalently, of Ci) is

in the set

U = {S A t : s E Di-1, ItI 5 k,t c (~1,. . . ,xc~}}.

Thus, we can enumerate every such u E U (there are

only O((D(. nk) such terms) and include u in Di if and

only if u implies Ci. If C is available, we can determine

Ci, and check whether or not u implies Ci immediately.

Up to this point we have assumed that the CNF C is

provided to the algorithm. We turn now to the question

of how C can be replaced with a membership oracle.

Actually, we begin by showing how we can replace C

with a membership oracle for Ci. Using the Projection

Method, we can test whether or not u implies Ci by

simply testing whether or not the characteristic vector

xu of u is a positive example of Ci. (The characteristic

vector of a term t contains a 1 in position i if Zi appears

in t and a 0 in position i otherwise.) While a mem-

bership oracle for Ci is not available, we can simulate

such an oracle with a membership oracle for C, since by

definition

C,(X) =C(Z1,...,2i,l,...,l).

Summarizing, the algorithm proceeds as follows: For

each projection Ci for i ranging from 0 to n, using the

DNF we have computed from Di-1, we test if u -+ Ci

where u is the conjunction of some term from Di-1 and a

term of length at most k over the variables {xl,. . . , Zi}.

We determine if u is an implicant of Ci by posing a

membership query on the example y, where the jth bit

of y is (x,,)j if j 5 i and 1 otherwise. We keep the term

u in Di if and only if the membership query returns true.

The algorithm is given in Figure 2. Thus, we have:

Theorem 4 The class of monotone functions f express-

ible as read-k CNF formulas is learnable with member-

ship queries aione in time O(JDNF(f)J .r~~+~).

ACKNOWLEDGEMENTS

We would like to thank Dan Oblinger for entertaining

our numerous, random musings, and Heikki Mannila for

his encouragement and for his comments on an earlier

draft.

References

[ABK+97]

[AHHPar]

[AHK93]

bg881

[BCG+96]

[BHH95a]

[BHH95b]

[BI95]

[Bsh95]

[EG95]

[FK96]

[GJ79]

[GK95]

H. Aizenstein, A. Blum, R. Khardon,

E. Kushilevitz, L. Pitt, and D. Roth. On

learning read-ksatisfy-j dnf. To appear,

SIAM Journal on Computing. Preliminary

version appears in Proceedings of the Sev-

enth Annual ACM Conference on Computa-
tional Learning Theory, 1997.

H. Aizenstein, T. Hegedus, L. Hellerstein,

and L. Pitt. Complexity theoretic hardness

results for query learning. Computational

Complexity, To appear.

Dana Angluin, Lisa Hellerstein, and Marek

Karpinski. Learning read-once formu-

las with queries. Journal of the ACM,

40(1):185-210, January 1993.

Dana Angluin. Queries and concept learn-

ing. Machine Learning, 2(4):319-342, April

1988.

Nader H. Bshouty, Richard Cleve, Ricard

Gavaldb, Sampath Kannan, and Christino

Tamon. Oracles and queries that are suf-

ficient for exact learning. Journal of Com-

puter and System Sciences, 52(3):421-433,

June 1996.

Nader H. Bshouty, Thomas R. Hancock, and

Lisa Hellerstein. Learning arithmetic read-

once formulas. SIAM Journal on Comput-
ing, 24(4):706-735, August 1995.

Nader H. Bshouty, Thomas R. Hancock,

and Lisa Hellerstein. Learning Boolean

read-once formulas over generalized bases.

Journal of Computer and System Sciences,

50(3):521-542, June 1995.

Jan C. Bioch and Toshihide Ibaraki. Com-

plexity of identification and dualization of

positive Boolean functions. Information and

Computation, 123(1):50-63, 15 November

1995.

Nader H. Bshouty. Exact learning Boolean

functions via the monotone theory. Infor-

mation and Computation, 123(1):146-153,

15 November 1995.

Thomas Eiter and Georg Gottlob. Identi-

fying the minimal transversals of a hyper-

graph and related problems. SIAM Journal
on Computing, 24(6):1278-1304, December

1995.

Michael L. Fredman and Leonid Khachiyan.

On the complexity of dualization of mono-

tone disjunctive normal forms. Journal of
Algorithms, 21(3):618-628, November 1996.

M. R. Garey and D. S. Johnson. Computers

and intractability- A guide to the theory of

NP-completeness. freeman; Bell Lab, Mur-

ray Hill NJ, 1979.

Vladimir Gurvich and Leonid Khachiyan.

Generating the irredundant conjunctive

and disjunctive normal forms of monotone

boolean functions. Technical Report, LCSR-

216

find-DNF(I)

Input: i

Output: DNF formula D, equivalent to C,

1. If i = 0 return True

2. Dip1 t find-DNF(i - 1)

3. D, t 0

4. for each clause u = s A t where s E Di-1, ItI 5 Ic, t C (~1,. . . ,z,}

5. (9,‘)j = { jxJJ ft;,;?,,
6. if MQ(q,)=l then D, t D, U {IL}

7. return Di

Figure 2: An algorithm to obtain a DNF representation of a read-k CNF formula using membership queries only

[HMP97]

[JPY88]

[Kha95]

[KKS93]

[KM951

(KMR95j

[KR94]

[KW85]

[LLK80]

[Mit82]

TR-251, Dept of Computer Science, Rutgers

University, Discrete Applied Math, to ap-

pear, August 1995.

Haym Hirsh, Nina Mishra, and Leonard

Pitt. Version spaces without boundary sets.

AAAI, 1997. To appear.

D. S. Johnson, C. H. Papadimitriou, and

M. Yannakakis. On generating all maximal

independent sets. Information Processing

Letters, 27(3):119-123, 1988.

Roni Khardon. Translating between

horn representations and their characteristic

models. Journal of AI Research, 3:349-372,

1995.

H. A. Kautz, M. J. Kearns, and B. Sel-

man. Reasoning with characteristic models.

In Proceedings of the 11th National Confer-

ence on Artificial Intelligence, pages 34-39,

Washington, DC, July 1993. AAAI Press.

Jyrki Kivinen and Heikki Mannila. Approx-

imate inference of functional dependencies

from relations. Theoretical Computer Sci-

ence, 149(1):129-149, 18 September 1995.

Roni Khardon, Heikki Mannila, and Dan

Roth. Reasoning with examples: Proposi-

tional formulae and database dependencies.

Technical Report, TR-15-95, Harvard Uni-

versity, 1995.

R. Khardon and D. Roth. Reasoning with

models. In Proceedings of the 12th Na-

tional Conference on Artificial Intelligence,

volume 2, pages 1148-1153, Seattle, Wash-

ington, July-August 1994. AAAI Press.

Richard M. Karp and Avi Wigderson. A

fast parallel algorithm for the maximal inde-

pendent set problem. Journal of the ACM,

32(4):762-773, October 1985.

E. L. Lawler, J. K. Lenstra, and A. H.

G. Rinnooy Kan. Generating all max-

imal independent sets: NP-hardness and

polynomial-time algorithms. SIAM Journal

on Computing, 9(3):558-565, August 1980.

Tom Mitchell. Generalization as search. Art.

[MR92a]

[MR92b]

[MT961

[PR94a]

[PR94b]

[PV88]

[SK911

[TIAS77]

Int., 18:203-226, 1982.

Mannila and Raiha. On the complexity of in-

ferring functional dependencies. DAMATH:

Discrete Applied Mathematics and Combi-

natorial Operations Research and Computer

Science, 40, 1992.

H. Mannila and K.-J. Rtihi. The Design

of Relational Databases. Addison-Wesley,

1992.

Heikki Mannila and Hannu Toivonen. On

an algorithm for finding all interesting sen-

tences. Cybernetics and Systems, R. Trappl,

ed., pages 973-978, 1996.

K. Pillaipakkamnatt and V. Raghavan. On

the limits of proper learnability of sub-

classes of DNF formulas. In Proc. 7th Annu.

ACM Workshop on Comput. Learning The-

ory, pages 118-129. ACM Press, New York,

NY, 1994.

K. Pillaipakkamnatt and V. Raghavan.

Read-twice DNF formulas are properly

learnable. In Computational Learning The-

ory: Eurocolt ‘93, volume New Series Num-

ber 53 of The Institute of Mathematics and

its Applications Conference Series, pages

121-132, Oxford, 1994. Oxford University

Press.

L. Pitt and L. Valiant. Computational limi-

tations on learning from examples. J. ACM,

35:965-984, 1988.

Bart Selman and Henry Kautz. Knowledge

compilation using horn approximations. In

Kathleen Dean, Thomas L.; McKeown, ed-

itor, Proceedings of the 9th National Con-

ference on Artificial Intelligence, pages 904-

909. MIT Press, July 1991.

Shuji Tsukiyama, Mikio Ide, Hiromu

Ariyoshi, and Isao Shirakawa. A new algo-

rithm for generating all the maximal inde-

pendent sets. SIAM Journal on Computing,

6(3):505-517, September 1977.

217

