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Generating an interpretable family of fuzzy
partitions from data
Serge Guillaume, Brigitte Charnomordic

IEEE Transactions on Fuzzy Systems, 12(3):324-335, 2004

Abstract—In this paper, we propose a new method to con-
struct fuzzy partitions from data. The procedure generates
a hierarchy including best partitions of all sizes from n to
two fuzzy sets. The maximum size n is determined accord-
ing to the data distribution and corresponds to the finest
resolution level.

We use an ascending method for which a merging crite-
rion is needed. This criterion is based on the definition of a
special metric distance suitable for fuzzy partitioning, and
the merging is done under semantic constraints. The dis-
tance we define does not handle the point coordinates, but
directly their membership degrees to the fuzzy sets of the
partition. This leads to the introduction of the notions of
internal and external distances.

The hierarchical fuzzy partitioning (HFP) is carried in-
dependently over each dimension, and, to demonstrate the
partition potential, they are used to build fuzzy inference
system using both fuzzy decision trees and a simple selec-
tion mechanism.

Due to the merging technique, all the fuzzy sets in the
various partitions are interpretable as linguistic labels. The
trade-off between accuracy and interpretability constitutes
the most promising aspect in our approach.

Well known data sets are investigated and the results
are compared with those obtained by other authors us-
ing different techniques. The method is also applied to
real world agricultural data, the results are analyzed and
weighed against those achieved by other methods, such as
fuzzy clustering or discriminant analysis.

Keywords— Fuzzy partitioning, interpretability, distance,
rule induction, learning

I. Introduction

Fuzzy inference systems have proven useful to represent a
system behavior by means of IF-THEN fuzzy rules. Fuzzy
rules can be based on expert knowledge available from hu-
man experts. This point of view, which seems natural, was
historically the first one to be implemented, as in [1]. How-
ever it soon appeared that for complex partially unknown
systems the interactions are very difficult to grasp and ex-
pert rules are not sufficient to yield a satisfactory simula-
tion of the system. For this reason fuzzy rule induction
from data has been given a lot of attention in the recent
literature [2]. Such approaches are mostly inherited from
numerical learning techniques, such as neural networks or
evolutionist algorithms. They typically seek to optimize
the numerical performance while interpretability of the in-
duced rules is not their first concern. In many cases when
induced rules meaning matters, this is a serious drawback.
It is necessary to develop new fuzzy rule induction meth-
ods, so that the semantic integrity of the fuzzy inference
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system is guaranteed. A recent review of rule induction
methods [3] has shown that the fuzzy partition for the sys-
tem inputs is then of prime importance. The fuzzy sets are
to be interpretable as linguistic labels to allow the cooper-
ation between expert rules and induced rules. This may be
contradictory with the numerical error minimization objec-
tive.

Focusing on the interpretability, this paper presents a
new method for deriving fuzzy partitions from data. Al-
though being generic, it has been designed for dealing with
complex multidimensional systems, such as food processes.

The proposed approach is called Hierarchical Fuzzy Par-
titioning and is inspired from two different clustering meth-
ods. It has some similarities with Hierarchical Clustering
which is widely used in Statistics, while it shares other
points with clustering techniques adapted to the fuzzy for-
malism.

Hierarchical Clustering makes clusters of multidimen-
sional data pairs according to a given criterion. The start-
ing point is a n-cluster partition, each cluster containing
a single individual. The final partition obtained by recur-
sive group aggregating is a one-cluster partition including
all data pairs. At each stage the two “nearest” clusters
are combined to form one bigger cluster. The commonly
used Ward criterion combines the two clusters which least
increase the within cluster variance.

Fuzzy clustering methods, such as fuzzy c-means [4], find
a partition of the observations into a predetermined num-
ber of groups. The data points are divided into groups of
points that are “close” to each other. Each data point be-
longs to a group or cluster with a given membership degree.
Closeness between data points is defined by a metric dis-
tance, and each metric yields a different partitioning. The
importance of the concept of distance and the sensitivity
of the results with respect to the choice of different dis-
tances has often been underlined in clustering [4], [5], but
not in fuzzy partitioning. Many metrics have been tried
out, but none of them takes account of the partition struc-
ture. At best it is related to cluster shape, as in [6]. Some
authors also defined distances between fuzzy sets [7], [8] for
approximate reasoning. Some of these distances fulfill the
triangle inequality [9], [10], other ones are pseudo metrics
only [11]. The distance introduced by [12], [13] is close to
human appreciation.

In our approach, we wish to derive a fuzzy partition from
data in each dimension. Instead of making data point clus-
ters, we aggregate fuzzy sets. As in Hierarchical Clustering,
we start from an initial n-item partition, and end with a
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one-item set partition. However the items to be clustered
are fuzzy sets instead of data points. At each stage the pro-
cedure aggregates two fuzzy sets to form a new wider range
one. To aggregate we use a pairwise data point distance,
which takes account of the particularities of the items to
be merged: fuzzy sets within a given partition. In other
words, this distance takes fuzzy partitioning into consider-
ation, and is used as the basis of the aggregating criterion.

The aggregating procedure merges the fuzzy sets under
semantic constraints, one of them being the fuzzy set distin-
guishability. Thus the fuzzy partitions only contain fuzzy
sets which can be read as linguistic labels. The method is
carried out independently over each input dimension, and
the partitions are used at a further stage to define the fuzzy
rule premises in a fuzzy inference system.

These fuzzy inference systems can be useful for modelling
a complex system and extracting elements of knowledge
from data in a variety of cases. Indeed rule induction done
this way is very different from rule induction based on fuzzy
clustering. In Fuzzy Clustering, fuzzy rules are built from
clusters of multidimensional data pairs. Each rule premise
has its own fuzzy sets, which are obtained by projecting
the corresponding cluster onto each dimension. For a given
dimension, the fuzzy partition results from the union of the
fuzzy sets for all rules. The fuzzy set distinguishability,
which is essential for semantic integrity, is not guaranteed
and is even unlikely to be met.

The paper is organized as follows: Section II outlines
the overall Hierarchical Fuzzy Partitioning procedure, in-
troducing the concepts of internal and external distance
used in the merging criterion. Section III presents a dis-
tance metric suitable for fuzzy partitioning. Section IV is
centered about the concept of partition validity.

The fuzzy partition families can serve as an input for
other methods that intend to build fuzzy inference systems.
Although the goal of this paper is not to propose a complete
system generation method, the potential is illustrated by
generating fuzzy inference systems of increasing complexity
through a simple algorithm. Section V explains the fuzzy
inference system generation and selection algorithm. Sec-
tion VI gives the results obtained on several well known
data sets, available in the machine learning repository
(http://www.ics.uci.edu/ mlearn/MLRepository.html), and
compares them with those reported in a recent paper [14].
Section VII presents a detailed case study of real world
agricultural data, and comments the results with respect
to other techniques.

Finally section VIII gives some conclusions.

II. Hierarchical fuzzy partitioning

The Hierarchical Fuzzy Partitioning (HFP) method gen-
erates a collection of univariate fuzzy partitions from a
multidimensional training dataset. The dataset, denoted
E, is a collection of N multiple input-single output numer-
ical data pairs (xk, yk), k = 1, 2, . . . , N where xk is the p

dimensional input vector x1

k, x
2

k, . . . , x
p
k and yk is the one-

dimensional output vector.
To make computation independent of measurement

units, all data are scaled into the unit space.
A univariate fuzzy partition is composed of m fuzzy sets,

the fth fuzzy set for the jth input variable being defined

by its membership function
(
x, µ

f
j (x)

)
.

The procedure is carried independently over all dimen-
sions. In each dimension it builds a family of fuzzy parti-
tions as follows.
The initial fuzzy partition is determined by choosing Mj

fuzzy sets according to the data sample distribution in the
considered dimension, with Mj ≤ N .
The family of fuzzy partitions is obtained using recur-

sive fuzzy set merging so that at each step, the resulting
partition is of size m, 2 ≤ m ≤ Mj − 1 and best satis-
fies a merging criterion. Each merging modifies at most
four fuzzy sets, the two being merged and their immediate
neighbours when exist. The final partition is composed of
a single fuzzy set which covers the entire data range in the
considered dimension.
The HFP procedure can be summarized as a sequence of

(Mj − 1, Mj − 2, . . . , 2) iterations in each dimension, as
shown in algorithm 1. Dm is the criterion for merging two
fuzzy sets. It will be given in section II-C, equation 3.

Algorithm 1 Hierarchical fuzzy partitioning

1: base partition = FPm = initial partition of size Mj ;
set m = Mj

2: while m > 2 do

3: evaluate Dm; s = 1
4: while s ≤ m− 1 do

5: merge fuzzy sets s and s+1, modify neighbouring
fuzzy sets

6: evaluate Ds
m−1

7: restore base partition
8: s = s+ 1
9: end while

10: select and store the partition FPm−1 for which:
11: Dm−1 = argmax

(
Ds

m−1

)

12: base partition = FPm−1; m = m− 1
13: end while

The next subsection explains how to choose Mj , and the
initial fuzzy set location. The merging procedure is then
presented. The last subsection gives the definition of the
merging criterion, and introduces the important notions of
internal and external distance.

A. Choice of the initial fuzzy partition

The proposed approach is applicable regardless of the
shape of the fuzzy sets. Both for computational time con-
siderations and for clarity in demonstrating the method
we chose all fuzzy sets of triangular shape, except at the
domain edges, where they are semi trapezoidal.
The fuzzy sets are labeled 1, 2, . . . ,m and they overlap

so that the fuzzy partition is standardized as follows:



∀x

∑
f=1,2,...,m

µ
f
j (x) = 1

∀f ∃x µ
f
j (x) = 1

(1)
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This choice is justified by the preoccupation of semantic
integrity, which guarantees that the membership functions
will represent a linguistic concept. It is discussed in great
detail in [15], [16], [17].

Each triangle fuzzy set f is defined by its breakpoints
leftf , cf , rightf . A standardized fuzzy partition can be
built by choosing fuzzy set breakpoints as shown in figure 1.
Two contiguous fuzzy sets cross at the point of membership
value µ = 0.5, and three contiguous fuzzy sets f, g, h have
such boundaries as:





leftg = cf

lefth = cg

rightf = cg

rightg = ch

The first and last fuzzy sets in the partition are semi trape-
zoidal, with respective breakpoints k1inf , k

1

sup, right
1 and

leftm, kminf , k
m
sup such as:





k1inf = data lower bound

k1sup = left2 noted c1

right1 = c2





leftm = cm−1

kminf = rightm−1 noted cm

kmsup = data upper bound

By construction all points belong at most to two fuzzy
sets.
We also have ∀x max

f=1,2,...,m
µ
f
j (x) ≥

1

2
.

Each fuzzy set is assigned a weight equal to its cardinal-
ity, noted wf for fuzzy set f :

wf =
∑

x∈E

µ
f
j (x) (2)

1

0
q r s

1 42 3 5
µ
3

r

µ
4

s

µ
2

q

Fig. 1. A standardized fuzzy partition

In all rigor the initial partition could include as many
fuzzy sets as N , the number of pairs in the training dataset.
The kth triangular membership function would then be
centered on x

j
k. In practice, the initial partition size can

be reduced. The goal is to accelerate the procedure with-
out a loss of performance. We therefore form Mj clus-
ters of so called unique cjm values. These unique values

are determined by sorting the x
j
k, k = 1, 2, . . . , N values

and setting an equality threshold tol. The cluster center
cjm, m = 1, . . . ,Mj is defined as the average of all values
that fall within the cluster. Finally each cluster center is
used as a fuzzy set center. The initial fuzzy set weight,
defined in 2, is equal to the number of observations in the
cluster.

Sensitivity to the number of unique values and the choice
of tol will be studied in section VII. If data are numerical
measurements, the meaning of tol can be related to their
numerical resolution.

B. Fuzzy set merging

Recursive fuzzy set merging is a multi step procedure,
that reduces the fuzzy partition size by one at each step.
Merging is restricted to adjacent fuzzy sets, and seeks the
best possible arrangement according to a given criterion.
That criterion will be given in the next section and is to
be computed for every possible fuzzy set combination.
Merging two fuzzy sets labeled 2 and 3 is illustrated in

figure 2. The resulting fuzzy set is labeled 2
′

and defined
as follows: 




left2
′

= c1

c2
′

=
w2c2 + w3c3

w2 + w3

right2
′

= c4

The neighboring fuzzy sets 1 and 4 are turned into 1
′

and
3
′

. Their left and right breakpoints are modified so that
the fuzzy partition is kept standardized. Fuzzy weights
w1, w2, w3 need to be updated after the merging, according
to equation 2.

2 31

1’

c2 c3

4

2’ 3’

c1 c4

Fig. 2. Merging fuzzy sets 2 and 3 results in 2
′

, 1 ⇒ 1
′

, 4 ⇒ 3
′

C. Merging criterion

We seek a partition level index to be used in the merging
process that summarizes the partition structure with re-
gard to the data points. For that purpose, a special metric
d(xj

q, x
j
r) = d(q, r) is needed that allows to define pairwise

dissimilarity coefficients, so called distances, while taking
account of the fuzzy partition structure. Such a metric will
be proposed in the next section. For now let us outline only
one key feature necessary to understand the approach.
Consider two data points with respective xj

q, xj
r coor-

dinates in the jth dimension. Due to the fuzzification
procedure, they can belong to several fuzzy sets with a
non zero degree. To alleviate the notations we will denote
µf
q = µ

f
j (x

j
q).

Two non exclusive cases are to be distinguished:
1. xj

q and xj
r partially belong to the same fuzzy set f ,

µf
q > 0, µf

r > 0

2. xj
q and xj

r partially belong to two different sets f and g,

µf
q > 0, µg

r > 0, f 6= g
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We introduce the terms of internal distance in the first
case, external distance in the second one.

We impose a fundamental restriction to insure that the
distance will reflect the partition structure and preserve the
fuzzy set label semantic. Two points which mainly belong
to the same fuzzy set will always be considered closer than
others which mainly belong to distinct fuzzy sets.

The pairwise distance d(q, r) will take into account q and
r memberships to the various fuzzy sets by combining the
respective parts of internal and external distances. A given
size m partition can then be characterized by the sum of
pairwise distances over all the data points:

Dm =
1

N(N − 1)

∑

q,r=1,2,...,N, q 6=r

d(q, r) (3)

During the merging process, the number of fuzzy sets is
reduced by one at each stage. Obviously, some exter-
nal distances become internal distances, inducing a change
on the Dm index. On figure 2, this is the case for all
d(q, r), xj

q ∈ [c1, c3], x
j
r ∈ [c2, c4], when considering mem-

berships to fuzzy sets 2 and 3.

The best merge at a given stage can be considered as the
one that minimizes the variation of Dm. The underlying
idea is to maintain as far as possible the homogeneity of
the structure built at the previous stage.

Due to the fact that internal distances are smaller than
external ones, the sum of distances decreases, except for
some particular cases in the very first steps of the proce-
dure.

The merging algorithm has a reduced complexity. As-
suming a m size partition at a given step in a given dimen-
sion, the number of possible merges is equal to m− 1. The
Dm index is computed on the prototypes resulting from
the preliminary stage, whose number can be reasonably
bounded according to the chosen tolerance tol.

Let us now specify the distance metric in use.

III. A distance metric suitable for fuzzy

partitioning

In the previous section we introduced the notions of in-
ternal and external distances related to a fuzzy partition.
We will now give a definition of both of them and see how
they can be combined to deal with the multiple member-
ship characteristic of fuzzy logic. Let us first recall some
basic properties of a distance.

A. Distance properties

A function d is a dissimilarity if

∀ q, r





d(q, r) ≥ 0

d(q, q) = 0

d(q, r) = d(r, q)

(4)

A dissimilarity is semi-proper if

d(q, r) = 0 ⇒ ∀ s d(q, s) = d(r, s) (5)

A dissimilarity is proper if

d(q, r) = 0 ⇒ q = r (6)

A semi distance is a dissimilarity which verifies the tri-
angle inequality

∀ q, r, s d(q, r) ≤ d(q, s) + d(r, s) (7)

A proper semi distance is called a distance.
We limit our study to convex standardized fuzzy sets and

check the properties of the internal and external distances
we define.

B. Internal Distance

The membership degree complement (1 − µf
q ) can be

interpreted as the distance of xj
q to the fuzzy set f . It

measures the similarity of xj
q to the fuzzy set prototypes

that delimit the kernel. Recall that a prototype is such
that µ(x) = 1. Given two data points with (xj

q, x
j
r) coor-

dinates, we compute the internal distance by differencing
the prototypes similarities, which comes to differencing the
membership degrees:

d
f
int(q, r) = |µf

q − µf
r |

Property (4) is trivial and equation (5) is easily checked.
Counter examples for property 6 are also easy to find.
Many distinct data pairs have an identical membership
degree, yielding a null internal distance, as illustrated in
figure 3.

0

µ

1

q r

Fig. 3. Internal distance d(q, r) equals zero

A (q, r, s) triplet is relevant to one of the following three
cases for which property 7 is to be checked.
1. Trivial case : identical membership for all three points:
µf
q = µf

r = µf
s .

2. Identical membership for two points:
µf
q = µf

r and µf
q 6= µf

s , with for instance µf
q > µf

s .
The following inequalities are to be proven:

d
f
int(q, r) ≤ d

f
int(q, s) + d

f
int(r, s) i.e. 0 ≤ 2(µf

q − µf
s )

d
f
int(q, s) ≤ d

f
int(q, r) + d

f
int(r, s) i.e. µf

q − µf
s ≤ µf

q − µf
s

d
f
int(r, s) ≤ d

f
int(q, r) + d

f
int(q, s) i.e. µf

q − µf
s ≤ µf

q − µf
s

3. All membership degrees are distinct, for instance
µf
q < µf

r < µf
s .

The inequalities to be checked are written as:

µf
r − µf

q ≤ µf
s − µf

q + µf
s − µf

r then µf
r ≤ µf

s

µf
s − µf

q ≤ µf
r − µf

q + µf
s − µf

r then µf
s − µf

q ≤ µf
s − µf

q

µf
s − µf

r ≤ µf
r − µf

q + µf
s − µf

q then µf
q ≤ µf

r
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In all cases the proof is straightforward therefore the pro-
posed internal distance function d

f
int is a semi distance.

C. Prototype distance

We propose two different definitions of the distance
dprot(f, g) between the prototypes of fuzzy sets f and g.

1. a numerical prototype distance

dnumprot (f, g) =
√

(cf − cg)2

where cf , cg are the respective fuzzy set kernel locations.
This definition corresponds to the kernel Euclidean dis-
tance.
2. a more symbolic prototype distance

d
sym
prot(f, g) =

g − f

m− 1
(8)

where m is the partition size, f and g are the indices of the
fuzzy sets sorted in ascending order relatively to the center
coordinates.

Within the partition illustrated in figure 1, the symbolic
choice for the prototype distance makes the fuzzy set 3 at
the same distance from 2 and 4, while the numerical choice
puts it closer to 4. The symbolic distance is more faithful
to the symbolic representation.
Both definitions can easily be checked to fulfill conditions

6 and 7.

D. External distance

The external distance must take account of the point
location within its reference fuzzy set, and of the relative
fuzzy set location within the fuzzy partition, which implies
combining the internal and the prototype distances.
We propose the following definition for the external dis-

tance between two points which belong to f and g:

d
f,g
ext(q, r) = |µf

q − µg
r |+ dprot(f, g) +Dc (9)

where Dc is a constant correction factor, which ensures
that the external distance is always superior to any internal
distance. Note that the external distance reduces to the
prototype distance plus the correction factor, when points
q, r have internal identical membership degrees.
Figure 1 can be used to illustrate external distances on

the (q, r, s) triplet. When considering fuzzy sets 2, 3, 4, ex-
ternal distances can be written as:

d
2,3
ext(q, r) = µ3

r − µ2

q + dprot(2, 3) +Dc

d
3,4
ext(r, s) = µ3

r − µ4

s + dprot(3, 4) +Dc

d
2,4
ext(q, s) = µ2

q − µ4

s + dprot(2, 4) +Dc

which proves the triangle inequality (7).
There are other external distances concerning the (q, r, s)

triplet. They are dealt with in the same way, and we now
examine the problem of distance combination.

E. Distance combination and continuity

To manage multiple memberships, the pairwise distance
d(q, r) is taken as a combination of the internal and external
distances defined above, depending on the number of fuzzy
sets for which µq and µr are different from zero.

Let us denote df,g(q, r) the partial (q, r) distance that
represents respective memberships to f and g. It is an
internal distance if f = g, an external distance otherwise.

d(q, r) results from the combination of at most m2 dis-
tances:

d(q, r) =
1

m∑
f=1

µ
f
q

m∑

f=1


µ

f
q

1
m∑

g=1

µ
g
r

m∑

g=1

[
µg
r df,g(q, r)

]

 (10)

For a standardized fuzzy partition, as defined in equation
1, d(q, r) is a combination of at most four distances and all
denominators in the previous formula are equal to 1.

One point q is said to mainly belong to a fuzzy set f

if µf
q ≥ 0.5. Consequently the pairwise distance d(q, r)

will be mainly internal when both points q, r mainly be-
long to the same fuzzy set. These points must be closer
than points whose distance is mainly external to enforce
the fundamental constraint given in section II-C. Due to
our implementation, the maximum value of a mainly inter-
nal distance is 0.5. We therefore set Dc = 0.5 in equation
9.

The term d(q, r) has been shown to be a combination of
semi distances. It is thus a semi distance. Nevertheless to
alleviate the notations we will refer to d as a distance.

IV. Validity criterion

What is a good partition ? This question, widely stud-
ied, is still open. There is no universal answer. Within the
supervised learning framework one can assess the perfor-
mance of the corresponding fuzzy inference systems. Nev-
ertheless the performance depends on many factors: induc-
tion method, number of rules, variable selection, . . . which
makes it a challenge to decide on the quality of the par-
tition itself. To assess the validity of a fuzzy partition we
propose a new index based on the homogeneity of the fuzzy
set densities.

The fuzzy set density, called df for fuzzy set f , is equal
to the ratio of its weight, or fuzzy cardinality, wf , defined
in equation 2, to the fuzzy set area. The overlapping subar-
eas are excluded, as shown in figure 4, for more robustness
regarding the standardized fuzzy partition construction.
The density homogeneity, σFP , is defined as the density
standard deviation for all the fuzzy sets of the partition:

σFP =

√√√√ 1

m

m∑

f=1

(df − d)2, d being the mean of the fuzzy

set densities. A good, steady, partition is expected to be
homogeneous, i.e. to have a small standard deviation.
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Fig. 4. Areas used for computing the fuzzy set densities

σFP is not significant for the first steps of the merging
process, all the fuzzy set are designed to be properly filled
up. It is useful for the last steps. From the homogeneity
point of view the best partition is the one for which σFP

reaches a minimum. Checking the evolution of σFP versus
the partition size is informative. Local minima and singular
points can be found.

Illustration on the iris data

The iris data [18] are 150 items, representing four nu-
merical measurements: Petal Length, Petal Width, Sepal
Length and Sepal Width, for three different species Setosa,
Virginica and Versicolor. We applied the HFP method to
the four numerical features. The Petal Width histogram is
plotted in figure 5. In the bottom part of this figure, the
fuzzy set centers, for the last steps of the HFP procedure
(partition size six to two), are reported together with σFP

values. The figure 6 shows the corresponding results for
Petal Length.

0 0.5 1 1.5 2 2.5
0

5

10

15
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35

σFP Fuzzy set centers
5.22 0.83 2.24
4.87 0.10 1.40 2.24
7.54 0.10 0.90 1.79 2.24

12.75 0.10 0.32 1.36 1.79 2.24
12.20 0.10 0.32 1.22 1.52 1.79 2.24

Fig. 5. Validity indicator evolution for iris petal width
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σFP Fuzzy set centers
13.34 3.18 6.67
12.78 1.34 4.53 6.67
19.41 1.34 3.17 5.16 6.67
29.14 1.34 1.63 4.17 5.16 6.67
29.41 1.34 1.63 4.17 4.81 5.57 6.68

Fig. 6. Validity indicator evolution for iris petal length

The results are in favor of a three fuzzy set partition.
One can note that σFP reaches a lower minimum for Petal
Width than for Petal Length, leading to believe that the
Petal Length partition fuzzy set densities are more hetero-
geneous.

Complexity analysis

To assess the computational load of the whole procedure
we consider the generation of fuzzy partitions for a given
mono dimensional variable (algorithm 1 in section II).
This algorithm complexity is measured according to the

number of fuzzy sets in the initial partition, M . As ex-
plained in section II-A, this number results of a clustering.
The number of clusters depends both on the data distri-
bution and the equality tolerance threshold, tol. As the
values are scaled into the unit space, tol expresses a rel-
ative variation: a value of 2% leads to a maximum of 50
clusters. The considered algorithm generates M − 2 parti-
tions, each of them results from M − 1 attempts. A try is
characterized by the the sum of M ×M − 1 distances (see
equation 3). The HFP algorithm global complexity is thus
measured by O(M4).

V. Fuzzy inference system generation and

selection

Our objective in this part is to generate fuzzy inference
systems (FIS), using a refinement procedure based on a
known hierarchy of fuzzy set partitions of increasing size.
This hierarchy can be the result of the HFP stage, it can
also be obtained by other means, for instance a series of
regular grids of different sizes. This will allow us to com-
pare the results yielded by different hierarchies.
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We start by considering the simplest system, which has
only one rule including a single fuzzy set in each dimension
j = 1, . . . , p. The selection procedure builds new systems
by refining the fuzzy partitions.

The refinement algorithm is detailed in section V-B. It
calls a FIS generation algorithm described in section V-C.

First we give the definition of some elements that will be
used all along.

A. Definitions

Fuzzy partition notation In each dimension, the HFP
procedure yields a family of partitions of decreasing size.
For a given dimension j, let us denote FP

nj

j the HFP gen-
erated fuzzy partition of size nj , n

max
j being the maximum

size of the partition (see II-A), nmax
j ≤ Mj by construction.

To improve interpretability, nmax
j is limited to a reasonable

number (≈ 7) [19].
FP

nj

j is uniquely determined by its size nj , the fuzzy
set centers being the coordinates given by the hierarchy,

FP
nj

j = {MF
k/nj

j , k = 1, . . . , nj}, where MF
k/nj

j refers to
the kth membership function of the fuzzy partition for the
jth variable.

Performance index Two cases are to be considered:
1. numerical output (regression case)
The numerical performance index is chosen as the root
mean square error over the training sample:

Perf =
1

N

√√√√
N∑

i=1

‖ŷi − yi‖
2

where N is the sample size, yi the observed output for the
ith example, and ŷi the inferred output for the ith example.
2. nominal output (classification case)
The performance index is equal to the number of misclas-
sified items.

Perf =

N∑

i=1

δi,

{
δi = 1 if ŷi 6= yi

δi = 0 otherwise

Blank examples A rule potentially covers the subset
of the multidimensional input space corresponding to the
combination of the fuzzy sets composing its premise. The
rth rule will be activated by the ith example to a degree,
called rule weight:

rwr(xi) = µ
MF

a/n1

1

(x1

i ) ∧ . . . ∧ µ
MF

q/np
p

(xp
i ) (11)

where ∧ is a T-norm operator for fuzzy set intersection.
The ith example will be considered as inactive or blank

for a given rule r if rwr(i) ≤ µmin, µmin being a fixed
threshold value.
We call Er the subset of non blank examples for the rth

rule. It is a subset of the learning sample E such as:

Er = {(xi, yi) ∈ E | rwr(xi) > µmin}. (12)

The examples in Er are sorted by descending order of rwr.
They are said to fire the rule r.
In the same way, an example is said to be blank for the

(r1, r2, . . . , rR) rule base if
R∑

r=1

rwr(xi) ≤ µmin. Let us note

B the number of blank examples. Due to the cumulated
sum, some examples which are blank for all rules may not
be blank for the rule base. This could be avoided by using
a max operator.
Note: The presence of blank examples should not al-

ways be considered as a drawback. It is a voluntary choice
to make the rule base contain only general rules, and not
too specific ones. This yields a smaller number of rules and
a parsimonious fuzzy system.

B. Refinement procedure

The iterative algorithm is presented below. It is not
a greedy algorithm, unlike other techniques. It does not
implement all possible combinations of the fuzzy sets, but
only a few chosen ones.

Algorithm 2 Refinement procedure

1: iter = 1; ∀j nj = 1
2: CALL FIS Generation (Algorithm 3)
3: while iter ≤ itermax do

4: Store system as base system
5: for 1 ≤ j ≤ p do

6: if nj = nmax
j then next j (partition size limit

reached for input j)
7: nj = nj + 1
8: CALL FIS Generation (Algorithm 3)
9: Perfj = Perf

10: nj = nj - 1
11: Restore base system
12: end for

13: if ∀j nj = nmax
j then exit (no more inputs to refine)

14: s = argmin {Perfj , j = 1, . . . , p, nj < nmax
j }

(Select input to refine)
15: ns = ns + 1
16: CALL FIS Generation (Algorithm 3)
17: keep FISiter

18: iter = iter + 1
19: end while

The key idea is to introduce as many variables, described
by a sufficient number of fuzzy sets, as necessary to get a
good rule base. A good FIS represents a reasonable trade-
off between complexity, in relationship with the number of
rules, and accuracy, measured by the performance index.
The refinement procedure is responsible for the selection

of the variables or fuzzy sets to be introduced in the FIS.
The initial FIS is the simplest one possible (Algorithm 2,
lines 1-2). The search loop (lines 5 to 12) builds up tempo-
rary fuzzy inference systems. Each of them corresponds to
adding to the initial FIS one fuzzy set in a given dimension.
The selection of the dimension to retain is done in lines 14-
15. Following this selection, a FIS to be kept is built up.
It will serve as a base to reiterate the sequence (lines 3 to
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19). Thus the result of the procedure is not a single FIS,
but a series FIS1, F IS2, . . . of increased complexity.

When necessary, the procedure calls a FIS generation al-
gorithm, referred to as Algorithm 3, which is now detailed.

C. FIS generation

A fuzzy inference system is completely defined by its rule
base and the inference method.

The rule generation is done by combining the fuzzy sets
of the FP

nj

j partitions for j = 1, . . . , p, as described by Al-
gorithm 3. The algorithm then removes the less influential
rules and evaluates the rule conclusions. The condition

Algorithm 3 FIS generation

Require: {nj | j = 1, ..., p}
1: get FP

nj

j ∀j = 1, ..., p

2: Generate the
∏p

j=1
nj rule premises

3: for all Rule r ∈ FIS do

4: CVr =
n∑

k=1

rwr(xk)

5: if CVr < CVt then remove rule r

6: else initialize rule conclusion
7: end for

8: Compute Perf

stated in line 5, where CVt is a given threshold, ensures
that the rule is significantly fired by the examples of the
training set.
The rule conclusion initialization, line 6, depends on the

system output type. In the following we consider the case
of a nominal output (classification problem). The rule con-
clusion is then initialized as the most frequent output label
in Er, and the FIS output, ŷi, is an integer value obtained
by rounding off the result of a simple weighted average de-
fuzzification procedure (Sugeno type inference).
Other inference methods, including fuzzy rule conclu-

sions and more sophisticated defuzzification procedures,
can be implemented for a numerical output, without chang-
ing the FIS generation algorithm itself.

D. Final choice

As we said above, the outcome of the procedure is not a
single fuzzy inference system, but K FIS of increasing com-
plexity. The selection of the best one takes into consider-
ation the performance and the number of blank examples.
We propose the following simple criterion:
FIS = argmin(Perf(FISk), k = 1, . . . ,K) such as

Bk ≤
Card(E)

10
, where Bk is the number of blank examples

for the rule base in FISk.

Complexity analysis

The refinement algorithm (algorithm 2, given in section
V-B) complexity mainly depends on the number of input
variables, p. The number of iterations can be chosen ac-
cording to p, for instance itermax = k ∗ p with k = 3,
and each iteration calls the FIS generation algorithm (al-
gorithm 3) p times. To generate a fuzzy inference system,

the weight of each rule is computed for each of the n data
items. The number of rules corresponds, at each steps, to
all premise combinations. It reaches in the worst case kp.

VI. Application to benchmark data

This section illustrates the potential of the Hi-
erarchical Fuzzy Partitioning method by applying it
to some well known benchmark data sets, the Wis-
consin breast cancer data and the wine classifi-
cation data, from the machine learning repository
(http://www.ics.uci.edu/∼mlearn/MLRepository.html).

These classification problems have been recently revis-
ited by [14], who give an interesting summary that we will
use as a basis for our analysis of the results.

A. Data processing

The same protocol has been applied to each data
set. First sampling was done by extracting ten training
samples-representative of the class distribution- from the
whole set. The extraction consists of a random selection
of 50% of the items of each class. The complement of each
training set becomes the test set.
Then, the HFP partitions were induced from each train-

ing set and used by the selection algorithm, introduced in
section V, to generate fuzzy inference systems. We used the
numerical distance, and a 0.01 tolerance threshold to build
the initial partition. The regular hierarchy was built by
splitting the whole data set range in equally spaced fuzzy
sets, and, as with HFP, the selection algorithm was run
with each training set.
Amongst the various configurations proposed by the se-

lection algorithm, we kept the configuration which satisfied
the constraints of accuracy and number of blank examples
detailed in section V-D. The configurations are character-
ized by their number of rules (#R) and their number of
variables (#V). Their performances are assessed both on
the training and the test sets, and given as a percentage.
All results (configuration characteristics and performance)
are given as an average on the ten samples.

B. Wisconsin Breast Cancer Diagnostic Data

The Wisconsin Breast Cancer Diagnostic data set con-
tains 699 patterns distributed into two output classes, be-
nign and malignant. Each pattern consists of nine input
features: clump thickness, uniformity of cell size, unifor-
mity of cell shape, marginal adhesion, single epithelial cell
size, bare nuclei, bland chromatin, normal nucleoli, and mi-
toses. After removing examples containing missing values,
683 items remain available: 444 are in the benign class and
the others, 239, are in the malignant one.
Previous results found in the literature, from [14] and

[20] are recalled in table I.

As shown in table II the proposed method leads to good
performance results for the Wisconsin breast cancer data
set. The 1.6 % test error value appearing for Hfp in table
II is particularly low. This is partly due to a relatively high
number of blank examples in the test sample (20 %). This
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Models Performance %
MSC [21] 94.9
NEFCLASS [22] 92.7
NNFS [23] 93.9
FEBFC [24] 94.7
SANFIS [14] 96.3
C4.5 [20] 94.7

TABLE I

Some previous results on the Wisconsin breast cancer data

Type #V #R Training Err % Test Err %
Regular 2.9 8.6 4.1 5.2
Hfp 3.0 7.8 1.4 1.6

TABLE II

Results on the Wisconsin breast cancer data

comes from the fuzzy inference system selection procedure,
which is focused on generalization, and dismisses too spe-
cific items in the data set. The average number of three
input variables in the rule premise is smaller than in other
results found in the literature, which makes the interpre-
tation easier. The variables of most interest are variable
2 and 6 when using regular grids, while the most frequent
combination using HFP include variables 1 (clump thick-
ness), 3 (uniformity of cell shape) and 6 (bare nuclei).

0 2 4 6 8 10 12

1
Small Medium Large

Fig. 7. A fuzzy partition for the clump thickness feature

Figure 7 shows one of the fuzzy partitions obtained us-
ing HFP for the clump thickness feature. It is clear that
each fuzzy set can be assigned a readable linguistic label.
The corresponding rule base system is defined by 5 input
variables, given in Table III, together with their number of
fuzzy sets (#MF) and tentative linguistic labels.
One of the rules is given below as an illustration of their

intuitive interpretation:

If Clump thickness is Large
And Uniformity of cell size is High
And Uniformity of cell shape is High
And Bare nuclei is High
And Normal nucleoli is High
Then Class is Malignant

Name #MF Labels
Clump thickness 3 Small Medium Large
Uniform. of cell size 3 Low Average High
Uniform. of cell shape 2 Low High
Bare nuclei 3 Low Average High
Normal nucleoli 3 Low Average High

TABLE III

Example of selected variables for the breast cancer data

Models #R Error
GA-1 [26] 60 0 ∼ 3
GA-2 [27] 60 1 ∼ 4
GA + FCM [28] 3 3
SANFIS [14] 3 1
SLAVE [25] 5.2 3.24 %
C4.5 [20] 5.6 %

TABLE IV

Some previous results on the Wine data

C. Wine Classification Data

The wine classification data set contains 178 wines that
are grown in the same region of Italy but derived from
three different cultivars. The numbers of instances in each
class are: 59, 71 and 48. Each pattern consists of 13 con-
tinuous features resulting from chemical analysis: alcohol,
malic acid, ash, alkalinity of ash, magnesium, total phenols,
flavonoids, nonflavonoid phenols, proanthocyanins, color
intensity, hue, OD280/OD315 of diluted wines and pro-
line. Some known results gained using this data, from [14],
[25] and [20] are summarized in table IV.

Table V shows the average results obtained by the pro-
posed method. There is an important difference between
the systems built using the HFP family partitions and the
regular grid hierarchy. Contrary to what happens for the
breast cancer data, the number of blank examples remains
very small. Four variables are selected when the partitions
are HFP type, the most frequent ones being variables 1, 6,
7 and 13. In the case of regular grids, only two variables
(1 and 12) are selected.

One focusing on the numerical performance index may
conclude that these results are not very good (10% repre-
sent 9 examples). However, let us make some comparisons
with the systems described in table IV. The first two con-
sist of 60 rules, instead of 7 with ours. As fuzzy systems

Type #V #R Training Err % Test Err %
Regular 1.7 3.1 24.2 26.6
Hfp 3.9 6.8 7.0 10.8

TABLE V

Results on the Wine data
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are universal approximators [29], it is always possible to in-
crease the performance by adding new rules. The drawback
lies in the relevantness of these rules: how many examples
do they concern?

The model built by [28], given on the third row of the
table, has only three rules. However, due the clustering in-
duction method, each fuzzy set is specific to a rule, making
rule comparison impossible.

SANFIS provides three linguistic rules. Let us first no-
tice the lack of test sets, the training being done on the
whole data set. Moreover, all input features appear in each
rule. This makes rule comparison and influential variable
identification difficult. Moreover the lack of constraints in
the partition optimization process leads to a loss of seman-
tic. Figure 8 displays the linguistic labels found by SAN-
FIS for the 9th wine feature. We can see that the fuzzy
set named large is not really distinguishable from the one
labeled medium. This throws a shadow on the use of such
fuzzy systems in interpretability concerned applications.

SLAVE has been applied on 10 random samples (70 % for
the learning set and 30 % for the test one). Two remarks
have to be made. Firstly the way of designing variable par-
titioning is not detailed, but examples show that linguistic
interpretability is not guaranteed. Secondly, several clauses
of a given variable can be part of the same premise using
a OR connector. This makes the rule number comparison
with only AND connected premise rule impossible.

In [20] various ways of splitting numerical attributes are
applied to decision tree induction using the famous C4.5
algorithm. The work includes a 10-fold cross validation by
a non pruned tree. As no depth level is given it is difficult
to compare the tree structure with a number of rules.

0 0.5 1
0

0.5

1

Proanthocyanins

S M L

Fig. 8. The SANFIS fuzzy partition for the 9th input wine feature

The wine data benchmark shows that the proposed HFP
method can achieve a good compromise between accuracy
and interpretability, and that it is suitable for cases where
knowledge induction is at least as important as numerical
performance.

VII. Case study: a corn classification problem

We now apply a similar procedure to multidimensional
agricultural data. The sample is made of 352 items, 80
corn and 272 weeds. Spectrum data have been collected in

order to discriminate corn crop from weeds. Eight spec-
trum wavelengths, corresponding to peaks, valleys, and
other singular points have been preselected by the user.
Consequently, the system to be modelled is made up of 8
input variables, the output being a class label: 1 for corn,
2 for weed.

Our study focuses on the analysis of the results obtained
by our HFP method. It includes a sensitivity analysis to
initial parameters, and it also gives some complexity anal-
ysis elements. As no references are available in the liter-
ature, we also present some results that we obtained by
using other well known techniques, such as discriminant
analysis or fuzzy clustering.

We worked either with the whole dataset, or by taking
10 random samples from this dataset, as explained in the
previous section.

A. HFP partitions

As all data are numerical, we use the numerical distance
in the HFP procedure.

A study has been done to examine the sensitivity of the
method to the tolerance threshold which determines the
number of unique values used in the HFP procedure, as
explained in II-A. Results on the whole dataset are sum-
marized in table VI, for a few variables (1,5,7).

Tolerance 2 centers 3 centers
Variable 1

0.01 0.042 0.225 0.042 0.181 0.342
0.005 0.034 0.220 0.034 0.170 0.360
0.001 0.042 0.226 0.042 0.181 0.367

Variable 5
0.01 0.171 0.320 0.103 0.210 0.320
0.005 0.095 0.260 0.095 0.226 0.317
0.001 0.095 0.260 0.095 0.227 0.320

Variable 7
0.01 0.397 0.747 0.397 0.692 0.895
0.005 0.405 0.753 0.405 0.703 0.900
0.001 0.422 0.747 0.422 0.689 0.907

TABLE VI

Hfp unique value sensitivity to the tolerance threshold

The most important variations due to the tolerance
threshold appear for Variable 5. If we observe the cor-
responding histogram, plotted in figure 9, we can see that
it looks like a door function, with no clear structure. That
could explain the variability in that case.

To save computational time, the HFP procedure has thus
been applied using a tolerance threshold tol = 0.01. Table
VII gives the fuzzy set centers for the fuzzy partitions of
size 2 and 3, and variables 1, 5 and 7. The first line is rela-
tive to the whole dataset, and the other two to the samples.
The figures in the second line represent the average for the
10 samples, and the standard deviation is given in brackets
in the third line.
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Fig. 9. Input variable histograms

Figure 10 displays the evolution of σFP . For the first and
fifth variables, the minimum, obtained for a two fuzzy set
partition, is well marked. This is not the case for the sev-
enth variable. There are two close minima, corresponding
to two and ten fuzzy sets. Their absolute values are much
higher than for the other two variables. The indicator does
not seem to be significant in this case.

Comparison of the fuzzy set centers with those of a reg-
ular grid, recalled in table VIII shows that they are very
different.

B. FIS generation and selection using HFP

The FIS generation and selection are either done on the
whole data set, or on each of the training samples. In the
first case, the performance is measured on the whole data
set, in the second one it is evaluated on the test sample.
Table IX gives the test sample size (Test), the percentage
of misclassified items (MIS), the number of variables in the
FIS premises (#V), the number of rules (#R), and in the
last column, the number of times that each variable has
been selected.

From table IX, we can see that the most often selected

L. Set 2 centers 3 centers
Variable 1

Whole 0.042 0.225 0.042 0.181 0.342
2/3 0.054 0.236 0.039 0.173 0.346

( 0.030) ( 0.024) ( 0.005) ( 0.011) ( 0.048)
Variable 5

Whole 0.171 0.320 0.103 0.210 0.3202
2/3 0.108 0.264 0.102 0.222 0.318

( 0.027) ( 0.018) ( 0.016) ( 0.007) ( 0.005)
Variable 7

Whole 0.397 0.747 0.397 0.692 0.895
2/3 0.512 0.818 0.384 0.682 0.872

( 0.092) ( 0.064) ( 0.062) ( 0.021) ( 0.036)

TABLE VII

MF centers found by HFP

2 3 4 5 6 7 8 9 10

15

25

35

Variable 1
Variable 5
Variable 7

Fig. 10. σFP evolution for three input variables

inputs are Variables 1, 5 and 7. This leads us to believe that
these variables are of particular importance. The average
number of 9.9 rules would drop to 6.6 if one configuration
which includes 32 rules were replaced by a simpler one, with
6 rules only, which has a slightly lessened performance (3
misclassified items instead of 2).

C. Comparison with other approaches

Using regular grid hierarchies

The FIS generation and selection are now done using hi-
erarchies based on regular grids, and the results are shown
on table X.
Most FIS based on regular grids, generated using the cri-

terion given in section V-D, include a single variable: this
is the case for the whole data set, and 5 times out of ten for
the random samples. Intermediate results (not given here)

Variable 2 centers 3 centers
Variable 1 0.021 0.439 0.021 0.230 0.439
Variable 5 0.063 0.392 0.063 0.228 0.392
Variable 7 0.266 0 .921 0.266 0.594 0.921

TABLE VIII

MF centers within regular grids
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L. Set Test MIS #V #R 1 2 3 4 5 6 7 8
Whole 352 2.6 5 12 1 1 1 1 1
2/3 115 2.3 3.1 9.9 6 3 2 3 8 1 6 2

TABLE IX

HFP based FIS characteristics

show that, in the first steps of the refinement procedure,
when a variable is added into the rules, the performance is
not improved. The performance gets better when the par-
tition sizes are higher, but the number of blank examples
rapidly goes over the limit of ten percent. This is due to the
fact that the fuzzy set centers are not designed according
to data distribution.

L. Set Test MIS #V #R 1 2 3 4 5 6 7 8
Whole 352 4.8 1 2 1
2/3 115 3.0 1.7 3.2 9 2 3 2 1

TABLE X

Regular grid based FIS characteristics

Compared to HFP, the regular grid performance is lower.

Subtractive fuzzy clustering

Subtractive clustering is a fuzzy clustering method intro-
duced by [30]. It divides a multidimensional data set into
an a priori unknown number of clusters. It estimates the
cluster centers by setting a range of influence in each of the
data dimensions, and choosing as cluster centers the points
with the strongest attracting potential. We used thematlab

implementation, which includes the generation of an order
1 Sugeno type FIS with as many rules as clusters, the rule
conclusions being optimized using a least squares method.
The average misclassified number is equal to 1.6%. The 8
variables appear in the rule premises, the average number
of rules being equal to 6.2.

A FIS generated with such a fuzzy clustering method
is characterized by each rule using its own fuzzy sets, all
different from one rule to the next.

The fuzzy sets not being shared by the rules makes any
comparison between the rules impossible, and therefore
prevents the identification of the influent variables.

Discriminant analysis

Linear discriminant analysis is a well known multivariate
statistics technique, devised to distinguish between groups.
It uses linear functions of the input variables, to define a
new subspace, based on the maximization of the ratio of the
between-group sum of squares to the within-group sum of
squares. An observation can then be classified by comput-
ing its Euclidean distance from the group centroids, pro-
jected onto the new subspace. The observation is assigned
to the closest group.

The projecting matrix and the group centroids have been
calculated using each of the training sets, and the perfor-

mance evaluated over the corresponding test set. The av-
erage misclassified number comes to 2.7 %. The 8 variables
are included in the definition of the new subspace.
The results of discriminant analysis or subtractive clus-

tering show that this spectrum data problem is not an easy
one. Subtractive clustering obtains the best performance.
However, the price to be paid is a greater number of pa-
rameters, a more sophisticated optimization procedure for
the rule consequent parts, and a totally opaque model, dis-
advantage which also applies to discriminant analysis.
Generally speaking, we can consider that refinement

based on fuzzy partition hierarchies leads to a good com-
promise between performance and interpretability of a
fuzzy model. Moreover, when fuzzy set parameters are
determined according to the data distribution, the results
are better than with regular grids.

VIII. Conclusion

The hierarchical fuzzy partitioning presented in this pa-
per aims to generate a family of fuzzy partitions from data.
The originality is double. First the product is not one par-
tition, but a hierarchy including partitions with various
resolution levels. In each dimension, the initial partition
is made up of fuzzy sets centered about the input values,
if there are a few of them only. If the input values are
too numerous, they are first clustered into so called unique
values.
Instead of a descending procedure, such as partition re-

finement [31], [32], [33], [34], an ascending technique has
been applied. It consists of merging two adjacent fuzzy
sets at each step, the ones which best satisfy a merging cri-
terion. The criterion preserves the previous step structure
by considering a special sum of distances over the train-
ing data set. These distances are conceived to reflect the
fuzzy partitioning under design. This concept is the second
strong point of the paper. To enforce it we introduced the
notions of internal and external distances relative to fuzzy
sets. The internal distance concerns the part of member-
ship within a single fuzzy set, and the external distance the
part of membership related to two distinct fuzzy sets.
The generated partitions can be used to build up the

premises of a fuzzy inference system, or as an input for
other rule induction techniques, such as fuzzy decision
trees. We introduced in this paper a simple fuzzy inference
system generation and selection procedure designed to al-
leviate the curse of dimensionality. To highlight its poten-
tial, we applied the method first to well known benchmark
data, for which reference results are available, then to agri-
cultural corn data. The comparison with other techniques,
fuzzy clustering or discriminant analysis, shows encourag-
ing results.
The comparison includes the numerical performance, but

is not restricted to it. Other important aspects, dealing
with rule base interpretability, most influential variable
identification or semantic integrity of the fuzzy partitions,
are taken into account. The goal of the learning process is
not only the numerical index improvement, but knowledge
induction. In numerous cases, such as decision support
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system design, diagnosis applications, one may accept a
controlled loss of performance to gain a better understand-
ing.

The proposed approach does not try to compete with
function approximation techniques but is a promising way
for managing the tradeoff between performance and in-
terpretability in multidimensional complex problem mod-
elling.

Further work should consider more sophisticated selec-
tion procedures, to take into account the model complexity:
number of rules, number of variables and partition refine-
ment degree.

Acknowledgments

We wish to thank Bernard Panneton, from Agriculture
and Agri-Food Canada, for providing data and helpful in-
formation.

References

[1] E. H. Mamdani and S. Assilian, “An experiment in linguistic
synthesis with a fuzzy logic controller,” International journal of
Man-Machine Studies, vol. 7, pp. 1–13, 1975.

[2] T. Takagi and M. Sugeno, “Fuzzy identification of systems and
its applications to modeling and control,” IEEE Transactions
on System Man and Cybernetics, vol. 15, pp. 116–132, 1985.

[3] Serge Guillaume, “Designing fuzzy inference systems from data:
an interpretability-oriented review,” IEEE Transactions on
Fuzzy Systems, vol. 9 (3), pp. 426–443, June 2001.

[4] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Func-
tions Algorithms, Plenum Press, New York, 1981.

[5] R. E. Hammah and J. H. Curran, “On distance measures for the
fuzzy k-means algorithm for joint data,” Rock Mechanics and
Rock Engineering, vol. 32 (1), pp. 1–27, 1999.

[6] D. E. Gustafson and W. C. Kessel, “Fuzzy clustering with a
fuzzy covariance matrix,” in Proc. IEEE CDC, San Diego, CA,
USA, 1979, pp. 761–766.

[7] Didier Dubois and Henri Prade, Fuzzy Sets and Systems: Theory
and Applications, Academic Press, New York, 1980.

[8] Jiulun Fan and Weixin Xie, “Distance measure and induced
fuzzy entropy,” Fuzzy Sets and Systems, vol. 104, pp. 305–314,
1999.

[9] B. B. Chaudhuri and A. Rosenfeld, “On a metric distance be-
tween fuzzy sets,” Pattern Recognition Letters, vol. 17, pp. 1157–
1160, 1996.

[10] B. B. Chaudhuri and A. Rosenfeld, “A modified hausdorff dis-
tance between fuzzy sets,” Information Sciences, vol. 118, pp.
159–171, 1999.

[11] R. Lowen and W. Peeters, “Distance between fuzzy sets repre-
senting grey level images,” Fuzzy Sets and Systems, vol. 99, pp.
135–149, 1998.

[12] Laszlo Koczy and Kaoru Hirota, “Ordering, distance and close-
ness of fuzzy sets,” Fuzzy Sets and Systems, vol. 59, pp. 281–293,
1993.

[13] Pero Subasic and Kaoru Hirota, “Similarity rules and gradual
rules for analogical interpolative reasoning with imprecise data,”
Fuzzy Sets and Systems, vol. 96, pp. 53–75, 1998.

[14] Jeen-Shing Wang and C. S. George Lee, “Self-adaptative neuro-
fuzzy inference systems for classification applications,” IEEE
Transactions on Fuzzy Systems, vol. 10 (6), pp. 790–802, De-
cember 2002.

[15] J. Valente de Oliveira, “Semantic constraints for membership
functions optimization,” IEEE Transactions on Systems, Man
and Cybernetics, vol. 29, pp. 128–138, 1999.

[16] Pierre-Yves Glorennec, Algorithmes d’apprentissage pour
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