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In this paper we are interested in moments of the Minkowski question mark
function ?(x). It appears that, to some extent, the results are analogous to results
obtained for objects associated with Maass wave forms: period functions, L-
series, distributions. These objects can be naturally defined for ?(x) as well.
Various previous investigations of ?(x) are mainly motivated from the perspec-
tive of metric number theory, Hausdorff dimension, singularity and generaliza-
tions. In this work it is shown that analytic and spectral properties of various
integral transforms of ?(x) do reveal significant information about the question
mark function. We prove asymptotic and structural results about the moments,
calculate certain integrals which involve ?(x), define an associated zeta function,
generating functions, Fourier series, and establish intrinsic relations among these
objects.

1. Introduction

The aim of this paper is to continue investigations on the moments of the Minkowski
question mark function, begun in [Alkauskas ≥ 2009]. The function F(x), the
question mark function, was introduced by Minkowski in 1904 as an example of
a monotone and continuous function F : [0,∞) ∪ {∞} → [0, 1], which maps
rationals to dyadic rationals, and quadratic irrationals to nondyadic rationals. For
nonnegative real x it is defined by the expression

F([a0, a1, a2, a3, . . .])= 1− 2−a0 + 2−(a0+a1)− 2−(a0+a1+a2)+ · · · , (1)

where x = [a0, a1, a2, a3, . . .] stands for the representation of x by a (regular) con-
tinued fraction [Khinchin 1964]. Figure 1 shows the image of F(x) for x ∈ [0, 2].
More often this function is investigated in the interval [0, 1]; in this case we use a
standard notation ?(x)= 2F(x) for x ∈ [0, 1]. For rational x , the series terminates
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Figure 1. The Minkowski question mark function F(x), x ∈ [0, 2].

at the last nonzero partial quotient an of the continued fraction. This function was
investigated by many authors. In particular, Denjoy [1938] showed that ?(x) is
singular, and that the derivative vanishes almost everywhere. In fact, singularity
of ?(x) follows from Khinchin’s average value theorem on continued fractions
[Khinchin 1964, chapter III]. The nature of singularity of ?(x) was clarified by
Paradı́s et al. [2001]. In particular, the existence of the derivative ?′(x) in R for
fixed x forces it to vanish. Salem [1943] proved (see also [Kinney 1960]) that ?(x)
satisfies the Lipschitz condition of order (log 2)/(2 log γ ), where γ = (1+

√
5)/2,

and this is in fact the best possible exponent for the Lipschitz condition. The
Fourier–Stieltjes coefficients of ?(x), defined as

∫ 1
0 e2π inx d?(x), were also inves-

tigated in [Salem 1943]. It is worth noting that in Section 8 we will encounter
analogous coefficients (see Proposition 3). Meanwhile, [Grabner et al. 2002], out
of all papers in the bibliography list, is the closest in spirit to the current article. In
order to derive precise error bounds for the so-called Garcia entropy of a certain
measure, the authors consider the moments of the monotone, continuous singular
function

F2([a1, a2, . . .])=

∞∑
n=1

(−1)n−13−(a1+···+an−1)(qn + qn−1),
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where q? stand for a corresponding denominator of the convergent to [a1, a2, . . .].
The moments of F(x) itself were never considered before. Lamberger [2006]
has shown that F(x) and F2(x) are the first two members of a family (indexed
by natural numbers) of mutually singular measures, derived from the subtractive
Euclidean algorithm. From a number-theoretic point of view this generalization is
extremely interesting and natural, and it deserves much wider attention.

We confine ourselves to a cursory overview of the properties of ?(x), and refer
the reader to [Alkauskas ≥ 2009] for a short survey on available literature. These
works include [Beaver and Garrity 2004; Bonanno et al. 2008; Calkin and Wilf
2000; Denjoy 1938; 1956a; 1956b; 1956c; Dushistova and Moshchevitin ≥ 2009;
Esposti et al. ≥ 2009; Finch 2003; Girgensohn 1996; Grabner et al. 2002; Isola
2002; Kesseböhmer and Stratmann 2007; 2008; Kinney 1960; Lagarias 1991; La-
garias and Tresser 1995; Lamberger 2006; Moshchevitin and Vielhaber ≥ 2009;
Okamoto and Wunsch 2007; Panti 2008; Paradı́s et al. 2001;1998; Ramharter 1987;
Reese 1989; Reznick≥2009; Ryde 1922; 1983; Salem 1943; Tichy and Uitz 1995;
Vepštas 2004; Wirsing 2006.]

Recently, Calkin and Wilf [2000] (re)defined a binary tree which is generated
by the iteration

a
b
7→

a
a+ b

,
a+ b

b
,

starting from the root 1/1. Elementary considerations show that this tree contains
every positive rational number once and only once, each being represented in low-
est terms. The first four iterations lead to
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This tree is in fact a permutation (inside each generation) of the Stern–Brocot tree.
Its limitation to [0, 1] is a permutation of the Farey tree. Thus, the n-th generation
consists of 2n−1 positive rationals. It is surprising that the iteration discovered by
Newman [2003],

x1 = 1, xn+1 = 1/(2[xn] + 1− xn),

produces exactly rationals of this tree, reading them line-by-line, and thus gives an
example of a simple recurrence which produces all positive rationals (here, as usual,
[?] stands for the integer part function). Recently, Dilcher and Stolarsky [2007]
produced a natural analogue of this tree, replacing integers r with polynomials
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r ∈ (Z/2Z)[x]. One of the results is that these polynomials also satisfy analogous
recurrence (following the proper definition of an integral part of a rational func-
tion, which comes from the Euclidean algorithm). It is important to note that the
n-th generation of the Calkin–Wilf binary tree consists of exactly those rational
numbers, whose elements of the continued fraction sum up to n. This fact can
be easily inherited directly from the definition. First, if a rational number a/b is
represented as a continued fraction [a0, a1, . . . , ar ], then the map a/b→ (a+b)/b
maps a/b to [a0 + 1, a1 . . . , ar ]. Second, the map a/b → a/(a + b) maps a/b
to [0, a1 + 1, . . . , ar ] if a/b < 1, and to [1, a0, a1, . . . , ar ] if a/b > 1. This is
an important fact which makes the investigations of rational numbers according
to their position in the Calkin–Wilf tree highly motivated from the perspective
of metric number theory and dynamics of continued fractions. The sequence of
numerators

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, . . .

is called the Stern diatomic sequence and was introduced in [Stern 1858]. It satis-
fies the recurrence relations

s(0)= 0, s(1)= 1, s(2n)= s(n), s(2n+ 1)= s(n)+ s(n+ 1).

This sequence and the pairs (s(n), s(n+1)) have also been investigated by Reznick
[≥ 2009]. It is not surprising (bearing in mind the relation to the Farey tree) that
the distribution of numerators, which are defined via the moments

Q(τ )
N =

2N+1∑
n=2N+1

s2τ (n), for τ > 0,

has an interesting application in thermodynamics and spin physics [Contucci and
Knauf 1997; Cvitanović et al. 1998].

In [Alkauskas ≥ 2009] it was shown that each generation of the Calkin–Wilf
tree possesses a distribution function Fn(x), and that Fn(x) converges uniformly
to F(x). This is, of course, a well known fact about the Farey tree. The function
F(x) as a distribution function is uniquely determined by the functional equation
[Alkauskas ≥ 2009]

2F(x)=
{

F(x − 1)+ 1 if x ≥ 1,
F( x

1−x ) if 0≤ x < 1.
(2)

This implies F(x)+ F(1/x) = 1. The mean value of F(x) has been investigated
by several authors, and was proved to be 3/2 [Alkauskas ≥ 2009; Reznick ≥ 2009;
Steuding 2006; Wirsing 2006].



THE MOMENTS OF THE QUESTION MARK FUNCTION 125

On the other hand, almost all the results mentioned reveal the properties of the
Minkowski question mark function as a function itself. Nevertheless, the final goal
and motivation of [Alkauskas ≥ 2009] and this work is to show that in fact there
exist several unique and very interesting analytic objects associated with F(x)
which encode a great deal of essential information about it. These objects will be
introduced in Section 2.

Lastly, and most importantly, let us point out that, surprisingly, there are striking
similarities between the results proved here and in [Alkauskas ≥ 2009] with the
results on period functions for Maass wave forms in [Lewis and Zagier 2001] . That
work is an expanded and clarified exposition of an earlier paper by Lewis [1997].
The concise exposition of these objects, their properties and relations to the Selberg
zeta function can be found in [Zagier 2001]. The reader who is not indifferent to
the beauty of the Minkowski question mark function is strongly urged to compare
results in this work with those in [Lewis and Zagier 2001]. Thus, instead of making
quite numerous references to [Lewis and Zagier 2001] at various stages of the work
(mainly in Sections 2, 3, 8 and 9), it is more useful to give a table of most important
functions encountered there, juxtaposed with analogous objects in this work. Here
is the summary (the notations on the right will be explained in Sections 2 and 9).

Maass wave form u(z) 9(x) Periodic function on the real line
Period function ψ(z) G(z) Dyadic period function
Distribution U (x) dx dF(x) Minkowski’s “question mark”
L-functions L0(ρ), L1(ρ) ζM(s) Dyadic zeta function
Entire function g(w) m(t) Generating function of moments
Entire function φ(w) M(t) Generating function of moments
Spectral parameter s 1/2; 1 Analogue of a spectral parameter

As a matter of fact, the first entry is the only one where the analogy is not precise.
Indeed, the distribution U (x) is the limit value of the Maass wave form u(x + iy)
on the real line (as y→+0), in the sense that u(x + iy) ∼ y1−sU (x)+ ysU (x),
whereas 9(x) is the same F(x) made periodic. As far as the last entry of the table
in concerned, the analogue of a spectral parameter, sometimes this role is played
by 1, sometimes by 1/2. This occurs, obviously, because the relation between the
Maass forms and F(x) is just an analogy which is not strictly defined.

This work is organized as follows. In Section 2 we give a summary of the
previous results obtained in [Alkauskas≥2009]. In Section 3 we give a short proof
of the three-term functional (13), and prove the existence of certain distributions,
which can be thought of as close relatives of F(x). In Section 4 we demonstrate
that there are linear relations among moments ML , and they are presented in an
explicit manner. Moreover, we formulate a conjecture, based on the analogy with
periods, that these are the only possible relations. In Section 5, the estimate for the
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moments mL is proved. As a consequence, limL→∞(log mL)/(
√

L)=−2
√

log 2.
In Section 6 we prove the exactness of a certain sequence of functional vector
spaces and linear maps related to F(x) in an essential way. Section 7 is devoted
to the calculation of a number of integrals, giving a rare example of a Stieltjes
integral, involving the question mark function, that can be calculated. In Section
8 we compute the Fourier expansion of F(x). It is shown that this establishes yet
another relation among m(t), G(z) and F(x) via Taylor coefficients and special
values. In Section 9, the associated Dirichlet series ζM(s) is introduced. In Section
10, some concluding remarks are presented, regarding future research; relations
between F(x) and the Calkin–Wilf tree (and the Farey tree as well) to the known
objects are established. Note also that we use the word distribution to describe
a monotone function on [0,∞) with variation 1, and also for a continuous linear
functional on some space of analytic functions. In each case the meaning should
be clear from the context.

2. Summary of previous results

This section provides a summary of previous results. For L ∈ N0, let

ML =

∫
∞

0
x L dF(x),

mL =

∫
∞

0

( x
x + 1

)L
dF(x)= 2

∫ 1

0
x L dF(x)=

∫ 1

0
x L d?(x).

(3)

Both sequences are of definite number-theoretic significance because

ML = lim
n→∞

21−n
∑

a0+a1+···+as=n

[a0, a1, .., as]
L ,

mL = lim
n→∞

22−n
∑

a1+···+as=n

[0, a1, .., as]
L ,

(4)

(the summation takes place over rational numbers presented as continued fractions;
thus, a0 ≥ 0, ai ≥ 1 for i ≥ 1, and as ≥ 2. In fact, clarification of their nature was
the initial main motivation for our work. We define the exponential generating
functions

M(t)=
∞∑

L=0

ML

L!
t L , m(t)=

∞∑
L=0

mL

L!
t L .

Thus,

M(t)=
∫
∞

0
ext dF(x), m(t)=

∫
∞

0
exp

( xt
x + 1

)
dF(x)= 2

∫ 1

0
ext dF(x).
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One easily verifies that m(t) is an entire function and that the Taylor series at
the origin for M(t) has a radius of convergence log 2. There are natural relations
among values ML and mL , independent of a specific distribution, like F(x). They
encode the relations among functions x L , L ∈ N0, and functions

(
x/(x + 1)

)L ,
L ∈ N0, given by

x L
=

∑
s≥L

(
s− 1
L − 1

)( x
x + 1

)s
.

Therefore,

ML =
∑
s≥L

(
s− 1
L − 1

)
ms . (5)

On the other hand, the intrinsic information about F(x) is encoded in the relations

mL = ML −

L−1∑
s=0

Ms

(
L
s

)
, L ≥ 0. (6)

Further, we have

M(t)=
1

2− et m(t), m(t)= etm(−t). (7)

The first relation is equivalent to the system (6), and it encodes all the information
about F(x) (provided we take into account the natural relations just mentioned).
The second one represents only the symmetry property, given by

F(x)+ F(1/x)= 1.

One of the main results about m(t) is that it is uniquely determined by the regularity
condition m(−t)� e−

√
t log 2, as t →∞, the boundary condition m(0) = 1, and

the integral equation

m(−s)= (2es
− 1)

∫
∞

0
m′(−t)J0(2

√
st) dt, s ∈ R+. (8)

(Here J0(∗) stands for the Bessel function J0(z) = 1/π
∫ π

0 cos(z sin x) dx). This
equation can be rewritten as a second type Fredholm integral equation [Kolmogorov
and Fomin 1989, chapter 9]. In fact, if we denote

ψ(s)=
√

2es − 1,
J1(2
√

st)
ψ(s)ψ(t)

= K (s, t),
m(−s)− 1
√

sψ(s)
= Y(s),

then one has

Y(s)= `(s)−
∫
∞

0
Y(t)K (s, t) dt, (9)
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where

`(s)=−
1

ψ(s)

∫
∞

0

J1(2
√

st)
√

t(2et − 1)
dt =

1
√

sψ(s)

( ∞∑
n=1

e−s/n2−n
− 1

)
.

Even more importantly, all the results about the exponential generating function
can be restated in terms of a generating function of moments. Let

G(z)=
∞∑

L=1

mL zL−1 for |z| ≤ 1 (10)

(the series converge absolutely on the boundary of a unit disc as well, as is clear
from Equation (5), or Theorem 3.) Then the integral

G(z)=
∫
∞

0

x
x+1

1− x
x+1 z

dF(x)= 2
∫ 1

0

x
1− xz

dF(x) (11)

extends G(z) to the cut plane C\(1,∞). The generating function of moments ML

does not exists due to the factorial growth of ML , but the generating function can
still be defined in the cut plane C′=C\(0,∞) by

∫
∞

0

(
x/(1− xz)

)
dF(x). In fact,

this integral equals G(z+ 1), which is the consequence of an algebraic identity

x
1− xz

=

x
x+1

1− x
x+1(z+ 1)

.

The following result was proved in [Alkauskas ≥ 2009].

Theorem 1. The function G(z), defined initially as a power series, has an analytic
continuation to the cut plane C\(1,∞) via Equation (11). It satisfies the functional
equation

−
1

1− z
−

1
(1− z)2

G
( 1

1− z

)
+ 2G(z+ 1)= G(z), (12)

and also the symmetry property

G(z+ 1)=−
1
z2 G

(1
z
+ 1

)
−

1
z
.

Moreover, G(z)→ 0, if z→∞ and the distance from z to a half line [0,∞) tends
to infinity.

Conversely, the function having these properties is unique.

Note that two functional equations for G(z) can be merged into a single one. It is
easy to check that the equation

1
z
+

1
z2 G

(1
z

)
+ 2G(z+ 1)= G(z) (13)
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is equivalent to both of them together. In fact, the change z 7→ 1/z in the last
equation gives the symmetry property, and application of it to the term G(1/z)
in Equation (13) gives the functional equation in Theorem 1. Nevertheless, it is
sometimes convenient to separate Equation (13) into two equations. The reason
for this is that in (12) all arguments belong simultaneously to H (the upper half
plane <z > 0), R, or H− (the lower half plane), whereas in (13) they are mixed.
This will become crucial later (see the Section 10).

The transition m(t)→ G(z) is given by the Laplace transform:

1+ zG(z)=
∫
∞

0
m(zt)e−t dt.

The same transform applied to the eigenfunctions of the Fredholm operator (9)
yields the following result [Alkauskas ≥ 2009].

Theorem 2. For every eigenvalue λ of the integral operator associated with the
kernel K (s, t), there exists at least one holomorphic function Gλ(z) (defined for
z ∈ C \ (1,∞)), such that

2Gλ(z+ 1)= Gλ(z)+
1
λz2 Gλ

(1
z

)
. (14)

Moreover, Gλ(z) for <z < 0 satisfies all regularity conditions, imposed by it being
an image under the Laplace transform [Lavrentjev and Shabat 1987, page 468].

Conversely, for every λ such that there exists a function which satisfies (14) and
these conditions, λ is the eigenvalue of this operator. The set of all possible λ is
countable, and λn→ 0, as n→∞.

Figure 2 shows the functions Gλ(z) (for the first six eigenvalues) for real z in the
interval [−1,−0.2]. The choice of this interval is motivated by Theorem 2. Note
also that the functional equation implies Gλ(0) =

(
1/2+ 1/(2λ)

)
Gλ(−1). Thus,

one has Gλ(0)/Gλ(−1)→∞, as λ→ 0. This can also be seen empirically from
Figure 2.

Summarizing, there are three objects associated with the Minkowski question
mark function.

• The distribution F(x) = functional equations (2) + continuity.

• The dyadic period function G(z) = three-term functional Equation (13) + mild
growth condition (as in Theorem 1).

• The exponential generating function m(t) = the integral Equation (8) + the
boundary value and diminishing condition on the negative real line.

Each of these objects is characterized by the functional equation, and subject to
some regularity conditions, is unique, and thus arises exactly from F(x). The
objects are described via the “equality" Function = Equation + Condition. This
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Figure 2. Eigenfunctions Gλ(z) for z ∈ [−1,−0.2].

means that the object on the left possesses both features; conversely, any object
with these properties is necessarily the object on the left.

As expected, here we encounter the phenomenon of bootstrapping: in all cases,
regularity conditions can be significantly relaxed, and they are sufficient for the
uniqueness, which automatically implies stronger regularity conditions. Here we
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show the rough picture of this phenomenon. In each case, we suppose that the ob-
ject satisfies the corresponding functional equation. For the details, see [Alkauskas
≥ 2009].

(i) F(x) is continuous at one point⇒ F(x) is continuous.

(ii) For every z with <z < 0, G(z− x)= O(2x/2) as

x→∞⇒ G(z)= O(|z|−1) as dist(z,R+)→∞.

(iii) m′(−t)= O(t−1) as t→∞⇒ |m(−t)| � e−
√

t log 2 as t→∞.

Corresponding converse results were proved in [Alkauskas ≥ 2009]. As far as
F(x) is concerned, this was in fact the starting point of these investigations, since
the distribution of rationals in the Calkin–Wilf tree is a certain continuous function
satisfying Equation (2); thus, it is exactly F(x). The converse result for m(t)
follows from Fredholm alternative, since all eigenvalues of the operator (9) are
strictly less than 1 in an absolute value. Finally, the converse theorem for G(z)
follows from a technical detail in the proof, which is the numerical estimate 0 <
(π2/12)− (log2 2/2) < 1; as a matter of fact, it appears that this is essentially the
same argument as in the case of m(t), since this constant gives the upper bound for
the moduli of eigenvalues.

One of the aims of this paper is to clarify the connections among these three
objects, and to add the final fourth satellite, associated with F(x). Henceforth, we
have the complete list:

• The dyadic zeta function ζM(s) (see Definition 1 below) = the functional
equation with symmetry s → −s (27) + the regularity behavior in vertical
strips.

In this case, we do not present a proof of a converse result. Indeed, the converse
result for G(z) is strongly motivated by its relation to the Eisenstein series G1(z)
(see [Alkauskas ≥ 2009] and Section 10). In the case of ζM(s), this question is
of small importance, and we rather concentrate on the direct result and its conse-
quences.

3. Three term functional equation, distributions Fλ(x)

In this section, we give a proof of (13) different from the one presented in [Alka-
uskas≥ 2009], since it is considerably shorter. For our purposes, it is convenient to
work in slightly greater generality. Suppose that λ ∈ R has the property that there
exists a function Fλ(x), x ∈ [0,∞), such that

dFλ(x + 1)=
1
2

dFλ(x), dFλ
(1

x

)
=

1
λ

dFλ(x). (15)
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We omitted the word continuous in the description of the function intentionally.
For a moment, consider Fλ(x) = F(x) with λ = −1. Then F−1(x) is certainly
continuous. The reason for introducing λ will be apparent later. Let

Gλ(z)=
∫
∞

0

1
x + 1− z

dFλ(x).

Since F(x)+ F(1/x) = 1, we see that for λ = −1 the above definition of Gλ(z)
agrees with that of (11). This integral converges to an analytic function in the cut
plane C \ (1,∞). We have

2Gλ(z+ 1)= 2
∫ 1

0

1
x − z

dFλ(x)+ 2
∫
∞

1

1
x − z

dF(x)

= 2
∫
∞

0

1
x

x+1 − z
dFλ

( x
x + 1

)
+ 2

∫
∞

0

1
x + 1− z

dFλ(x + 1)

=
2
z

∫
∞

0

( x + 1

x + 1− 1
z

− 1+ 1
)

dFλ
( 1

x + 1

)
+Gλ(z)

=
α

λz
+

1
λz2 Gλ

(1
z

)
+Gλ(z), where α =

∫
∞

0
dFλ(x).

For λ = −1 and F−1(x) = F(x), this gives Theorem 1. Further, suppose λ 6= −1.
Then

α =

∫
∞

0
dFλ(x)=

∫
∞

1
dFλ(x)+

∫ 1

0
dFλ(x)=

α

2
−
α

2λ
⇒ α = 0.

Therefore, the last functional equation reads as

2Gλ(z+ 1)=
1
λz2 Gλ

(1
z

)
+Gλ(z).

As a matter of fact, there cannot be any reasonable function Fλ(x) which satisfies
(15). Nevertheless, the last functional equation is identical to (14). Thus, Theorem
2 gives a description of all such possible λ. This suggests that we can still find
certain distributions Fλ(x). Further, as it was mentioned, −1 is not an eigenvalue
of the operator (9). Due to the minus sign in front of the operator, this is exactly the
exceptional eigenvalue, which is essential in the Fredholm alternative. The above
proof (rigorous at least in case λ = −1), surprisingly, proves that the next tauto-
logical sentence has a certain point: “−1 is not an eigenvalue because it is −1".
Indeed, we obtain a nonhomogeneous part of the three-term functional equation
only because λ=−1, since otherwise α = 0 and the equation is homogenic.

Distributions Fλ(x) can indeed be strictly defined, at least in the space of func-
tions, which are analytic in the disk D = {z : |z − (1/2)| ≤ (1/2)}, including its
boundary. This space is equipped with a topology of uniform convergence, and a
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distribution on this space is any continuous linear functional. Denote this space by
Cω. Now, since ∫ 1

0

x
1− xz

dFλ(x)=−
λ

2
Gλ(z) :=

∞∑
L=1

m(λ)
L zL−1,

define a distribution Fλ on the space Cω by 〈zL , Fλ〉 = m(λ)
L , L ≥ 1, 〈1, Fλ〉 = 0,

and for any analytic function B(z) ∈ Cω, B(z)=
∑
∞

L=0 bL zL , by

〈B, Fλ〉 =
∞∑

L=0

bL〈zL , Fλ〉.

First, 〈∗, Fλ〉 is certainly a linear functional and is properly defined, since the func-
tional Equation (14) implies that Gλ(z) possesses all left derivatives at z = 1; as a
consequence, the series

∑
∞

L=1 L p
|m(λ)

L | converges for any p ∈ N (see Theorem 3
for the estimates on moments mL ). Second, let

Bn(z)=
∞∑

L=0

b(n)L zL , n ≥ 1,

converge uniformly to B(z) in the circle |z| ≤ 1. Thus,

sup
|z|≤1
|Bn(z)− B(z)| = rn→ 0.

Then by Cauchy formula,

b(n)L =
1

2π i

∮
|z|=1

Bn(z)
zL+1 dz.

This obviously implies that |b(n)L −bL |≤ rn , L ≥ 0, and therefore 〈∗, Fλ〉 is continu-
ous, and hence it is a distribution. Using the condition dFλ(x+1)= (1/2) dFλ(x),
these distributions can be extended to other spaces. Summarizing, we have shown
that the Minkowski question mark function has an infinite sequence of “peers”
Fλ(x) which are also related to continued fraction expansion, in somewhat similar
manner. F(x) is the only “nonhomogeneous” one among them.

4. Linear relations among moments ML

In this section we clarify the nature of linear relations among the moments ML .
This was mentioned in [Alkauskas ≥ 2009], but not done in explicit form. Note
that the second identity of Equation (7) gives linear relations among moments mL :

mL =

L∑
s=0

(
L
s

)
(−1)sms, L ≥ 0.
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These linear relations can be written in terms of ML . Despite the fact that these
relations form a general phenomena for symmetric distributions, in conjunction
with the first identity in (7) they give an essential information about F(x). Let us
denote

q(x, t)= (2− et)ext
− (2et

− 1)e−xt
=

∞∑
n=1

Qn(x)
tn

n!
.

We see that Qn(x) are polynomials with integer coefficients and they are given by

Qn(x)= 2xn
− (x + 1)n − 2(1− x)n + (−x)n. (16)

The following table gives the first few polynomials.

n Qn(x) n Qn(x)

1 2x − 3 5 2x5
− 15x4

+ 10x3
− 30x2

+ 5x − 3
2 2x − 3 6 6x5

− 45x4
+ 20x3

− 45x2
+ 6x − 3

3 2x3
− 9x2

+ 3x − 3 7 2x7
− 21x6

+ 21x5
− 105x4

+ 35x3
− 63x2

+ 7x − 3
4 4x3

− 18x2
+ 4x − 3 8 8x7

− 84x6
+ 56x5

− 210x4
+ 56x3

− 84x2
+ 8x − 3

Moreover, the following statement holds.

Proposition 1. Polynomials Qn(x) have the following properties:

(i) Q2n(x) ∈ LQ

(
Q1(x),Q3(x), . . . ,Q2n−1(x)

)
, n ≥ 1;

(ii) deg Q2n = 2n− 1, deg Q2n−1 = 2n− 1, n ≥ 1;

(iii) Q̂2n(x) := (Q2n(x)+ 3)/x is reciprocal: Q̂2n(x)= x2n−2Q̂2n
(
1/x

)
;

(iv)
∫
∞

0 Qn(x) dF(x)= 0.

Naturally, it is property (iv) which makes these polynomials very important in the
study of the Minkowski question mark function. Here LQ(∗) denotes the Q-linear
space spanned by the specified polynomials.

Proof. (i) Let qe(x, t)= (1/2)
(
q(x, t)+ q(x,−t)

)
, and qo(x, t)= (1/2)

(
q(x, t)−

q(x,−t)
)
. Direct calculation shows that, if et

= T , then

2qe = ext(3− T −
2
T
)+ e−xt(3−

1
T
− 2T ),

2qo = ext(1− T +
2
T
)− e−xt(1−

1
T
+ 2T ).

This yields
∞∑

n=1

Q2n(x)
t2n

(2n)!
= qe(x, t)=

T − 1
T + 1

qo(x, t)=
et
− 1

et + 1

∞∑
n=0

Q2n+1(x)
t2n+1

(2n+ 1)!
.
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The multiplier on the right, (et
−1)/(et

+1)= tanh(t/2), is independent of x , and
this obviously proves the part (i). Also, part (ii) follows easily from Equation (16).

(iii) Since Q̂2n(x) = (1/x)(3x2n
− (x + 1)2n

− 2(x − 1)2n
+ 3), the proof is

immediate.
(iv) In fact, Equation (7) gives (2− et)M(t) = (2et

− 1)M(−t). For real |t | <
log 2, we have M(t)=

∫
∞

0 ext dF(x). This implies

∫
∞

0
q(x, t) dF(x)=

∞∑
n=0

tn

n!

∫
∞

0
Qn(x) dF(x)≡ 0, for |t |< log 2,

and this completes the proof. �

Consequently, there exist linear relations among the moments ML . Thus, for
example, part (iv) (in case n= 1 and n= 3) implies 2M1−3= 0 and 2M3−9M2+

3M1 = 3 respectively. The exact values of ML belong to the class of constants,
which can be thought as emerging from arithmetic-geometric chaos. This resem-
bles the situation concerning polynomial relations among various periods. We will
not present the definition of a period (it can be found in [Kontsevich and Zagier
2001]). In particular, the authors conjecture (and there is no support for possibility
that it can be proved wrong) that “if a period has two integral representations,
then one can pass from one formula to another using only additivity, change of
variables, and Newton–Leibniz formula, in which all functions and domains of
integration are algebraic with coefficients in Q". Thus, for example, the conjecture
predicts the possibility to prove directly that∫∫

x2
4 +3y2≤1

dx dy =
∫ 1

−1

dx
3
√
(1− x)(1+ x)2

,

without knowing that they both are equal to 2π
√

3
, and this indeed can be done.

Similarly, returning to the topic of this paper, we believe that any finite Q-linear
relation among the constants ML can be proved simply by applying the functional
equation of F(x), by means of integration by parts and change of variables. The
last proposition supports this claim. In other words, we believe that there cannot
be any other miraculous coincidences regarding the values of ML . More precisely,
we formulate

Conjecture 1. Suppose, rk ∈Q, 0≤ k ≤ L , are rational numbers such that

L∑
k=0

rk Mk = 0.
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Let `=
[ L−1

2

]
. Then

L∑
k=0

rk xk
∈ LQ

(
Q1(x),Q3(x), . . . ,Q2`+1(x)

)
.

This conjecture, if true, should be difficult to prove. It would imply, for example,
that ML for L ≥ 2 are irrational. On the other hand, this conjecture seems to be
much more natural and approachable, compared to similar conjectures regarding
arithmetic nature of constants emerging from geometric chaos, e.g. spectral values
s for Maass wave forms (say, for PSL2(Z)), or those coming from arithmetic chaos,
like nontrivial zeros of Riemann’s ζ(s). We cannot give any other evidence, save
the last proposition, to support this conjecture.

5. Estimate for the moments mL

This section deals with an asymptotic estimate for the moments mL . This result was
not obtained before, and in view of the expression in Equation (4), it is of certain
number-theoretic interest. This result should be compared with the asymptotic
formula for ML , obtained in [Alkauskas ≥ 2009]:

ML ∼
m(log 2)
2 log 2

( 1
log 2

)L
L!, for L ∈ N. (17)

A priori, as it is implied by the fact that the radius of convergence of G(z) at z = 0
is 1, and by Equation (5), for every ε > 0 and p > 1, one has

1
L p � mL � (1− ε)L ,

as L→∞. More precisely, we have

Theorem 3. Let C = e−2
√

log 2
= 0.18917 . . . . Then the following estimate holds,

as L→∞:

C
√

L
� mL � L1/4C

√
L .

Both implied constants are absolute.

Proof. Fix J ∈ N, and choose an increasing sequence of positive real numbers
µ j < 1, 1≤ j ≤ J . We will soon specify µ j in such a way that µ j → 0 uniformly
as L →∞. An estimate for mL is obtained via the defining integral (recall that
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F(x)+ F(1/x)= 1):

mL =

(∫ µ1

0
+

J−1∑
j=1

∫ µ j+1

µ j

+

∫
∞

µJ

)( 1
x + 1

)L
dF(x)

< F(µ1)+

J−1∑
j=1

( 1
µ j + 1

)L
F(µ j+1)+

( 1
µJ + 1

)L
.

Indeed, in the first integral, the integrand is bounded by 1. In the middle inte-
grals, we choose the largest value of integrand, and change bounds of integration
to [0, µ j+1]. The same is done with the last integral, with bounds changed to
[0,∞). Now choose µ j = 1/(c j

√
L) for some decreasing sequence of constants

c j . The functional equation for F(x) implies

F(x + n)= 1− 2−n
+ 2−n F(x), x ≥ 0.

Thus, 1− F(x)� 2−x , as x→∞ (the implied constants being min and max of the
function9(x); see Figure 3 and Section 8). Using the identity F(x)+F(1/x)= 1,

0.95

1

1.05

1.1

0 0.2 0.4 0.6 0.8 1

x

Figure 3. Periodic function 9(x).
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we therefore obtain

mL � 2−c1
√

L
+

J−1∑
j=1

( 1
1

c j
√

L
+ 1

)L
2−c j+1

√
L
+

( 1
1

cJ
√

L
+ 1

)L

� e−
√

Lc1 log 2
+

J−1∑
j=1

e
−
√

L( 1
c j
+c j+1 log 2)

+ e−
√

L 1
cJ . (18)

Here we need an elementary lemma.

Lemma 1. For given J ∈N, there exists a unique sequence of positive real numbers
c∗1, . . . , c∗J , such that

c∗1 =
1
c∗1
+ c∗2 =

1
c∗2
+ c∗3 = · · · =

1
c∗J−1
+ c∗J =

1
c∗J
.

Moreover, this sequence {c∗j , 1≤ j ≤ J } is decreasing, and it is given by

c∗j =
sin ( j+1)π

J+2

sin jπ
J+2

, j = 1, 2, . . . , J ⇒ c∗1 = 2 cos
π

J + 2
.

Proof. Indeed, we see that c∗1 = x determines the sequence c∗j uniquely. First,
c2 = x − 1/x = (x2

− 1)/x . Let F1(x) = x , F2(x) = x2
− 1. Suppose we have

shown that c j = F j (x)/F j−1(x) for certain sequences of polynomials. Then from
the above equations one obtains

c j+1 = c1−
F j−1(x)
F j (x)

=
x F j (x)− F j−1(x)

F j (x)
.

Thus, using induction we see that c j = F j (x)/F j−1(x), where polynomials F j (x)
are given by the initial values F0(x)= 1, F1(x)= x and then for j ≥ 1 recurrently
by F j+1(x) = x F j (x)− F j−1(x). This shows that F j (2x) = U j (x), where U (x)
stand for the classical Chebyshev U -polynomials, given by

U j (cos θ)=
sin( j + 1)θ

sin θ
.

The last equation c∗1 = 1/c∗J implies FJ+1(x) = 0. Thus, UJ+1(x/2) = 0, and all
possible values of c∗1 are given by c∗1= x=2 cos

(
(kπ)/(J+2)

)
, k=1, 2, . . . , J+1.

Thus,

c∗j =
F j (x)

F j−1(x)
=

U j (x/2)
U j−1(x/2)

=
sin k( j+1)π

J+2

sin k jπ
J+2

.
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Since our concern is only positive solutions, this gives the last statement of lemma.
Finally, monotonicity is easily verifiable. Indeed, system of equations imply c∗2 <
c∗1 , and then we act by induction. �

Thus, c∗1 > 2− b/J 2 for some constant b > 0. Returning to the proof of the
Theorem 3, for given J , let c∗j be the sequence in the lemma, and let c∗i = ci

√
log 2.

Thus,

c1 log 2=
1
c1
+ c2 log 2=

1
c2
+ c3 log 2= · · · =

1
cJ−1
+ cJ log 2=

1
cJ
.

Choosing exactly this sequence for the estimate (18), and using the bound for c∗1 ,
we get:

mL � (J + 1)e−
√

Lc1 log 2 < (J + 1)C
√

Le
b
√

log 2

J2

√
L
.

Finally, the choice J = [L1/4
] establishes the upper bound.

The lower estimate is immediate. In fact, let µ= 1/(c
√

L). Then

mL >

∫ µ

0

( 1
x + 1

)L
dF(x) >

( 1
µ+ 1

)L
F(µ)� 2−c

√
L
· e−
√

L 1
c

The choice c = log−1/2 2 gives the desired bound. �

The constants in Theorem 3 can also be calculated without great effort, but this
is astray of the main topic of the paper.

It should be noted that, if we start directly from the last definition (3) of mL , then
in the course of the proof of Theorem 3, we use both equalities F(x)+F(1/x)= 1
and 2F(x/(x + 1)) = F(x). Since these two determine F(x) uniquely, generally
speaking, our estimate for mL is characteristic only to F(x). A direct inspection of
the proof also reveals that the true asymptotic “action" in the second definition (3)
of mL takes place in the neighborhood of 1. This, obviously, is a general fact for
probabilistic distributions with proper support on the interval [0, 1]. Additionally,
calculations show that the sequence mL/(L1/4C

√
L) is monotonically decreasing.

This is indeed the case, and there exists limL→∞(mL/L1/4C
√

L) [Alkauskas 2008].
As a final remark, we note that the result of Theorem 3 must be considered

in conjunction with the linear relations mL =
∑L

s=0
(L

s

)
(−1)sms , L ≥ 0, and the

natural inequalities, imposed by the fact that mL is a sequence of moments of prob-
abilistic distribution with support on the interval [0, 1]. We thus have Hausdorff
conditions, which state that for all nonnegative integers m and n, one has

2
∫ 1

0
xn(1− x)m dF(x)=

m∑
i=0

(
m
i

)
(−1)i mi+n > 0.

This is, of course, the consequence of monotonicity of F(x).
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6. Exact sequence

In this section we prove the exactness of a sequence of continuous linear maps,
intricately related to the Minkowski question mark function F(x). Let C[0, 1]
denote the space of continuous, complex-valued functions on the interval [0, 1]
with supremum norm. For f ∈ C[0, 1], one has the identity∫ 1

0
f (x) dF(x)=

∞∑
n=1

∫ 1

0
f
( 1

x + n

)
2−n dF(x), (19)

Indeed, using the functional Equation (2), we have∫ 1

0
f (x) dF(x)=

∫
∞

1
f
(1

x

)
dF(x)=

∞∑
n=1

∫ 1

0
f
( 1

x + n

)
dF(x + n),

which is exactly (19). Let Cω denote, as before, the space of analytic functions in
the disk D= |z−1/2| ≤ 1/2, including its boundary. We equip this space with the
topology of uniform convergence (as a matter of fact, we have a wider choice of
spaces; this one is chosen as an important example). Now, consider a continuous
functional on Cω given by T ( f ) =

∫ 1
0 f (x) dF(x), and a continuous noncompact

linear operator [L f ](x) = f (x)−
∑
∞

n=1 f
( 1

x+n

)
2−n . Finally, let i stand for the

natural inclusion i : C→ Cω.

Theorem 4. The following sequence of maps is exact:

0→ C
i
→Cω

(∗)

L
→ Cω

(∗∗)

T
→C→ 0. (20)

Proof. First, i is obviously a monomorphism. Let f ∈ Ker(L). This means that

f (x)=
∞∑

n=1

f
(
1/(x + n)

)
2−n.

Let x0 ∈ [0, 1] be such that | f (x0)| = supx∈[0,1] | f (x)|. Since
∑
∞

n=1 2−n
= 1, this

yields
f (1/(x0+ n))= f (x0) for n ∈ N.

By induction,
f ([0, n1, n2, . . . , n I + x0])= f (x0)

for all I ∈ N, and all ni ∈ N, 1 ≤ i ≤ I ; here [?] stands for the (regular) continued
fraction. Since this set is everywhere dense in [0, 1] and f is continuous, this forces
f (x)≡ const for x ∈ [0, 1]. Due to the analytic continuation, this is valid for x ∈D
as well. Hence, we have the exactness at the term (∗).
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Next, T is obviously an epimorphism. Further, the identity in Equation (19)
implies that Im(L)⊂Ker(T ). The task is to show that indeed we have an equality.
At this stage, we need the following lemma. Denote

[S f ](x)=
∞∑

n=1

f
(
1/(x + n)

)
2−n.

Lemma 2. Let f ∈ Cω. Then [Sn f ](x)= 2T ( f )+O(γ−2n) for x ∈D; here T ( f )
stands for the constant function, γ =

(
(1+
√

5)/2
)

is the golden section, and the
bound implied by O is uniform for x ∈ D.

Proof. In fact, the lemma is true for any function with continuous derivative. Let
x ∈ D. We have

[Sr f ](x)=
∞∑

n1,n2,...,nr=1

2−(n1+n2+···+nr ) f ([0, n1, n2, . . . , nr + x]).

The direct inspection of this expression and Equation (1) shows that this is ex-
actly twice the Riemann sum for the integral

∫ 1
0 f (x) dF(x), corresponding to

the division of unit interval into intervals with endpoints being [0, n1, n2, . . . , nr ],
ni ∈ N. From the basic properties of Möbius transformations we inherit that the
set [0, n1, n2, . . . , nr + x] for x ∈ D is a circle Dr whose diagonal is one of these
intervals, say Ir . For fixed r , the largest of these intervals has endpoints Fr−1/Fr

and Fr/Fr+1, where Fr stands for the usual Fibonacci sequence. Thus, its length
is 1/(Fr Fr+1)∼ cγ−2r . Let x0, x1 ∈ Dr , and supx∈D | f

′(x)| = A. We have

sup
x0,x1∈Dr

| f (x0)− f (x1)| ≤ Acγ−2r .

Thus, the Riemann sum deviates from the Riemann integral no more than

|[Sr f ](x)− 2T ( f )| ≤ Acγ−2r
∞∑

n1,n2,...,nr=1

2−(n1+n2+···+nr ) = Acγ−2r .

This proves the Lemma. �

Thus, let f ∈ Ker(T ). All we need is to show that the equation f = g − Sg
has a solution g ∈ Cω. Indeed, let g = f +

∑
∞

n=1 Sn f . By the above lemma,
‖Sn f ‖ = O(γ−2n). Thus, the series defining g converges uniformly and hence g
is an analytic function. Finally, g−Sg = f ; this shows that Ker(T )⊂ Im(L) and
the exactness at the term (∗∗) is proved. �

These results imply that, for example, Q := Im(L) is a linear subspace of Cω of
codimension 1. Further research proves that L|Q is an isomorphism.
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The eigenfunctions of S acting on the space Cω are given by

G?(−x)=
∫
−x

0
Gλ(z) dz+

∫ 0

−1
Gλ(z) dz

(see Equations (22) and (23) in Section 7). Thus, the problem of convergence of
Sn f is completely analogous to the problem of convergence for the iterates of the
Gauss–Kuzmin–Wirsing operator. Let us remind that if f ∈ C[0, 1], it is given by

[W f ](x)=
∞∑

n=1

1
(x + n)2

f
( 1

x + n

)
.

Dominant eigenvalue 1 correspond to an eigenfunction 1/(1+x). As it was proved
by Kuzmin, provided that f (x) has a continuous derivative, there exists c> 0, such
that

[Wn f ](x)=
A

1+ x
+ O(e−c

√
n), as n→∞; A =

1
log 2

∫ 1

0
f (x) dx .

The proof can be found in [Khinchin 1964]. Note that this was already conjec-
tured by Gauss, but he did not give the proof nor for the main neither for the
error term. For the most important case, when f (x) = 1, Lévy established the
error term of the form O(Cn) for C = 0.7. Finally, Wirsing [1973/74] gave
the exact result in terms of eigenfunctions of W, establishing the error term of
the form cn9(x) + O(x(1 − x)µn), where c = −0.303663 . . . is the subdomi-
nant eigenvalue (the Gauss–Kuzmin–Wirsing constant), 9(x) is a corresponding
eigenfunction, and µ < |c|. Returning to our case, we have completely analogous
situation: operator W is replaced by S, and the measure dx is replaced by dF(x).
The leading eigenvalue 1 corresponds to the constant function. However strange,
Wirsing did not notice that eigenvalues of W are in fact eigenvalues of certain
Hilbert–Schmidt operator. This was later clarified by Babenko [1978]. Recently,
the Gauss–Kuzmin–Lévy theorem was generalized by Manin and Marcolli [2002].
The paper is very rich in ideas and results; in particular, it sheds a new light on the
theorem just mentioned.

Concerning spaces for which Theorem 4 holds, we can investigate the space
C[0, 1] as well. However, if f ∈ C[0, 1] and f ∈ Ker(T ), the significant difficulty
arises in proving uniform convergence of the series

∑
∞

n=0 Sn f . Moreover, operator
S, acting on the space C[0, 1], has additional point spectra apart from λ. Indeed,
let

Pn(y)= yn
+

n−1∑
i=0

ai yi
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be a polynomial of degree n which satisfies yet another variation of three-term
functional equation

2Pn(1− 2y)− Pn(1− y)=
1
δn

Pn(y)

for certain δn . The comparison of leading terms shows that

δn =
(−1)n

2n+1− 1
,

and that indeed for this δn there exists a unique polynomial, since each coefficient
a j can be uniquely determined with the knowledge of coefficients ai for i > j .
Thus,

P1(y)= y−
1
4
, P2(y)= y2

−
3
5

y+
1
15
,

P3(y)= y3
−

21
22

y2
+

3
11

y−
7

352
, P4(y)= y4

−
30
23

y3
+

14
23

y2
−

45
391

y+
37

5865
.

The equation for Pn(y) implies that (after a substitution y 7→ 2−`y and division
by 2`)

21−`Pn(1− 21−`y)− 2−`Pn(1− 2−`y)= δ−1
n 2−`Pn(2−`y).

Now, sum this over ` ∈ N, and finally substitute y 7→ 1− y. This gives

δn Pn(y)=
∞∑
`=1

1
2`

Pn

(1− y
2`

)
. (21)

Then we have:

Proposition 2. The function Pn(F(x)) is the eigenfunction of S, acting on the
space C[0, 1], and eigenvalue (−1)n/(2n+1

−1) belongs to the point spectra of S.

Proof. Indeed,

[S(Pn ◦ F)](x)=
∞∑
`=1

1
2`

Pn ◦ F
( 1

x + `

)
(2)
=

∞∑
`=1

1
2`

Pn

(
1− F(x + `)

)
(2)
=

=

∞∑
`=1

1
2`

Pn

(
2−`− 2−`F(x)

)
(21)
= δn Pn(F(x)). �

Thus, the operator S behaves differently in spaces C[0, 1] and Cω. We postpone
the analysis of this operator in various spaces for the future.
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7. Integrals involving F(x)

In this section we calculate certain integrals. Only rarely it is possible to express an
integral involving F(x) in closed form. In fact, all results we possess come from
the identity M1= 3/2, and any iteration of identities similar to (19). The following
theorem adds identities of quite a different sort.

Theorem 5. Let Gλ(z) be any function that satisfies the hypotheses of Theorem 2.
Then

(i) λ
λ+1

∫ 1
0 Gλ(−x) dx =

∫ 1
0 Gλ(−x)F(x) dx ;

(ii) −
∫ 1

0 log x dF(x)= 2
∫ 1

0 log(1+ x) dF(x)=
∫ 1

0 G(−x) dx ;

(iii)
∫ 1

0 G(−x)(1+ x2) dF(x)= 1
4 ;

(iv)
∫ 1

0 Gλ(−x)
(

1− x2

λ

)
dF(x)= 0.

Proof. We first prove identity (i). By (14), for every integer n ≥ 1, we have

2Gλ(−z− n+ 1)−Gλ(−z− n)=
1

λ(z+ n)2
Gλ

(
−

1
z+ n

)
.

Divide this by 2n and sum over n ≥ 1. By Theorem 1, the sum on the left is
absolutely convergent. Thus,

Gλ(−z)=
∞∑

n=1

1
λ2n(z+ n)2

Gλ

(
−

1
z+ n

)
.

Let G?
λ(x)=

∫ x
0 Gλ(z) dz. In terms of G?

λ(x), the last identity reads as

−G?
λ(−x)=

∞∑
n=1

1
λ2n G?

λ

(
−

1
x + n

)
−

∞∑
n=1

1
λ2n G?

λ

(
−

1
n

)
. (22)

In particular, setting x = 1, one obtains

∞∑
n=1

1
λ2n G?

λ

(
−

1
n

)
= (

1
λ
− 1)G?

λ(−1). (23)
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Now we are able to calculate the following integral (we use integration by parts in
Stieltjes integral twice).∫ 1

0
Gλ(−x)F(x) dx

=−

∫ 1

0

d
dx

G?
λ(−x)F(x) dx =−

1
2

G?
λ(−1)+

∫ 1

0
G?
λ(−x) dF(x)

(22)
= −

1
2

G?
λ(−1)+

1
2

∞∑
n=1

1
λ2nG?

λ

(
−

1
n

)
−

1
λ

∞∑
n=1

∫ 1

0
G?
λ

(
−

1
x + n

)
2−n dF(x)

(19),(23)
= −

1
2

G?(−1)+
1
2
(

1
λ
− 1)G?

λ(−1)−
1
λ

∫ 1

0
G?
λ(−x) dF(x)

=−G?(−1)−
1
λ

∫ 1

0
Gλ(−x)F(x) dx .

Thus, the same integral is on the both sides, and this gives∫ 1

0
Gλ(−x)F(x) dx =−

λ

λ+ 1
G?
λ(−1).

This establishes the statement (i).
Now we proceed with the second identity. Integral (11) and the Fubini theorem

imply∫ 1

0
G(−z) dz = 2

∫ 1

0

∫ 1

0

x
1+ xz

dz dF(x)= 2
∫ 1

0
log(1+ x) dF(x).

Lastly, we apply (19) twice to obtain the needed equality. Indeed,

I =
∫ 1

0
log(1+ x) dF(x)

(19)
=

∞∑
n=1

1
2n

∫ 1

0
log

(
1+

1
x + n

)
dF(x)

=

∞∑
n=1

1
2n

∫ 1

0
log(x + n) dF(x)− I

(19)
= −

∫ 1

0
log x dF(x)− I.

This finishes the proof of (ii).
In proving (iii), we can be more concise, since the pattern of the proof goes

along the same line. One has

G(−z)=−
∞∑

n=1

1
2n(z+ n)2

G
(
−

1
z+ n

)
+

∞∑
n=1

1
2n(z+ n)

.
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Thus, ∫ 1

0
G(−x) dF(x)=−

∞∑
n=1

∫ 1

0

1
2n(x + n)2

G
(
−

1
x + n

)
dF(x)+

∞∑
n=1

∫ 1

0

1
2n(x + n)

dF(x)
(19)
= −

∫ 1

0
x2 G(−x) dF(x)+

∫ 1

0
x dF(x).

Since
∫ 1

0 x dF(x) = m1
2 =

1
4 , this finishes the proof of (iii). Part (iv) is completely

analogous. �

Part (iii), unfortunately, gives no new information about the sequence mL . In-
deed, the identity can be rewritten as

∞∑
L=1

mL(−1)L−1(mL−1+mL+1)= 1/2,

which, after regrouping, turns into the identity m0m1 = 1/2.
Concerning part (iv), and taking into account Theorem 4, one could expect

that in fact Ker(T ) is equal to the closure of vector space spanned by functions
Gλ(−x)(1−x2/λ). If this is the case, then these functions, along with G(z)(1+x2),
produce a Schauder basis for Cω. Thus, if

x L
=

∑
λ

a(λ)L Gλ(−x)(1− x2/λ),

then a(−1)
L = 2mL . We hope to return to this point in the future.

Concerning (i), note that the values of both integrals depend on the normaliza-
tion of Gλ, since it is an eigenfunction. Replacing Gλ(z) by cGλ(z) for some
c ∈ R, we deduce that the left integral is equal to 1 or 0. Then (i) states that∫ 1

0 F(x)Gλ(−x) dx = λ/(λ + 1) or 0 (apparently, it is never equal to 0). The
presence of λ + 1 in the denominator should come as no surprise, minding that
λ is the eigenvalue of the Hilbert–Schimdt operator. The Fredholm alternative
gives us a way of solving the integral equation in terms of eigenfunctions. Since
|λ| ≤ λ1 = 0.25553210 . . . < 1, the integral equation is a posteriori solvable, and
λ+ 1 appears in the denominators. Curiously, it is possible to approach this iden-
tity numerically. One of the motivations is to check its validity, since the result
heavily depends on the validity of almost all the preceding results in [Alkauskas
≥ 2009]. The left integral causes no problems, since Taylor coefficients of Gλ(z)
can be obtained at high precision as an eigenvector of a finite matrix, which is the
truncation of an infinite one. On the other hand, the right integral can be evaluated
with less precision, since it involves F(x), and thus requires more time and space
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consuming continued fractions algorithm. Nevertheless, the author of this paper
has checked it with a completely satisfactory outcome, confirming the validity.

Just as interestingly, results (i) and (iv) can be considered a reflection of a “pair-
correlation" between eigenvalues λ and eigenvalue −1 (see Section 3 for some
remarks on this topic). Moreover, minding properties of the distributions Fµ(x)
(here µ simply means another eigenvalue), the following formal result can be ob-
tained. Given the conditions enforced on Fµ by (15), the identity (19) is replaced
by (for f ∈ Cω)∫ 1

0
f (x) dFµ(x)=−

1
µ

∞∑
n=1

∫ 1

0
f
( 1

x + n

)
2−n dFµ(x).

Then our trick works smoothly again, and this yields an identity∫ 1

0
Gλ(−x)(λ+µx2) dFµ(x)= 0.

This fact is an interesting example of pair-correlation between eigenvalues of the
Hilbert–Schmidt operator in (9). Using a definition of the distribution Fµ, the last
identity is equivalent to

∞∑
L=1

(−1)L(m(µ)
L m(λ)

L+1λ−m(λ)
L m(µ)

L+1µ
)
= 0,

and thus is a property of “orthogonality" of Gλ(z). This expression is symmetric
regarding µ and λ. As could be expected, it is void in case µ = λ. As a matter of
fact, the proof of the above identity is fallacious, since the definition of distributions
Fλ does not imply properties (15) (these simply have no meaning). Nevertheless,
numerical calculations suggest that the last identity truly holds. We also hope to
return to this topic in the future.

8. Fourier series

The Minkowski question mark function F(x), originally defined for x≥0 by Equa-
tion (1), can be extended naturally to R simply by the functional equation

F(x + 1)= 1/2+ 1/2F(x).

Such an extension is still given by the expression (1), with the difference that a0

can be negative integer. Naturally, the second functional equation is not preserved
for negative x . Thus, we have

2x+1(F(x + 1)− 1)= 2x(F(x)− 1) for x ∈ R.
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So, 2x(F(x)−1) is a periodic function, which we will denote by −9(x). Figure 3
gives the graph of 9(x) for x ∈ [0, 1]. Thus,

F(x)=−2−x9(x)+ 1.

Since F(x) is singular, the same is true for 9(x): it is differentiable almost every-
where, and for these regular points one has 9 ′(x) = log 2 ·9(x). As a periodic
function, it has an associated Fourier series expansion

9(x)∼
∞∑

n=−∞

cne2π inx .

Since F(x) is real function, this gives c−n = cn , n ∈Z. Let for n≥ 1, cn = an+ ibn ,
and a0 = c0/2, b0 = 0. Here we list initial numerical values for

c?n = cn(2 log 2− 4π in)

(see Proposition 3 for the reason of this normalization).

c?0 = 1.428159, c?3 =+0.128533−0.026840i, c?6 =−0.262601+0.004128i,

c?1 =−0.521907+0.148754i, c?4 =−0.140524−0.021886i, c?7 =+0.198742−0.013703i,

c?2 =−0.334910−0.017869i, c?5 =+0.285790+0.003744i, c?8 =−0.008479+0.024012i.

It is important to note that we do not pose the question about the convergence of
this Fourier series. For instance, Salem [1943] and Reese [1989] give examples of
singular monotone increasing functions f (x), whose Fourier–Stieltjes coefficients∫ 1

0 e2π inx d f (x) do not vanish, as n→∞. Salem [1943] even investigated f (x)=
?(x). In our case, the convergence problem is far from clear. Nevertheless, in
all cases we substitute −2−x9(x) instead of (F(x)−1) under an integral. Let, for
example, W (x) be a continuous function of at most polynomial growth, as x→∞,
and let 9N (x)=

∑N
n=−N cne2π inx . Then∣∣∣ ∫ ∞

0
W (x)

(
(F(x)− 1)+ 2−x9N (x)

)
dx
∣∣∣

�

∞∑
r=0

|W (r)|2−r
·

∫ 1

0
|2x(F(x)− 1)+9N (x)| dx .

Since 2x(F(x)− 1) ∈ L2[0, 1], the last integral tends to 0, as N →∞. As it was
said, this makes the change of (F(x)−1) into−2−x9(x) under integral legitimate,
and this also justifies term-by-term integration. Henceforth, we will omit a step of
changing 9(x) into 9N (x), and taking a limit N →∞.

A general formula for the Fourier coefficients is given by
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Proposition 3. Fourier coefficients cn are related to special values of exponential
generating function m(t) through the equality

cn =
m(log 2− 2π in)
2 log 2− 4π in

, and cn = O(n−1).

Proof. We have (note that F(1)= 1/2):

cn =−

∫ 1

0
2x(F(x)−1)e−2π inx dx =−

1
log 2−2π in

∫ 1

0
(F(x)−1) dex(log 2−2π in)

=
1

log 2−2π in

∫ 1

0
ex(log 2−2π in) dF(x)=

m(log 2−2π in)
2 log 2−4π in

.

The last assertion of the proposition is obvious. �

This proposition is a good example of intrinsic relations among the three func-
tions F(x), G(z) and m(t). Indeed, the moments mL of F(x) give Taylor coef-
ficients of G(z), which are proportional (up to the factorial multiplier) to Taylor
coefficients of m(t). Finally, special values of m(t) on a discrete set of vertical line
produce Fourier coefficients of F(x).

Proposition 4 describes explicit relations among Fourier coefficients and the mo-
ments. Additionally, in the course of the proof we obtain the expansion of G(z) for
negative real z in terms of incomplete gamma integrals.

Proposition 4. For L ≥ 1, one has

ML = L!
∑
n∈Z

cn

(log 2− 2π in)L . (24)

Proof. Let z < 0 be fixed negative real. Then integration by parts gives

G(z+ 1)=
∫
∞

0

x
1− xz

d(F(x)− 1)=
∫
∞

0

1
(1− xz)2

2−x9(x) dx

=

∞∑
n=−∞

cn

∫
∞

0

1
(1− xz)2

2−x e2π inx dx =
∞∑

n=−∞

cnVn(z),

where

Vn(z)=
∫
∞

0

1
(1− xz)2

e−x(log 2−2π in) dx

=
1

log 2− 2π in

∫
∞(log 2−2π in)

0

1
(1− yz

log 2−2π in )
2 e−y dy.
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Since by our convention z < 0, the function under integral does not have poles for
<y > 0, and Jordan’s Lemma gives

Vn(z)=
1

log 2− 2π in

∫
∞

0

1
(1− yz

log 2−2π in )
e−y dy

=
1

log 2− 2π in
· V
( z

log 2− 2π in

)
, where V (z)=

∫
∞

0

1
(1− yz)2

e−y dy.

The function V (z) is defined for the same values of z as G(z+ 1) and therefore is
defined in the cut plane C \ (0,∞). Consequently, this implies

G(z+ 1)=
∑
n∈Z

cn

log 2− 2π in
· V
( z

log 2− 2π in

)
. (25)

The formula is only valid for real z < 0. The obtained series converges uniformly,
since |1− y z

log 2−2π in | ≥ 1 for n ∈ Z and z < 0. Since

V
(1

z

)
=−ze−z

∫
∞

1

1
y2 eyz dy,

this gives us the expansion of G(z + 1) on a negative real line in terms of in-
complete gamma integrals. As noted before, and this can be seen from Equation
(5), the function G(z) has all left derivatives at z = 1. Further, the (L − 1)-fold
differentiation of V (z) gives

V (L−1)(z)= L!
∫
∞

0

yL−1

(1− yz)L+1 e−y dy⇒ V (L−1)(0)= L!(L − 1)!.

Comparing (25) with (5) and (10), this gives the desired relation among moments
ML and Fourier coefficients, as stated in the proposition. �

It is important to compare this expression with the first equality of (7). Indeed,
since m(t) is entire, that equality via the Cauchy residue formula implies (17). It is
exactly the leading term in (24), corresponding to n = 0.

9. Associated zeta function

Recall that for complex c and s, cs is a multivalued complex function, defined
as es log c

= es(log |c|+i arg(c)). Henceforth, we fix the branch of the logarithm by
requiring that the value of arg c for c in the right half plane <c > 0 be in the
range (−π/2, π/2). Thus, if s = σ + i t , and if we denote rn = log 2+ 2π in, then
|r−s

n | = |rn|
−σ et arg rn ∼ |rn|

−σ e±π t/2 as n → ±∞. Minding this convention and
the identity (24), we introduce the zeta function, associated with the Minkowski
question mark function.
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Definition 1. The dyadic zeta function ζM(s) is defined in the half plane <s > 0
by the series

ζM(s)=
∑
n∈Z

cn

(log 2− 2π in)s
, (26)

where cn are Fourier coefficients of 9(x), and for each n, (log 2− 2π in)s is un-
derstood in the meaning just described.

Then we have

Theorem 6. ζM(s) has an analytic continuation as an entire function to the whole
plane C, and satisfies the functional equation

ζM(s)0(s)=− ζM(−s)0(−s). (27)

Further, ζM(L) = ML/L! for L ≥ 0. ζM(s) has trivial zer s for negative integers:
ζM(−L)= 0 for L ≥ 1 and ζM

′(−L)= (L − 1)!(−1)L ML . Additionally, ζM(s) is
real on the real line, and thus ζM(s) = ζM(s). The behavior of ζM(s) in vertical
strips is given by estimate

| ζM(σ + i t)| � t−σ−1/2
· eπ |t |/2

uniformly for a ≤ σ ≤ b, |t | →∞.

As we will see, these properties are immediate (subject to certain regularity condi-
tions) for any distribution f (x)with a symmetry property f (x)+ f (1/x)=1. Nev-
ertheless, it is a unique characteristic of F(x) that the corresponding zeta function
can be given a Dirichlet series expansion, like Equation (26). We do not give the
proof of the converse result, since there is no motivation for this. But empirically,
we see that this functional equation is equivalent exactly to the symmetry prop-
erty. Additionally, the presence of a Dirichlet series expansion yields a functional
equation of the kind f (x + 1) = 1/2 f (x)+ 1/2. Generally speaking, these two
together are unique for F(x). Note also that the functional equation implies that
ζM(i t)0(1+ i t)=

∫
∞

0 x i t dF(x) is real for real t . Figures 4 and 5 shows its graph
for 1.5 ≤ t ≤ 180. Further calculations support the claim that this function has
infinitely many zeros on the critical line <s = 0. On the other hand, numerical
calculations of contour integrals reveal that there exist many more zeros apart from
these. We need one classical integral.

Lemma 3. Let A be real number, arctan(A) = φ ∈ (−π/2, π/2), and <s > 0.
Then ∫

∞

0
x s−1e−x cos(Ax) dx =

1
(1+ A2)s/2

cos(φs)0(s).

The same is valid with cos replaced by sin on both sides.
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Figure 4. ζM(i t)0(1+ i t), 1.5≤ t ≤ 90.
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Figure 5. ζM(i t)0(1+ i t), 90≤ t ≤ 180.
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This can be found in any extensive table of gamma integrals or tables of Mellin
transforms.

Proof of Theorem 6. Let for n ≥ 0, arctan (2πn/ log 2)= φn . We will calculate the
following integral. Let <s > 0. Then integrating by parts and using Lemma 3, one
obtains∫
∞

0
x s d(F(x)− 1)= s

∫
∞

0
x s−12−x9(x) dx = s

∑
n∈Z

cn

∫
∞

0
x s−12−x e2π inx dx

= s
∞∑

n=0

∫
∞

0
x s−1

(
2an cos(2πnx)− 2bn sin(2πnx)

)
2−x dx

= 2s0(s)
∞∑

n=0

| log 2+ 2πni |−s
(

an cos(φns)− bn sin(φns)
)

= s0(s)
∑
n∈Z

cn

(log 2− 2π in)s
.

Note that the function
∫
∞

0 x s dF(x) is clearly analytic and entire. Thus, s0(s) ζM(s)
is an entire function, and this proves the first statement of the theorem. Since
F(x)+ F(1/x) = 1, this gives

∫
∞

0 x s dF(x) =
∫
∞

0 x−s dF(x), and this, in turn,
implies the functional equation. All other statements follow easily from this, our
previous results, and known properties of the 0 function. In particular, if s=σ+i t ,

| ζM(s)0(s+ 1)| ≤
∫
∞

0
|x s
| dF(x)= ζM(σ )0(σ + 1),

and the last statement of the theorem follows from the Stirling’s formula for the 0
function: |0(σ+i t)|∼

√
2π tσ−1/2e−π |t |/2 uniformly for a≤σ ≤b, as |t |→∞. �

At this stage, we remark on the similarity and differences with classical results
known for the Riemann zeta function ζ(s) =

∑
∞

n=1(1/ns). Let θ(x) denote the
usual theta function θ(x)=

∑
n∈Z eπ in2x , =x > 0. The following table summarizes

all the ingredients which eventually produce the functional equation both for ζ(s)
and ζM(s).

Function ζ(s) ζM(s)

Dirichlet series exp. Periodicity: θ(x + 2)= θ Periodicity: F ′(x + 1)= (1/2)F ′(x)
Functional equation θ(i x)= (1/

√
x)θ(i/x) F ′(x)=− F ′(1/x)

Since F(x) is a singular function, its derivative should be considered as a dis-
tribution on the real line. For this purpose, it is sufficient to consider a distri-
bution U (x) as a derivative of a continuous function V (x), for which the scalar



154 GIEDRIUS ALKAUSKAS

product 〈U, f 〉, defined for functions f ∈ C∞(R) with compact support, equals
−〈V, f ′〉 = −

∫
R

f ′(x)V (x) dx . Thus, both θ(x) and 2x F ′(x) are periodic distri-
butions. This guarantees that the appropriate Mellin transform can be factored into
the product of Dirichlet series and gamma factors. Finally, the functional equation
for the distribution produces the functional equation for the Mellin transform. The
difference arises from the fact that for θ(x) the functional equation is symmetry
property on the imaginary line, whereas for F ′(x) we have the symmetry on the
real line instead. This explains the unusual fact that in Equation (26) we have the
summation over the discrete set of the vertical line, instead of the summation over
integers.

We will finish by proving another result, which links ζM(s) to the Mellin trans-
form of G(−z + 1). This can be done using expansion (25), but we rather chose
a direct way. Let

∫
∞

0 G(−z + 1)zs−1 dz = G∗(s). The symmetry property for
Theorem 1 implies that G(−z+1) has a simple zero, as z→∞ along the positive
real line. Thus, basic properties of Mellin transform imply that G∗(s) is defined
for 0< <s < 1. For these values of s, we have the following classical integral:∫

∞

0

zs−1

1+ z
dz

z
1+z→x
=

∫ 1

0
x s−1(1− x)−s dx = 0(s)0(1− s)=

π

sinπs
.

Thus, using Equation (11), we get

G∗(s)=
∫
∞

0

∫
∞

0

xzs−1

1+ xz
dF(x) dz

=

∫
∞

0

∫
∞

0

zs−1

1+ z
x1−s dz dF(x)=

π

sinπs

∫
∞

0
x1−s dF(x).

This holds for 0< <s < 1. Due to the analytic continuation, this gives

Proposition 5. For s ∈ C \ Z, we have an identity G∗(s) = ζM(s − 1)0(s) ·
π/(sinπs).

Therefore, G∗(s) is a meromorphic function, G∗(s + 1) = −G∗(−s + 1), and
ress=L G∗(s)= (−1)L ML−1. This is the general property of the Mellin transform,
since formally G(z+1)=

∑
∞

L=0 ML zL−1. Thus, G(z+1)∼
∑M

L=0 ML zL−1 in the
left neighborhood of z = 0.

10. Concluding remarks

Dyadic period functions in H. As noted in [Alkauskas ≥ 2009], one encounters
the surprising fact that in the upper half plane H, Equation (12) is also satisfied
by (i/2π)G1(z), where G1(z) stands for the Eisenstein series [Serre 1973]. Let
f0(z) = G(z)− (i/2π)G1(z), where G(z) is the function in Theorem 1. Then for



THE MOMENTS OF THE QUESTION MARK FUNCTION 155

z ∈H, f0(z) satisfies the homogeneous form of the three-term functional Equation
(12); moreover, f0(z) is bounded, when =z→∞. Thus, if f (z)= f0(z),

−
1

(1− z)2
f
( 1

1− z

)
+ 2 f (z+ 1)= f (z).

Therefore, denote by DPF0 the C-linear vector space of solutions of this three-term
functional equation, which are holomorphic in H and are bounded at infinity, and
call it the space of dyadic period functions in the upper half-plane. Consequently,
this space is at least one-dimensional. If we abandon the growth condition, then the
corresponding space DPF is infinite-dimensional. This is already true for periodic
solutions. Indeed, if f (z) is a periodic solution, then

f (z)= (1/z2) f (−1/z).

Let P(z) ∈ C[z], and suppose that j (z) stands, as usually, for the j-invariant.
Then any modular function of the form j ′(z)P( j (z)) satisfies this equation. Addi-
tionally, there are nonperiodic solutions, given by f0(z)P( j (z)). Therefore, G(z)
surprisingly enters the profound domain of classical modular forms and functions
for PSL2(Z). Hence, it is greatly desirable to give the full description and structure
of spaces DPF0 and DPF.

Where should the true arithmetic zeta function come from? Here we present
some remarks, concerning the zeta function ζM(s). This object is natural for the
question mark function — its Dirichlet coefficients are the Fourier coefficients of
F(x), and its special values at integers are proportional to the moments ML . More-
over, its relation to G(z), m(t) and F(x) is the same as that of the L-series of Maass
wave forms to analogous objects [Zagier 2001]. Nevertheless, one expects a richer
arithmetic object associated with the Calkin–Wilf tree, since the latter consists or
rational numbers, and therefore can be canonically embedded into the group of
idèles AQ. The p-adic distribution of rationals in the n-th generation of Calkin–
Wilf tree was investigated in [Alkauskas ≥ 2009]. Surprisingly, the Eisenstein
series G1(z) yet again manifests itself, as in case of R (see previous subsection).
Nevertheless, there is no direct way of normalizing moments of the n-th generation
in order for them to converge in the p-adic norm. There is an exception. As can
easily be seen, ∑

a0+a1+···+as=n

[a0, a1, .., as] = 3 · 2n−2
− 1/2,

and thus we have a convergence only in the 2-adic topology, namely to the value
−1/2. The investigation of p-adic values of moments is relevant for the following
reason. Let us apply F(x) to each rational number in the Calkin–Wilf tree. What
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we obtain is the following:

1
2

1
4

iiiiiiiiiiiiiiii 3
4

UUUUUUUUUUUUUUUU

1
8

sssssss 5
8

KKKKKKK
3
8

sssssss 7
8
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1
16

���
9
16

888
5
16

���
13
16

888
3

16

���
11
16

888
7

16

���
15
16

888

Using Equation (2), we deduce that this tree starts from the root 1/2, and then
inductively each rational r produces two offsprings: r/2 and r/2+ 1/2. One is
therefore led to the following.

Task. Produce a natural algorithm, which takes into account p-adic and real prop-
erties of the above tree, and generates Riemann zeta function ζ(s).

We emphasize that the choice of ζ(s) is not accidental. In fact, the R-distribution
of the above tree is a uniform one with support [0, 1]. Further, there is a natural al-
gorithm to produce a characteristic function of ring of integers of R (that is, e−πx2

)
from the uniform distribution via the central limit theorem through the expression∫

R

f (x)e−πx2
dx = lim

N→∞

1
2N

∫ 1

−1
dx1 . . .

∫ 1

−1
dxN f

(
x1+ · · ·+ xN√

2
3πN

)
.

(For clarity, here we take the uniform distribution in the interval [−1, 1]). This
formula and this explanation and treatment of e−πx2

as a characteristic function
of the ring of integer of R is borrowed from [Haran 2001, page 7]. Further, the
operator which is invariant under uniform measure has the form

[U f ](x)=
1
2

f
(

x
2

)
+

1
2

f
(

x
2
+

1
2

)
.

Indeed, for every f ∈ C[0, 1], one has
∫ 1

0 [U f ](x) dx =
∫ 1

0 f (x) dx . The spectral
analysis of U shows that its eigenvalues are 2−n , n ≥ 0, with corresponding eigen-
functions being Bernoulli polynomials Bn(x) [Flajolet and Vallée 1998]. These, as
is well known from the time of Euler, are intricately related with ζ(s). Moreover,
the partial moments of the above tree can be defined as

∑2N

i=1
(
(2i − 1)/2N

)L .
These values are also expressed in term of Bernoulli polynomials. As we know,
there are famous Kummer congruences among Bernoulli numbers, which later led
to the introduction of the p-adic zeta function ζp(s). Thus, the real distribution
of the above tree and its spectral decomposition is deeply related to the p-adic
properties. This justifies the choice in the task of ζ(s). Therefore, returning to the
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Calkin–Wilf tree, one expects that moments can be p-adically interpolated, and
some natural arithmetic zeta function can be introduced, as a preimage of ζ(s)
under the map F .
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