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ABSTRACT:

Near infrared bands (NIR) provide rich information for many remote sensing applications. In addition to deriving useful indices to

delineate water and vegetation, near infrared channels could also be used to facilitate image pre-processing. However, synthesizing

bands from RGB spectrum is not an easy task. The inter-correlations between bands are not clearly identified in physical models.

Generative adversarial networks (GAN) have been used in many tasks such as generating photorealistic images, monocular depth

estimation and Digital Surface Model (DSM) refinement etc. Conditional GAN is different in that it observes some data as a

condition. In this paper, we explore a cGAN network structure to generate a NIR spectral band that is conditioned on the input

RGB image. We test different discriminators and loss functions, and evaluate results using various metrics. The best simulated NIR

channel has a mean absolute error of around 5 percent in Sentinel-2 dataset. In addition, the simulated NIR image can correctly

distinguish between various classes of landcover.

1. INTRODUCTION

In remote sensing, near-infrared bands (NIR) have been playing

important roles in many aspects. They exhibit additional po-

tential for representing ground objects in comparison to RGB

bands, especially in representing vegetations. For example, in-

dices involving NIR have been developed and used for tasks

such as landcover classification. These indices includes Nor-

malized Vegetation Index (NDVI) and Normalized water index

(NDWI), which have been proven to be effective in highlighting

vegetation and open water feature in remote sensing imagery

(McFeeters, 1996). In addition to identifying vegetation and

water, NIR band is also capable of discerning materials such as

plastic, minerals, sea foams, trace gases, and the health prob-

lems of trees. In data-hungry machine learning or deep learn-

ing methods for landcover classification, these characteristics

enable NIR bands to be used to improve coarse ground truth,

and correct wrong labels with their capability of distinguish-

ing between classes with subtle difference in spectral signature.

Moreover, NIR-derived indices have also been used in some

tasks such as atmospheric correction (Kaufman, Sendra, 1988).

But NIR bands are not always available in every sensor. Some

low cost satellite might not be equipped with sensor capable of

capturing NIR bands. Some airborne systems also only consist

of cameras capturing RGB bands. Moreover, sometimes when

doing landcover change detection, data from old sensors might

not provide NIR bands as the newer ones, thus hindering the ac-

curacy of change detection. Therefore, synthesizing NIR bands

from RGB is of practical values.

The generation of NIR band from RGB can be regarded as a

nonlinear mapping from RGB to NIR. Neural networks have

been proven to be effective in nonlinear mapping. For example,

one paper (Fu et al., 2018) proposed a network structure for

hyperspectral image reconstruction from RGB bands. The net-

work consists of a spectral sub network, which performs the
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spectral nonlinear mapping, and a spatial sub network, which

models the spatial correlation. Then hyperspectral bands are

generated by minimizing a mean squared error between gener-

ated bands and real bands.

In recent years, generative adversarial networks (GANs) have

been extensively used in remote sensing community to tackle

various tasks. For example, GAN and its variants are capable

or refining Digital Surface Models (DSMs) derived from stereo

matching (Bittner et al., 2019). In addition, GANs are applied

in hyperspectral image classification (Zhan et al., 2017), PAN-

sharpening (Liu et al., 2018) and super resolution (Ledig et al.,

2017) tasks.

Due to the versatility of GANs, we want to test if GANs are

capable of generating realistic NIR band reflectance. The gen-

erated NIR bands should keep the original image textures, as

well as the physical radiometric properties. To this purpose,

GAN in conditional setting is more suitable, meaning that the

generated NIR bands will be conditioned on the visible spec-

tra (red, green and blue). This conditional setting ensures that

the generated NIR bands are not only realistic, but also close

to RGB input in terms of information content. To this end, ad-

ditional loss functions such as L1 or L2 are added to the GAN

loss to ensure that the output is close to the ground truth (Isola

et al., 2017). However, such losses are susceptible to outliers.

Some robust loss functions are able to handle outliers by put-

ting less sensitivity to large error. A single robust loss function

proposed by (Barron, 2019) encompasses several common ro-

bust loss functions. This robust loss function is controlled by a

single continuous-valued parameter that can also be optimized

when training neural networks.

In this work, we will present a method to generate NIR band

from RGB bands, which applies a robust loss function in condi-

tional GAN setting. We tested the method on Sentinel-2 Data-

set and analysed the applicability of the proposed method. The

contribution of our work is twofold: we tested a conditional

GAN for task that not only requires perceptive realness but also
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NIR band with meaningful radiometric properties; we also ad-

opted a robust loss function that contributes to better learning

in the generative model.

The paper is structured as follows. In chapter two we describe

in detail the concepts and methodology involved; in chapter

three, dataset and experiment settings are detailed. Results are

analysed in chapter four, followed by conclusions in chapter

five.

2. METHODOLOGY

GANs are built on game theory (Goodfellow et al., 2014) and

have been used in multitudes of tasks in computer vision. In

remote sensing, GANs have been proven to be effective in many

applications and have achieved good results. The characteristics

of cGAN will be briefly described in this chapter.

2.1 Conditional GAN

GAN comprises generator and discriminator. The generator

tries to produce output while the discriminator tries to classify

if the output is fake or real (Goodfellow et al., 2014). The input

of GAN is usually random noise vector, and the output is image

that is similar to realistic images. Different from conventional

GANs, conditional GANs (Mirza, Osindero, 2014) observe in-

put data. In our case, the network should generate NIR band

while observing RGB bands. Then the discriminator tries to

distinguish between the real and the fake image from generator

until it can not distinguish anymore. In cGAN, the discrimin-

ator is also conditioned on the input RGB bands similar to the

generator. Therefore, NIR band corresponding to RGB bands

can be generated from the cGAN.

2.1.1 Generator Generating realistic NIR band from RGB

bands can be regarded as a mapping from input to output of the

same spatial resolution. As the input and output are representa-

tion of the same ground objects, they should match in structure,

texture and have same semantics. A number of GAN generat-

ors adopt encoder-decoder structures that first reduce the spatial

resolution of input and gradually recover it. This structure loses

the low level information from previous stages, resulting in lack

of details. Therefore, encoder-decoder network with skip con-

nection is more suitable for this task. This structure is capable

of retaining information from different stages in the network,

which is popularly known as U-Net structure (Ronneberger et

al., 2015). This generator is adopted in image-to-image trans-

lation model Pix2pix (Isola et al., 2017). The U-net in our ex-

periment consists of 8 blocks in both encoder and decoder. In

encoder each block encompasses convolution, batch normaliz-

ation and LeakyReLU of slope 0.2. In decoder each block com-

prises transposed convolution, batch normalization and ReLU

layers. The convolution has a filter size of 4 and stride of 2 in

both encoder and decoder. In some conditional GANs, Gaus-

sian noise z is provided to generator as input to avoid determ-

inistic results matching delta function (Isola et al., 2017). Dif-

ferent from this approach, Pix2pix model employs drop out in

generator during both training and testing phase. Although this

approach results in reduced stochasticity, it is still suitable for

our task as our task does not need much randomness as other

computer vision tasks such as image translation.

2.1.2 Discriminator As for discriminator, various options

are available depending on the task. One choice is the Markovian

discriminator, which is also termed as PatchGAN (Isola et al.,

2017). It classifies whether a N × N patch in the input im-

age is real or fake, and average all the patches in the image.

The discriminator is made of several blocks consisting of 2D

convolution, batch normalization and leaky ReLU layers. The

stride of all convolutions are 2 except for the last and second

last convolutions. The size of receptive field of previous block

is calculated as:

(outputsize− 1)× stride+ kernelsize (1)

It should be noted that the patch size of the patch discriminator

is defined as the size of receptive field in input that corresponds

to one output pixel. Therefore, the deeper the discriminator,

the larger the patch size. The detail of a 3-layer (excluding the

last two layers) PatchGAN discriminator is shown in Figure 1.

Ignoring padding, the patch size is 70 × 70 for such 3-layer

patch discriminator. It could be understood as a form of texture

loss (Isola et al., 2017).

Another option is a pixel level discriminator, which only clas-

sifies real or fake on pixel level. Different from PatchGAN, the

kernel size and stride equal to 1. Therefore, the feature map

size remains unchanged across the network and no texture in-

formation is considered by discriminator. An illustration of the

pixel discriminator is shown in Figure 2.

Both discriminators’ last layer is a binary cross entropy layer

that classifies if the generated image is true or false. The result

is averaged over the whole image.

Figure 1. Illustration of PatchGAN Discriminator. The first

block has no batch normalization. The first three convolutions

have a filter size of 4× 4 and stride of 2. The last two

convolution layers has stride of 1, therefore retaining the spatial

resolution. The output is passed on to a binary cross entropy

function. The output is a score for whole image.

Figure 2. Illustration of Pixel Discriminator. The convolution

filters have a size of 1× 1 and stride of 1. The classification of

real and fake is only on pixel level, without any contextual

information. The result after binary cross entropy (BCE) is

averaged.

2.2 Loss Function Formulation

2.2.1 GAN Loss In GANs, random noise z conforming to

certain probability distribution is mapped to the desired output

y by generator G. Conditional GAN, on the other hand, learns a

mapping not solely from random noise z, but from both random
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noise z and input image x. G : {x, z} → y. Discriminator D is

trained adversarially against generator G to distinguish between

real image and generated image. The objective function of con-

ditional GAN can be expressed as:

LcGAN (G,D) = Ex,y[LogD(x, y)]

+ Ex,z[log(1−D(G(x, z)))]
(2)

The loss of the unconditional GAN can be written as:

LGAN (G,D) = Ey[LogD(y)]

+ Ez[log(1−D(G(z)))]
(3)

2.2.2 Traditional Loss It has been found beneficial to com-

bine GAN loss with traditional loss functions such as L1 or

L2 (Isola et al., 2017). In our task, the generated NIR band

should not only be distinguishable from the real NIR band, but

also has to be close to the real NIR band numerically. There-

fore, traditional loss is helpful in enforcing results to be close

to ground truth. Compared with L2, L1 loss encourages less

blurring (Isola et al., 2017). L1 loss is calculated as:

LL1(G) = Ex,y,z[
∥

∥z −G(x, z)
∥

∥

1
] (4)

The final loss can be expressed as:

argmin
G

max
D

= LcGAN (G,D) + λLL1(G) (5)

2.2.3 Robust Loss L1 and L2 losses suffer from the prob-

lem of outliers, meaning that outlier contributes equally to loss

as inlier. The ability to handle outliers is termed robustness in

machine learning. Robustness is a crucial property that is de-

sired in machine learning models. There are several robust loss

functions that have reduced sensitivity to large errors, such as

Cauchy/Lorentzian (Black, Anandan, 1996), Geman-McClure

(Geman, McClure, 1985), Welsch (Dennis Jr, Welsch, 1978),

Charbonnier (Charbonnier et al., 1994) and generalized Char-

bonnier (Sun et al., 2010). These loss functions have saturating

or even reduced gradient when the loss is large. A robust loss

function proposed by (Barron, 2019) is the superset of many

common robust loss functions mentioned above. It is able to

adjust its robustness as a continuous parameter during training.

The loss function is defined as:

f(x, α, c) =
|α− 2|

α





(

(x/c)2

|α− 2|
+ 1

)α/2

− 1



 (6)

It is a generalisation of many losses. In Equation 6, α controls

the robustness of the loss; c > 0 is the scale parameter that

controls the size of quadratic bowl nean x = 0. A general

probability distribution can be constructed from the robust loss,

so that the log-likelihood of the probability density is a shifted

version of the robust loss function. The distribution is defined

as:

p(x|µ, α, c) =
1

cZ(α)
exp(−f(x− µ, α, c)) (7)

In this equation, Z(α) is a partition function:

Z(α) =

∫

∞

−∞

exp(−f(x, α, 1)) (8)

The logarithmic of the partition function can be approxim-

ated using the cubic Hermit spline. The negative log likelihood

of the distribution can avoid skewing towards ignoring outlier

by forcing extra penalty for small errors. The details can be

found in paper (Barron, 2019). Therefore, the final objective

for cGAN with robust loss function can be expressed as:

argmin
G

max
D

= LcGAN (G,D) + λLRobust(G) (9)

3. EXPERIMENT

We use the multispectral images from SEN12MS dataset based

on Sentinel-1 and Sentinel-2 dataset (Schmitt et al., 2019). The

Sentinel-2 data from SEN12MS is level 1-C Top of Atmosphere

reflectance (TOA) product. The images have in total 13 band

with spatial resolution from 10m to 60 m. In our experiment,

we selected the red (R), green (G), blue (B) and near-infrared

(NIR) bands with 10 m resolution. The dataset encompasses

areas including desert, field, forests, urban areas, water bodies

etc. Example images are shown in Figure.4. The images in

SEN12MS are distributed across the world as can be seen from

Figure.3. It shows that the data are distributed globally, with

varying latitudes and climate conditions. The landcover type

also varies drastically in different locations. The dataset is cat-

egorised by seasons. In this paper, we used data acquired in

summer for training and testing to avoid problems incurred by

properties of multi-seasonal dataset. Details of band informa-

tion can be seen in Table.1.

Figure 3. Visualization of locations of images in the experiment.

Blue dots denote the location of clusters of smaller images.

Bands
Wavelength(nm) Bandwidth Resolution

S2A S2B (nm) (m)

Red 664.6 664.9 31 10

Green 559.8 559.0 36 10

Blue 492.4 492.1 66 10

NIR 832.8 832.9 106 10

Table 1. Data Description from (European Space Agency, 2015).

S2A and S2B are the two satellites respectively. Wavelength is

the central wavelength

3.1 Data Pre-processing

We randomly selected 30000 images from the summer scenes

for training and 300 images for testing. In Sentinel-2 Level-1C

data, the digital number (DN) is TOA reflectance multiplied by

10000. We therefore converted the DN to physically meaning-

ful reflectance and zero-centered the pixel value for training. In
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(a) Image with

mostly high

vegetation

(b) Image with

mostly low

vegetation and

urban area

(c) Image with

mostly barren

landscape

(d) Image with

around half

water and half

high vegetation

Figure 4. Example images from different regions with various

landcover types. As can be seen from images, landcover is very

distinct from region to region.

generative models, data pre-processing is very crucial for learn-

ing, and we find this pre-processing strategy effective.

3.2 Training Settings

We test cGAN networks with pixel discriminator and patch dis-

criminator. We also test a U-net generator without cGAN set-

ting in order to verify if the cGAN objective facilitates better

learning. Among these models, we compare traditional L1 loss

and robust loss in the final objective. The experiment is per-

formed based on Pytorch framework. We used Adam optimizer

(Kingma, Ba, 2014) and learning rate of 0.0002. The parameter

of the robust loss function is optimized together with network

parameters. Batch size is set to 16. The input patch size is

256 × 256 without any cropping or rotation. The parameter

weights are initialized by uniform distribution between 0 to 1.

The λ is set to 100 for the cGAN because the L1 loss is signi-

ficantly smaller than cGAN loss. We train the network for 200

epoch. In training process, dropout is employed in generator to

serve as random noise.

3.3 Inference

The discriminator is only active during training. During infer-

ence, discriminator is no longer involved. Dropout is also em-

ployed in generator to avoid deterministic results. The inference

is ran one image per batch. The output image pixel values are

converted back to reflectance using the pre-calculated statistics

from the dataset.

4. RESULT ANALYSIS

We evaluate the generated near-infrared band based on mean

absolute error (MAE), mean absolute percentage error (MAPE)

and structural similarity (SSIM). We also evaluate the MAE of

the resulting NDVI and NDWI. The MAPE is not calculated for

NDVI and NDWI because these indices can be zero sometimes,

causing undefined results. SSIM index is a method for evalu-

ating the perceived quality of generated images (Wang et al.,

2004). The SSIM index takes into consideration luminance (l),

contrast(c) and structure (s), making it a more comprehensive

metric. General forms of MAE, MAPE and SSIM are defined

as:

MAE(x, y) =

∑n
i=1

|xi − yi|

n
(10)

MAPE(x, y) =
100%

n

n
∑

i=1

∣

∣

∣

∣

∣

xi − yi

yi

∣

∣

∣

∣

∣

(11)

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (12)

In the above SSIM definition, α, β, γ are parameters that define

the relative importance of the three components. The mean in-

tensities are µx and µy , standard deviations are σx and σy , C1

and C2 are constants that are used to avoid zero denominator

instability, and are related to dynamic range of pixel values.

Mean intensity and standard deviation are weighted by a Gaus-

sian weighting function of σ = 1.5. If we set α, β and γ all

equal to 1, the equation becomes:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(13)

In addition to approximating the reflectance values, we expect

the near-infrared channel to correctly reflect the characteristic

of various landcover types. Specifically, the generated NDVI

should also have low value at water bodies and high values

at vegetation areas. We implement a simple classification rule

which performs quantization on the NDVI and derives four classes

that can be roughly summarized as water, baren, low veget-

ation, high vegetation. The classe definition is illustrated in

Equation.14. It should be noted that the classification is an over

generalization for all the landcover types in the dataset. But

as we only want to test if fake NIR is capable of separating

classes with distinctive spectral characteristics, the classifica-

tion scheme is still meaningful used in our evaluation.

Pixel = Water, if :

−1 <PixelV alue < 0.1

Pixel = Barren, if :

0.1 ≤PixelV alue < 0.1

Pixel = LowV egetation, if :

0.1 ≤PixelV alue < 0.4

Pixel = HighV egetation, if :

0.4 ≤PixelV alue ≤ 1.0

(14)

After performing quantization on NDVI, we evaluate this 4-

class classification map using Jaccard index, which is widely

used in semantic segmentation tasks. It is defined as:

J =
|x ∩ y|

|x ∪ y|
(15)

The Jaccard Index is the area of intersection of prediction (x)

and ground truth (y) divided by the area of union of prediction

and ground truth. It can still give fair evaluation if class distri-

bution is unbalanced.

The results for MAE, MAPE and SSIM of generated NIR band

are shown in Table.2. In all 3 models the robust loss function

show some improvement over L1 loss. It should be noted that

patch discriminator might not be suitable for NIR generation

task where fine grained information should be retained. The

MAE of NDWI and NDVI, as well as the 4-class classification

mIoU is illustrated in Table.3. Among all the network struc-

tures, the cGAN with Pixel Discriminator acquires the lowest

MAE and MAPE, as well as the highest SSIM. It also achieves
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the highest mIoU scores for NDVI classification. The cGAN-

PixelD model also acquires the lowest MAE and MAPE for

both NDWI and NDVI. As for loss function, robust loss shows

improvement over L1 loss function in every model variation.

On the other side, cGAN-PatchD with L1 loss function results

the worst performance in all the evaluation. In this model vari-

ation, robust loss has demonstrated the biggest improvement

over L1 loss.

Network Loss MAE MAPE SSIM

(×10−3) (%)

U-Net
L1 10.70 5.54 93.08

Robust 10.60 5.46 93.13

cGAN-PatchD
L1 19.95 14.33 79.89

Robust 10.85 5.19 92.28

cGAN-PixelD
L1 9.99 4.82 93.43

Robust 9.67 4.73 93.63

Table 2. The result comparison of different methods. MAE,

MAPE and SSIM of generated NIR band is calculated.

Network Loss MAE MAE mIoU

(×10−3) (×10−3) (%)

NDWI NDVI

U-net
L1 21.85 20.76 95.39

Robust 21.79 20.70 95.34

cGAN-PatchD
L1 55.56 58.81 87.43

Robust 21.80 20.11 95.41

cGAN-PixelD
L1 21.97 18.85 95.68

Robust 18.90 17.61 95.79

Table 3. The MAE results for NDWI and NDVI respectively,

and the mIoU based on NDVI classification. The mIoU score is

the average among all four classes.

In Figure. 5, 6 and 7 we present some example results from

various models. We find that the lowest MAE is always achieved

in noisy images due to the relative low absolute reflectance val-

ues. These NIR bands have even discrete values. Therefore we

exclude noisy images in visualization. We select some random

images to show the performance in different landcover types,

including water, forest, mountain, field and urban areas. We

present the result in false color for better visualization. NDVI

indices are shown in jet color map for visual comparison. We

plot the histograms of fake and real NIR bands to compare the

probability distributions. The blue one denotes the original NIR

while orange one is that of fake NIR band. Except for some

noisy images, almost all the fake NIR images demonstrate high

level of realness compared with the real ones. The cGAN-

PixelD model acquired best results in all evaluation metrics.

As can be seen in figure.5e and figure.5j, the histograms of the

generated NIR bands in general match reasonably well with the

histograms of the real NIR bands. Patch discriminator cGAN

model, on the other hand, shows decreased performance. It is

the only combination that has mIoU below 90 percent. As we

can see in figure.6e and figure.6j, the distributions show big dif-

ferences and shifts from that of the real NIR bands. The NDVI

values also have large difference in some specific areas. The

U-net model can also yield reasonable results without cGAN

objectives, but the result is not as good as cGAN-PixelD model.

However, the best results still show some degree of information

loss compared with the original NIR band. Specifically, the

generated images are relatively blurry in edges compared with

the original NIR band. The reduced texture is possibly caused

by the convolution operation and down sampling.

5. CONCLUSION

NIR band is important in remote sensing applications as it provides

additional information about landcover types. They have also

shown significance in many interdisciplinary researches. How-

ever, not every equipment is capable of capturing NIR bands, or

sometimes NIR bands are missing in time series dataset. Gen-

erating NIR band from RGB bands has very important practical

uses. Generative adversarial models have been proven to have

good performance in many generative tasks. They have been

transferred to many applications in remote sensing field such as

DSM refinement and monocular depth estimation. In this pa-

per, we have shown that cGAN is a viable method to be used in

NIR band generation from RGB bands. The quality of the gen-

erated NIR band is numerically good, with around 5 percent

of mean absolute percentage error. In addition, it can in gen-

eral reflect accurate land cover class information through vari-

ous NIR-based indices. However, the model still suffers from

some texture loss that could potentially harm the usability of

generated data. In the future, we will try to design a better gen-

erator structure that can retain more texture information, and a

stronger discriminator that can distinguish between more subtle

differences. In addition, imagery from different seasons will

later be tested in following research to verify if the method is

applicable when atmospheric property is distinct. Training and

testing on multi-sensor dataset will also be experimented.
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(a) False color image

with real NIR band

(b) False color image

with fake NIR band

(c) NDVI image from

real NIR band

(d) NDVI image from

fake NIR band

(e) Histogram comparison

between real and fake NIR bands

(f) False color image

with real NIR band

(g) False color image

with fake NIR band

(h) NDVI image from

real NIR band

(i) NDVI image from

fake NIR band
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Figure 5. The results of U-net with l1 loss.
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Figure 6. The result of cGAN-PatchD with l1 loss.
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Figure 7. The result of cGAN-PixelD with robust loss.
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