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Abstract

In our previous work, a more general fourth order partial differential equation (PDE) with three
vector-valued parameters was introduced. This equation is able to generate a superset of the blending
surfaces of those produced by other existing fourth order PDEs found in the literature. Since it is
usually more difficult to solve PDEs analytically than numerically, many references are only concerned
with numerical solutions, which unfortunately are often inefficient. In this paper, we have developed a
fast and accurate resolution method, the pseudo-Lévy series method. Due to its analytical nature, the
comparison with other existing methods indicates that the developed method can generate blending
surfaces almost as quickly and accurately as the closed form resolution method, and has higher
computational accuracy and efficiency than existing Fourier series and pseudo-spectral methods as well
as other numerical methods. In addition, it can be used to solve complex surface blending problems
which cannot be tackled by the closed form resolution method. To demonstrate the potential of this
new method we have applied it to various surface blending problems, including the generation of the
blending surface between parametric primary surfaces, general second and higher degree surfaces, and
surfaces defined by explicit equations.

AMS subject classification: 35A20, 35A30, 35C10

Key words: Fast and accurate surface blending, fourth order partial differential equation, pseudo-Lévy
series solution.

1. Introduction

Surface blending is a geometric modelling technique commonly used in computer
aided design (CAD) to smoothly connect regular surfaces, such as second and
higher degree surfaces. However, with the increasing demand of visual realism in
computer graphics applications, such as computer animation, blends capable of
handling both regular and free form surfaces are also often required. Such demands
present the researchers of geometric modelling with an undeniable challenge. In
order to develop powerful surface blending methods, we need to resolve two
important issues. The first issue is the ability to blend various primary surfaces. The
second issue relates to the computational efficiency and reliability of the method. It
is frustrating to have to wait for a long while for a result in a design process.
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The generation of a blending surface by solving a partial differential equation is a
powerful technique with which we can produce a smooth transition between two
or more surfaces. Bloor et al [1] introduced a biharmonic-like fourth order PDE
with one vector-valued parameter to solve some simple blending problems. In
order to expand its applicability, various numerical PDE resolution methods were
suggested. Using B-splines to represent the blending surfaces, a collocation
method was developed [2] for the determination of the unknown parameters of
the B-spline functions. This method was used to generate the blending surfaces
between a cylinder and an inclined plane, and between two intersecting cylinders.
Cheng et al. proposed a finite difference method to solve their fourth order PDE
and produced the blending surfaces between two cylinders, and between a cone
and a cylinder [3]. You and Zhang discussed the finite difference representation of
surfaces based on a sixth order PDE [4]. Brown et al. investigated a B-spline finite
element method, examined its effect on the accuracy of the solution with respect
to element meshes of different sizes and differing degrees of B-spline surfaces, and
generated a blending surface between a cylinder and an inclined plane [5, 6]. Li
and Chang developed a boundary penalty finite element method for blending
surfaces [7, 8, 9]. By combining a fourth order PDE with an equation of motion,
Du and Qin developed a dynamic finite difference method for surface modelling
[10, 11]. This method was further extended to PDE solid modelling [12]. Using
more accurate PDEs developed from the dynamics of flat plates in bending, You
et al. also proposed a dynamic finite difference method for the dynamic simulation
of cloth [13]. In addition to the above numerical methods, Bloor et al. introduced
a Fourier series method respectively for fourth order PDEs [14] and sixth order
PDEs [15], a pseudo-spectral method [16] and a perturbation method [17] to
perform surface generation and blending.

It is well known that the numerical methods such as the finite element method and
finite difference method must solve a set of linear algebraic equations involving a
large number of unknowns. These methods are computationally inefficient and
thus often inappropriate in applications where interactive performance is re-
quired. The Fourier series method and the pseudo-spectral method, as will be seen
later in this paper, are inaccurate. Although closed form solutions of PDEs have
the highest computational efficiency and accuracy, since their determination is
much more difficult than numerical solutions, only a few blending problems are
solved in existing references. Such problems are referred to as periodic boundary
conditions by Bloor et al. [16, 18].

In our previous work, we have proposed a more general fourth order PDE [19].
This equation has three vector-valued shape parameters and covers all forms of
other existing fourth order PDEs used for surface blending. It therefore allows the
designer to generate blending surfaces with a greater variety of shapes. We have
also discussed the efficacy and efficiency of surface generation using various orders
of PDEs [20], and surface blending using a closed form solution to a sixth order
PDE [21]. In addition, we also proposed a new single-patch surface to represent
tool shapes for hot metal forming [22]. In order to apply our fourth order PDE to
various blending and surface representation problems, we will develop in this
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paper a fast and accurate solution. Then we will compare this solution with a
closed form solution, a Fourier series solution as well as a pseudo-spectral solu-
tion. To demonstrate the applications of the proposed solution in various
blending problems, we will examine three blending problems. First, we will blend
two primary surfaces expressed in parametric equations. Then, we will generate
the blending surface between the second and higher degree general surfaces, which
occur frequently in nature, science and engineering. Finally, we will generate the
blending surfaces between two primary surfaces expressed in an explicit form.

2. The Pseudo-Lévy Series Solution of a PDE

In our previous work, we have reported that the vector-valued parameters of a
fourth order PDE can exert a great influence on the shape of a blending surface and
can be used as user handles to sculpture the shape of a blending surface. Due to
this, we have introduced additional vector-valued parameters, known as the shape
parameters, and proposed a more general fourth order PDE which has the form:

b
@4

@u4
þ c

@4

@u2@v2
þ d

@4

@v4

� �
Xðu; vÞ ¼ fðu; vÞ ð1Þ

where u and v are parametric variables, X ¼ ½x y z�T is a vector-valued position
function, b ¼ bx by bz

� �T
, c ¼ cx cy cz

� �T
and d ¼ dx dy dx

� �T
are vector-valued

shape parameters, and fðu; vÞ ¼ fxðu; vÞ fyðu; vÞ fzðu; vÞ
� �T

is a vector-valued force
function.

Eq. (1) is a general form of a fourth order PDE and includes all the forms of other
existing fourth order PDEs used in surface blending.

To solve blending problems using a method based on the above PDE, we need to
solve Eq. (1) subjected to the boundary conditions on the trimlines of the primary
surfaces. These boundary conditions can be written as:

u ¼ 0 X ¼ G1ðvÞ @X
@u ¼ G2ðvÞ

u ¼ 1 X ¼ G3ðvÞ @X
@u ¼ G4ðvÞ ð2Þ

where GiðvÞ ¼ GixðvÞ GiyðvÞ GizðvÞ
� �Tði ¼ 1; 2; 3; 4Þ are the continuity conditions

of the position function X and its first partial derivatives on the trimlines u ¼ 0
and u ¼ 1.

Eq. (1) under the boundary conditions (2) can be solved with various numerical
methods such as the finite element method [6] and the finite difference method [3].
In order to meet the requirement for high computational efficiency, we will de-
velop a fast and accurate resolution method in this paper.

First, we decompose the boundary conditions into the following two sets. For the
first set �GGiðvÞði ¼ 1; 2; 3; 4Þ, the closed form solution of Eq. (1) is obtainable. For
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the second set ��GG�GGiðvÞði ¼ 1; 2; 3; 4Þ, the closed form solution of Eq. (1) does not
exist.

u ¼ 0 X ¼ �GG1ðvÞ þ ��GG�GG1ðvÞ @X
@u ¼

�GG2ðvÞ þ ��GG�GG2ðvÞ

u ¼ 1 X ¼ �GG3ðvÞ þ ��GG�GG3ðvÞ @X
@u ¼

�GG4ðvÞ þ ��GG�GG4ðvÞ ð3Þ

Accordingly, we assume that the solution ofEq. (1) consists of two partsX ¼ �XXþ ��XX�XX
where �XX is the closed form solution and ��XX�XX is the non-closed form solution. Then we
decompose the second set ��GG�GGiðvÞði ¼ 1; 2; 3; 4Þ into a number of linearly independent
basis functions which consist of elementary functions and their combinations in a
non-polynomial form, i.e., ��GG�GGiðvÞ ¼

PJ
j¼1 aijgjðvÞði ¼ 1; 2; 3; 4Þ.

After the above treatment, the resolution of Eq. (1) under the boundary condi-
tions (2) can be transformed into the task of finding the solutions of the following
two sets of equations:

b
@4

@u4
þ c

@4

@u2@v2
þ d

@4

@v4

� �
�XXðu; vÞ ¼ 0

u ¼ 0 �XX ¼ �GG1ðvÞ @ �XX
@u ¼

�GG2ðvÞ

u ¼ 1 �XX ¼ �GG3ðvÞ @ �XX
@u ¼

�GG4ðvÞ
ð4Þ

and

b
@4

@u4
þ c

@4

@u2@v2
þ d

@4

@v4

� �
��XX�XXðu; vÞ ¼ fðu; vÞ

u ¼ 0 ��XX�XX ¼
PJ
j¼1

a1jgjðvÞ @ ��XX�XX
@u ¼

PJ
j¼1

a2jgjðvÞ

u ¼ 1 ��XX�XX ¼
PJ
j¼1

a3jgjðvÞ @ ��XX�XX
@u ¼

PJ
j¼1

a4jgjðvÞ

ð5Þ

For Eq. (4), the resolution method can be found in our previous work [19]. Thus,
here we only discuss the resolution method for Eq. (5).

The PDE in Eq. (5) is similar to the governing PDE of a flat plate subject to a
uniformly distributed lateral load [23, 24]. For a simply supported flat plate
under such a load, the Lévy series solution is very popular in mechanics.
However, the boundary conditions of Eq. (5) are different to those of a simply
supported flat plate. Therefore, the Lévy series solution has to be modified to
meet the boundary conditions of Eq. (5). The modified solution is constructed
by combining the two parts, where the first part satisfies the boundary condi-
tions of Eq. (5) exactly and the second part has no influence on these boundary
conditions, i.e.,
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��XX�XX ¼
XJ

j¼1
ðp1j sin puþ p2ju sin puþ p3j cos puþ p4ju cos puÞgjðvÞ

þ sin2 pu
XM
m¼1

nmðuÞ sinmv ð6Þ

where

nmðuÞ ¼ Amchmpuþ Bmushmpuþ CmshmpuþDmuchmpu ð7Þ

Substituting Eq. (6) into the boundary conditions of Eq. (5), the unknown con-
stants pijði ¼ 1; 2; 3; 4; j ¼ 1; 2; � � � ; JÞ in Eq. (6) are determined as:

p1j ¼
a1j þ a2j þ a3j
� �

p

p2j ¼ �
a2j þ a4j
� �

p

p3j ¼ a1j

p4j ¼ � a1j þ a3j
� �

ð8Þ

Then substituting Eq. (8) back into Eq. (6) and substituting Eq. (6) into the PDE
of Eq. (5), since the solution (6) is an approximate solution, we obtain the fol-
lowing residual function:

Rðu; vÞ ¼
XM
m¼1

AmK1mðu; vÞ þ BmK2mðu; vÞ þ CmK3mðu; vÞ½

þDmK4mðu; vÞ� � Eðu; vÞ ð9Þ

For brevity, the concrete forms of K1mðu; vÞ, K2mðu; vÞ, K3mðu; vÞ, K4mðu; vÞ and
Eðu; vÞ are not given here. The unknown constants in the above equations are
Am; Bm;Cm;Dmðm ¼ 1; 2; � � �MÞ. Within the resolution region, uniformly
choosing N � 4M collocation points, calculating the residual values of the
residual function Rðu; vÞ at these collocation points, and following the mathe-
matical derivation given by You et al. [25], we obtain the following linear
algebraic equations:

KTKd ¼ KTF ð10Þ

Solving equation (10) for the unknown constants Am;Bm;Cm;Dmðm ¼ 1; 2; � � �MÞ
and substituting them back into Eq. (7), the solution to Eq. (5) is obtained.
Superimposing the closed form solution of Eq. (4) and the solution of Eq. (5), the
general solution of the PDE (1) subject to the boundary conditions (2) is obtained.
We call this the pseudo-Lévy series solution.
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3. Comparison of Different Approaches

In order to demonstrate the high computational accuracy, efficiency and efficacy
of the developed method in surface modelling, in this section we compare it with
the closed form resolution method, the Fourier series method [14] and the pseudo-
spectral method [16]. The latter two are faster than other numerical methods.

The closed form solution is an accurate solution. To achieve such a solution, we
use the following boundary conditions which define a blending surface between a
plane and an ellipse, for which the closed form solution of Eq. (1) exists.

u ¼ 0 x ¼ 1þ 0:00005ev @x
@u ¼ 0

y ¼ 1� v
p

@y
@u ¼ 0

z ¼ 1:5 @z
@u ¼ �1:5

u ¼ 1 x ¼ �0:2 cos v @x
@u ¼ 0

y ¼ 0:5 sin v @y
@u ¼ 0

z ¼ 0 @z
@u ¼ �1:5

ð11Þ

Using the resolution method given by [19] and without considering the force
function, the closed form solution of the PDE (1) subjected to the boundary
conditions (11) has the form:

x ¼
P3
n¼0

cxiui þ Rx1ðuÞ cos vþ Rx2ðuÞev

y ¼
P3
n¼0
ðcy1iþcy2ivÞui þ Ry1ðuÞ sin v

z ¼
P3
n¼0

cziui

ð12Þ

where the concrete forms of Rx1ðuÞ, Rx2ðuÞ and Ry1ðuÞ can be determined by
substituting the first two components x and y of Eq. (12) into the PDE (1) and all
the unknown constants can be determined by substituting Eq. (12) into the
boundary conditions (11).

Using the shape parameters bx ¼ by ¼ bz ¼ 1, cx ¼ cy ¼ cz ¼ 50 and dx ¼ dy ¼
dz ¼ 625, we have generated the blending surfaces shown in Fig. 1a.

In order to investigate the computational efficiency and accuracy of our method,
we use it to determine the solution of the PDE (1) corresponding to the term
containing ev in the boundary conditions (11). According to Eq. (6), the solution
can be written as:

��XX�XX ¼ ðp11 sin puþ p21u sin puþ p31 cos puþ p41u cos puÞev

þ sin2 pu
XM
m¼1

nmðuÞ sinmv ð13Þ
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Following the developed method, we can obtain the set of linear algebraic
equations (10) whose resolution determines all the unknown constants in Eq. (13).
Then superimposing the closed form solution and the solution (13), we obtain a
general solution. With the same shape parameters, uniformly choosing colloca-
tion points within the resolution region, and setting the terms of the Lévy series to
M ¼ 4, we have created the blending surfaces depicted in Fig. 1b. Clearly, there
are no visible differences between Figs. 1a and 1b. This is a good indication of the
accuracy of the developed method.

When using the Fourier series method, the terms containing v and ev must first
be expanded into the Fourier series. Then, the Fourier series solution of the
PDE (1) subjected to the boundary conditions (11) can be obtained using the
method given in [14]. Using the same shape parameters and taking the terms
of the Fourier series to be 10, the generated blending surface is given in
Fig. 1c.

It is apparent that the blending surface in Fig. 1c is quite different from that in
Fig. 1a. On the upper boundary, between the upper primary surface and the
blending surface, the Fourier series solution fails to give a reasonable approxi-
mation. As a consequence, the upper boundary conditions are not satisfied. At the
two ends of the upper boundary curve, the values given by the Fourier series are
the average values of these two end points, which leads to discontinuities of the
boundary curve at these two ends. As a result, a narrow gap appears all the way
through to the bottom boundary in the figure.

In order to overcome the shortcomings of the Fourier series solution, a pseudo-
spectral method was developed [16]. In this method, a remainder function is
superimposed on the Fourier series solution. Then the unknown functions in the
remainder function are determined by meeting the boundary conditions exactly.
However, this introduces another problem, i.e., the PDE (1) cannot be satisfied
after the addition of the remainder function. Fig. 1d shows the result of this
method. There is a clear discrepancy between Fig. 1d and the accurate one in
Fig. 1a.

In addition to its inaccuracy, the Fourier series solution requires a large number
of Fourier series terms to approximate the accurate solution leading to a slow

a b c d e

Fig. 1. Comparison between different blending methods
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resolution process. For the pseudo-spectral method, a tedious mathematical
derivation must be carried out to obtain the explicit form of the unknown
functions in the remainder function by exactly satisfying the boundary conditions.
Otherwise, a large number of linear equations of the 4th order have to be solved
to determine the unknowns of the remainder function at the points on the
boundary curves which will be used to generate the blending surfaces. This slows
down the resolution process significantly.

The closed form solution is the most efficient. For the blending surface given in
Fig. 1a, it took less than 10�6 of a second on an 800 MHz PC to determine all the
unknowns. For the blending surface shown in Fig. 1b, the pseudo-Lévy series
method also took less than 10�6 of a second for the determination of all the
unknowns. This shows that the developed pseudo-Lévy series method can gen-
erate blending surfaces almost as fast as the closed form resolution method, and
faster than the Fourier series and the pseudo-spectral methods.

4. Blending Surfaces Expressed in a Parametric Form

Primary surfaces expressed in a parametric form are widely used in computer
aided design and computer graphics. Usually their boundary conditions consist of
constants, parametric variable m and its power functions, sine, cosine, and expo-
nential functions. In this section, we will present some examples to show the
application of the developed approach in such blending problems.

The blending Surface Between a Primary Surface With Trimlines Consisting of Sine
and Cosine Functions and a Plane Containing a Pre-specified Ellipse

Given that the solving region is over X : 0 � u � 1; 0 � v � 2pf g, the primary
surface consisting of sine and cosine functions can be described by the following
parametric equations:

x ¼ ð1þ nu2Þ R0 cos vþ R1 cos kvð Þ
y ¼ ð1þ nu2Þ R0 sin vþ R1 sin kvð Þ
z ¼ h0 þ h1u

ð14Þ

and the plane is assumed to have the form of:

x ¼ au cos v
y ¼ bu sin v
z ¼ 0

ð15Þ

Taking the trimlines to be at u ¼ u0 on the primary surface (14) and at u ¼ u1

on the plane (15), the boundary conditions on these trimlines can be written
as:
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u ¼ 0 x ¼ ð1þ nu2
0Þ R0 cos vþ R1 cos kvð Þ @x

@u ¼ 2n0u0 R0 cos vþ R1 cos kvð Þ

y ¼ ð1þ nu2
0Þ R0 sin vþ R1 sin kvð Þ @y

@u ¼ 2n0u0 R0 sin vþ R1 sin kvð Þ

z ¼ h0 þ h1u0
@z
@u ¼ h01

u ¼ 1 x ¼ au1 cos v @x
@u ¼ a0 cos v

y ¼ bu1 sin v @y
@u ¼ b0 sin v

z ¼ 0 @z
@u ¼ 0 ð16Þ

Using the developed pseudo-Lévy series method, the blending surface is produced
as shown in Fig. 2. The relative parameters used in this blending operation were
taken to be: u0 ¼ R1 ¼ 0:1, u1 ¼ 1, R0 ¼ 0:9, h1 ¼ h01 ¼ 1:5, h0 ¼ n ¼ n0 ¼ 0:5,
a ¼ a0 ¼ 1:6, and b ¼ b0 ¼ 1:2.

The Blending Surface Between Two Intersecting Planes
with Two Non-Parallel Trimlines

The blending surface between two intersecting planes frequently appears in
mechanical components to simplify the manufacturing process or to reduce the
stress concentration at the joint between the two planes. The boundary conditions
for this blending operation can be written as:

Fig. 2. The blending surface between a surface with the trimline consisting of trigonometric functions
and a plane with a pre-specified ellipse
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u ¼ 0 x ¼ 0 @x
@u ¼ 0

y ¼ h0 þ h1v
@y
@u ¼ �ðh2 þ h3vÞ

z ¼ pv @z
@u ¼ 0

u ¼ 1 x ¼ s0 þ s1v
@x
@u ¼ s2 þ s3v

y ¼ 0
@y
@u ¼ 0

z ¼ pv @z
@u ¼ 0

ð17Þ

Setting parameters in Eq. (17) to be: h0 ¼ 0:9, h1 ¼ �0:4, h2 ¼ 1:1, h3 ¼ s3 ¼ 0:01,
s0 ¼ 1, s1 ¼ �0:5, s2 ¼ 1:2 and p ¼ 2, we have generated the blending surface
shown in Fig. 3a.

The above method also applies to the blending where the two trimlines meet at the
intersection line of the two planes. To do this, the boundary conditions should be
properly modified, i.e., y ¼ h0 þ h1v, is changed to y ¼ h1v and x ¼ s0 þ s1v is
changed to x ¼ s1v. The blending surface shown in Fig. 3b was generated by
setting h1 ¼ 0:9, h2 ¼ 0:02, h3 ¼ 2:0, s1 ¼ 1:0, s2 ¼ 0:01, s3 ¼ 0:9 and keeping the
other parameters unchanged.

When using a cone to blend these two planes, the cross section of the cone is a
regular closed curve such as a circle or an ellipse. On the other hand when
using the method described in this paper to perform this blending operation,
the generated blending surface can also be regarded as a part of a generalised
cone whose cross section is an irregular closed curve. The circular and elliptic
curves, of the former method, are only special cases of this irregular closed
curve. Therefore, the later method is more flexible, as it can generate more
varied blending surfaces.

a b

Fig. 3. The blending surface between two perpendicular planes with inclined trimlines
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The Blending Surface Between Two Intersecting Cylinders

Compared to the closed form resolution method, the developed pseudo-Lévy series
method is more powerful due to its ability to tackle complex surface blending
problems. To demonstrate this point, we present as an example the blending surface
between two intersecting cylinders. In the existing references of PDE-based surface
blending, such problems could only be solved using numerical methods.

The boundary conditions for this surface blending problem are given as follows

u ¼ 0 x ¼ s cos v @x
@u ¼ 0

y ¼ s sin v @y
@u ¼ 0

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ k1ð Þ2�s2 cos2 v

q
@z
@u ¼

rþk1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþk1ð Þ2�s2 cos2 v

p

u ¼ 1 x ¼ ðsþ l1Þ cos v @x
@u ¼ tðsþ l1Þ cos v

y ¼ ðsþ l1Þ sin v @y
@u ¼ tðsþ l1Þ sin v

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � sþ l1ð Þ2cos2 v

q
@z
@u ¼ �t ðsþl1Þ cos2 vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2� sþl1ð Þ2cos2 v
p

ð18Þ

where s, r, k1 and l1 are the geometric parameters defining the two boundary
curves, and t is the parameter controlling the first partial derivatives on the
boundary curves.

Using the developed pseudo-Lévy series method, the PDE (1) under the
boundary conditions for the x and y components of Eq. (18) has a closed form
solution. However, it does not have a closed form solution subject to the
boundary condition of the z component of Eq. (18). Our method is very useful
in solving this class of problems. Rewriting the boundary conditions for the
component of Eq. (18) in the form of Eq. (5), we can identify the linearly
independent basis functions for the component, which are:

g1zðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþk1ð Þ2�s2 cos2 v

q
g2zðvÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rþk1ð Þ2�s2 cos2 v
q

g3zðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � sþ l1ð Þ2cos2 v

q

g4zðvÞ ¼ cos2 vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � sþ l1ð Þ2cos2 v

q
ð19Þ

After the above treatment, the general solution of the PDE (1) for this blending
surface problem can be expressed as:

x ¼ Rx1ðuÞ cos v

y ¼ Ry1ðuÞ sin v
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z ¼
X4
j¼1

pz1j sin puþ pz2ju sin pu
�

þ pz3j cos puþ pz4ju cos pu
�
gjzðvÞ

þ sin2 u
XM
m¼1

nmðuÞ sinmv

ð20Þ

Using our method, we can determine all the unknown constants in Eq. (20) and
the generated blending surface is given in Fig. 4.

Vertex Blending

Above, we have discussed parametric blending between two primary surfaces. By
modifying Eq. (6), our method can also be employed to blend three or four
primary surfaces. Since the mathematical manipulation for this case is much more
complex, it will not be discussed here. In Fig. 5, only the blending surface between
three primary surfaces was depicted. Here the image on the left depicts the ori-
ginal cube, while the image on the right depicts the cube after one of its vertices
has been blended and three of its edges have been filleted.

5. Blending General Surfaces of Second or Higher Degree

General surfaces of the second or higher degree are among the most popular
surfaces existing in engineering. These surfaces include: spheres, cylinders,

Fig. 4. The blending surface between two intersecting cylinders
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ellipsoids, tori, hyperboloids of one sheet, hyperboloids of two sheets, elliptical
paraboloids, and cones, etc. The mathematical formulations of such surfaces
are generally given in an implicit form. However, these implicit equations can
be transformed into parametric equations after suitable parameter substitution.
Here, we will use an implicit mathematical representation for the primary
surfaces and a parametric form of the boundary conditions on the trimlines.

The Blending Surface Between an Elliptical Cone and an Ellipsoid

The implicit equations of an elliptical cone and an ellipsoid are respectively given
by:

x2

a2
þ y2

b2
� z2

h2
¼ 0

and

x2

R2
þ y2

R2
þ z2

s2
� 1 ¼ 0

Taking the trimlines on the elliptical cone to be z ¼ h and on the ellipsoid to be
z ¼

ffiffi
2
p

2 s, the boundary conditions in a parametric form for this blending surface
can be written as:

a b

Fig. 5. Blending of a corner
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u ¼ 0 x ¼
ffiffi
2
p

2 R cos v @x
@u ¼ �

ffiffi
2
p

2 R0 cos v

y ¼
ffiffi
2
p

2 R sin v @y
@u ¼ �

ffiffi
2
p

2 R0 sin v

z ¼
ffiffi
2
p

2 s @z
@u ¼

ffiffi
2
p

2 s0

u ¼ 1 x ¼ a cos v @x
@u ¼ a0 cos v

y ¼ b sin v @y
@u ¼ b0 sin v

z ¼ h @z
@u ¼ h0

ð21Þ

The blending surface obtained from the above boundary conditions is shown in
Fig. 6.

The Blending Surface Between a Hyperboloid of One Sheet and a Circular torus

The implicit equations of a hyperboloid of one sheet and a circular torus are
respectively given by:

x2

a2
þ y2

b2
� ðz� h0Þ2

h2
� 1 ¼ 0

and

Fig. 6. The blending surface between an elliptical cone and an ellipsoid
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ðx2 þ y2 þ z2 � A2 þ R2Þ2 � 4R2ðx2 þ y2Þ ¼ 0

Taking the trimlines on the hyperboloid of one sheet to be u ¼ u0 and on the torus
to be u ¼ u1, the boundary conditions for this blending surface can be written as
the following parametric form:

u ¼ 0 x ¼ a cosh u0 cos v @x
@u ¼ a0 sinh u0 cos v

y ¼ b cosh u0 sin v @y
@u ¼ b0 sinh u0 sin v

z ¼ h0 þ h sinh u0
@z
@u ¼ h0 cosh u0

u ¼ 1 x ¼ ðRþ A cos u1Þ cos v @x
@u ¼ �A0 sin u1 cos v

y ¼ ðRþ A cos u1Þ sin v @y
@u ¼ �A0 sin u1 sin v

z ¼ A sin u1
@z
@u ¼ A0 cos u1

ð22Þ

The blending surface obtained from the above boundary conditions is shown in
Fig. 7.

6. Blending Surfaces Expressed in Explicit form

The developed pseudo-Lévy series solution of Eq. (1) can also be used to solve
surface blending problems between two primary surfaces expressed in an explicit
form. Next, we will examine two different types of explicit functions used to

Fig. 7. The blending surface between a circular torus and a hyperboloid of one sheet
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represent the primary surfaces and we will show how the blending surfaces can be
generated in each case.

The Blending Surface Between a Cylinder and a Plane Containing a Specified
Straight Line or Curve

First, we discuss the blending between a cylinder and a plane containing a straight
line. The explicit equation of the cylinder is assumed to be:

y ¼
Xm

0

aixi ð23Þ

We start by introducing a new variable v and assuming that the following re-
lationship holds between the new variable x and the original variable

x ¼ r cos v ð24Þ

Then, substituting Eq. (24) into Eq. (23) and making use of the relationship:

cosi v ¼ cos ivþ iði� 1Þ
2!

cosi�2 v sin2 v� iði� 1Þði� 2Þði� 3Þ
4!

cosi�4 v sin4 v

þ iði� 1Þði� 2Þði� 3Þði� 4Þði� 5Þ
6!

cosi�6 v sin6 v� � � �

sin2i v ¼ ð1� cos2 vÞi

ð25Þ

the explicit equation (23) defining the primary surface can be transformed into the
following parametric equation:

y ¼
Xm

0

bi cos iv ð26Þ

For example, taking m ¼ 6 in Eq. (23), the coefficients biði ¼ 0; 1; 2; � � � ; 6Þ in Eq.
(26) can be linked to the coefficients in Eq. (23) with the following relationships:

b0 ¼ a0 þ 1
2 a2r2 þ 3

8 a4r4 þ 5
16 a6r6

b1 ¼ a1r þ 3
4 a3r3 þ 5

8 a5r5

b2 ¼ 1
2 a2r2 þ 1

2 a4r4 þ 15
32 a6r6

b3 ¼ 1
4 a3r3 þ 5

16 a5r5

b4 ¼ 1
8 a4r4 þ 3

16 a6r6

b5 ¼ 1
16 a5r5

b6 ¼ 1
32 a6r6

ð27Þ
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The boundary conditions for this blending surface are:

u ¼ 0 x ¼ r cos v @x
@u ¼ 0

y ¼
P6

i¼0 bi cos iv @y
@u ¼ 0

z ¼ hu0
@z
@u ¼ h0

u ¼ 1 x ¼ p0 � p1v @x
@u ¼ 0

y ¼ s0 þ s1ð1� u1Þ @y
@u ¼ �s01

z ¼ 0 @z
@u ¼ 0

ð28Þ

Requiring 0 � v � p
2 , and setting the values of the coefficients in Eq. (23) to be

a0 ¼ 0:35, a1 ¼ 4:223, a2 ¼ �12:924, a3 ¼ 9:4799, a4 ¼ �0:12972, a5 ¼ �1:7385,
a6 ¼ 0:39685, u0 ¼ 0:7 and u1 ¼ 0:8,we obtain the blending surface shown inFig. 8.

Next, we replace the straight trimline on the plane with a curve that changes the
boundary conditions on u ¼ 1 of Eq. (28) to:

u ¼ 1 x ¼ e0 � e1v @x
@u ¼ 0

y ¼ �ðe2 þ e3v2Þu1
@y
@u ¼ �ðe

0
2 þ e03v2Þ

z ¼ 0 @z
@u ¼ 0

ð29Þ

Setting u1 ¼ 0:9 generates the blending surface shown in Fig. 9.

Fig. 8. The blending surface between a cylinder and a plane containing a pre-specified line

Generating Blending Surfaces with a Pseudo-Lévy Series Solution 369



The Blending Surface Between a General Primary Surface and a Plane Containing
a Specified Curve

In the above example, we have discussed the blending surface between a cylinder
surface expressed in an explicit form and a plane. Here we examine the blending
surface between a general surface defined by the explicit function y ¼ hðx; zÞ and
a plane containing a specified curve. The form of the y co-ordinate is taken to
be:

y ¼ a0z5 cos zþ a1xz4 þ a2x2 sin zþ a3x3 cosh zþ a4x4zþ a5x5 ð30Þ

We apply the same substitution to the x coordinate as above and we introduce
the relationship z ¼ u. The specified curve on the plane is taken to be a quarter
of a circle. The boundary conditions for this blending surface can be written
as:

u ¼ 0 x ¼ r cos v @x
@u ¼ 0

y ¼
P5
i¼0

bi cos iv @y
@u ¼

P4
i¼0 b0i cos iv

z ¼ u0
@z
@u ¼ �1

u ¼ 1 x ¼ u1ðc� R cos vÞ @x
@u ¼ ðc

0 � R0 cos vÞ

y ¼ u1ðd � R sin vÞ @y
@u ¼ ðd

0 � R0 sin vÞ

z ¼ 0 @z
@u ¼ 0

ð31Þ

Fig. 9. The blending surface between a cylinder and a plane containing a pre-specified curve
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where

b0 ¼ a0u5
0 cos u0 þ 1

2 a2r2 sin u0 þ 3
8 a4r4u0

b1 ¼ a1ru4
0 þ 3

4 a3r3 cosh u0 þ 5
8 a5r5

b2 ¼ 1
2 a2r2 sin u0 þ 1

2 a4r4u0

b3 ¼ 1
4 a3r3 cosh u0 þ 5

16 a5r5

b4 ¼ 1
8 a4r4u0

b5 ¼ 1
16 a5r5

ð32Þ

and

b00 ¼ �5a0u4
0 cos u0 þ a0u5

0 sin u� 1
2 a2r2 cos u0 � 3

8 a4r4

b01 ¼ �4a1ru3
0 � 3

4 a3r3 sinh u0

b02 ¼ � 1
2 a2r2 cos u0 � 1

2 a4r4

b03 ¼ � 1
4 a3r3 sinh u0

b04 ¼ 1
8 a4r4

ð33Þ

The blending surface shown in Fig. 10 is obtained by setting a0 ¼ 71, a1 ¼ 50,
a2 ¼ 2:3, a3 ¼ 1:3, a4 ¼ 3:8, a5 ¼ 1:5, u0 ¼ �0:35 and u1 ¼ 0:35. Images (a) and
(b) of this figure show different views of the blending surface. Despite the com-
plexity of the primary surface, depicted in these two images, the pseudo-Lévy
series method is successful in dealing with such a complex blending problem.

7. Conclusions

In this paper, we have developed a new method for generating blending surfaces
quickly and accurately. By dividing the fourth order PDEs and their boundary
conditions into two subsets, those with and without closed form solutions, the
generation of a blending surface is transformed into finding the solutions of two
sets of partial differential equations and their corresponding boundary conditions.

a b

Fig. 10. The blending surface between a general surface and a plane containing a specified curve
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For a PDE without a closed form solution, the functions in the boundary con-
ditions are decomposed into a number of linearly independent basis functions.
Then, the Lévy series solution of simply supported flat plates in lateral bending is
modified to represent the approximate solution of the PDE. With the pseudo-
Lévy series solution, the boundary conditions are satisfied exactly and the residual
error of the PDE is minimised.

We have compared our method with the closed form resolution method, the
Fourier series method and the pseudo-spectral method. We found that the
pseudo-Lévy series method, that we have developed, can generate blending sur-
faces almost as fast and accurately as the closed form resolution method, more
accurately and efficiently than the Fourier series method, the pseudo-spectral
method and the numerical methods. In addition, our method is able to tackle
complex surface modelling problems which cannot be dealt with by the closed
form resolution method.

In order to demonstrate the application of our method in surface blending, we
have examined the generation of blending surface between primary surfaces ex-
pressed in parametric, implicit and explicit forms.
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