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Generating chaos with a switching piecewise-linear controller
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Institute of Systems Science, Academy of Mathematics and System Sciences, Chinese Academy of Sciences,
Beijing 100080, People’s Republic of China

Tianshou Zhou
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China

Guanrong Chenb)

Department of Electronic Engineering, City University of Hong Kong, Kowloon, People’s Republic of China

Xiaosong Yang
Institute for Nonlinear Systems, Chongqing University of Posts and Telecomm, Chongqing 400065,
People’s Republic of China

~Received 15 October 2001; accepted 19 March 2002; published 10 May 2002!

This paper introduces a new chaos generator, a switching piecewise-linear controller, which can
create chaos from a three-dimensional linear system within a wide range of parameter values. Basic
dynamical behaviors of the chaotic controlled system are investigated in some detail. ©2002
American Institute of Physics.@DOI: 10.1063/1.1478079#
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Over the last decade, knowing that chaos can actually be
useful and can be well controlled, the intensive study of
chaotic dynamics has evolved from the traditional trend
of understanding and analyzing chaos to the new attempt
of controlling and utilizing it. Recently, there has been
increasing interest in exploiting chaotic dynamics in vari-
ous engineering and technological applications, wherea
much attention has focused on effectively generating
chaos via simple physical devices such as simple nonlin
ear circuits. For electronic engineers, it has been known
that piecewise-linear functions can be used to generat
various chaotic attractors such asn-scroll attractors in
the simple Chua’s circuit. This motivates the present
study of the problem of generating new chaotic attractors
by using a switching type of piecewise-linear controller.
The designed controller can create chaos from a linear
system within a wide range of parameter values, demon-
strating that simple analog chaos generators indeed have
strong capability of chaos generation. Basic dynamical
behaviors of the new chaotic system are also investigate
in some details in the present paper.

I. INTRODUCTION

Over the last decade, the study of chaotic dynamics
evolved from the traditional trend of understanding and a
lyzing chaos to the new attempt of controlling and utilizin
it.1–3 Recently, there has been increasing interest in exp
ing chaotic dynamics in engineering applications, such
electrical engineering, telecommunications, computing
information processing, material engineering, etc., wher
much attention has focused on effectively generating ch
via simple devices such as circuitry design.4–8
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It has been well known that just like then-scroll Chua’s
circuit,9 piecewise-linear function can easily generate vario
chaotic attractors.10–12 In many cases, we need to genera
chaos purposely. Notice that there are some attempts of u
the changes of phase space location of the system orbits.13–19

Motivated by many examples of this type and the need
applications, the present paper studies the problem of ge
ating a new chaotic attractor by designing a switchi
piecewise-linear controller. This controller can create ch
from a linear system within a wide range of parameter v
ues, and covers the chaotic attractors found in some o
reports.12 Moreover, basic dynamical behaviors of the ch
otic controlled system are investigated in detail, by emplo
ing some effective mathematical tools.20

II. THE NEW CHAOS GENERATOR AND ITS
CONTROLLED SYSTEM

Consider the following linear controlled system:

Ẋ5AX1 f ~X!, ~1!

where

A5S a b 0

2b a 0

0 0 c
D ,

with a switching piecewise-linear controller

f ~X!5kS 2x
2y
d
D if z1Ax21y2.k,

~2!
50, otherwise,

for a real parameterk.0.
The controller embedded in this system is switched

when the state variables travel through the surfacez
1Ax21y25k in the state space. This controlled system h
© 2002 American Institute of Physics
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a chaotic attractor, as shown in Fig. 1, whena53, b520,
c5220, k54, d510. The maximum Lyapunov exponent o
this attractor isLE51.5963.

It is remarked that the chaotic attractor reported by Ya
and Li12 is a special case of this new chaotic family.

III. DYNAMICAL BEHAVIORS OF THE CHAOTIC
CONTROLLED SYSTEM

Some basic dynamical behaviors of the chaotic c
trolled system~1! are investigated here by both theoretic
analysis and numerical simulation.

A. Symmetry and dissipativity

System~1! has a natural symmetry under the coordina
transform (x,y,z)→(2x,2y,z), which persists for all val-
ues of the system parameters.

In the following, assume thata.0, c,22a, k.0.
The variation of the volumeV(t) of a small element,

dV(t)5dxdydz in the state space, is determined by the
vergence of the flow:

“V5
] ẋ

]x
1

] ẏ

]y
1

] ż

]z
,

which is

“V5H 2a1c22k,0 for z1Ax21y2.k,

2a1c,0 otherwise.

Hence, system~1! is dissipative, with an exponential con
traction rate

dV~ t !5H e2a1c22k for z1Ax21y2.k,

e2a1c otherwise.

As a result, a volume elementV0 is contracted by the flow
into a volume elementV0e¹Vt in time t. Namely, each vol-
ume containing the system trajectory shrinks to zero at
→` at an exponential rate,“V, which is independent o
x, y, z. Thus, all system orbits will ultimately be confined
a specific subset having zero volume and the asymptotic
tion settles onto an attractor.

FIG. 1. The chaotic attractor generated by the switching controller.
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B. System equilibria

In this section, assume thatbÞ0, cÞ0, k.0.
The equilibria of system~1! are found by solving the

three equationsẋ5 ẏ5 ż50, which gives

~1! if 2 d/c.1, then the system has two equilibria,~0,0,0!
and (0,0,2 kd/c);

~2! if 2 d/c,1, then the system has a unique equilibriu
~0,0,0!.

Consider the equilibrium~0,0,0!. The system Jacobian
matrix J at this point is

J5S a b 0

2b a 0

0 0 c
D , ~3!

which has eigenvaluesl1,25a6bi and l35c.
Therefore, the stability of the equilibrium~0,0,0! can be

clarified

~1! if a.0 or c.0, then this equilibrium is unstable;
~2! if a,0 andc,0, then this equilibrium is stable.

At the same time, it is noticed that withc,0, a50 is a
Hopf bifurcation point.

Similarly, for the equilibrium (0,0,2 kd/c), the system
Jacobian is

J5S a2k b 0

2b a2k 0

0 0 c
D , ~4!

and its eigenvalues arel1,25a2k6bi and l35c. Hence,
the stability of this equilibrium, (0,0,2 kd/c) is classified as
follows:

~1! if a.k or c.0, then this equilibrium is unstable;
~2! if a,k andc,0, then this equilibrium is stable.

Also, with c,0, a5k is a Hopf bifurcation point.

FIG. 2. The orbit of system~1!.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 3. Phase portraits of system~1!. ~a! a50; ~b! a50.1; ~c! a55; ~d! a56.
e

C. Dynamical analysis of the switching controlled
system

In this section, assume thata.0, k.0, c,0, d.0, such
that a,k<a2c and d,2c. Define two regionsS,

$(x,y,z)uz1Ax21y2<k%; S̄, $(x,y,z)uz1Ax21y2.k%.
Whenz1Ax21y2<k, system~1! becomes

ẋ5ax1by, ẏ52bx1ay, ż5cz. ~5!

According to the third equation of system~5!, z
5z(0)ect. Thus, whent→1`, one hasz→0. Let V5x2

1y2. Then,

V̇52xẋ12yẏ52a~x21y2!52aV,

soV5V(0)e2at. That is, whent→1`, V(t)→1`, so that
f (t)5z1Ax21y2→1`. However, notice that system~5!
must satisfyf (t)5z1Ax21y2<k. Hence, whent gets to
some particular instant,t1 , f (t1).k, so that system~5! fails
to hold. The orbit system will then go through the planez

1Ax21y25k and then switch into regionS̄. After this in-
stant, the system becomes
Downloaded 11 May 2002 to 144.214.5.237. Redistribution subject to AIP
ẋ5~a2k!x1by,

ẏ52bx1~a2k!y, ~6!

ż5cz1kd.

For this system, letV5x21y21@z1 (kd/c)#2. Then,

V̇52Fxẋ1yẏ1S z1
kd

c D żG
52F ~a2k!~x21y2!1cS z1

kd

c D 2G
52F ~a2k!V1~c1k2a!S z1

kd

c D 2G
<2~a2k!V.

Hence,V(t)<V(0)e2(a2k)t→0, ast→1`. Therefore, when
t→1`, f (t)5z1Ax21y2→2 (kd/c),k. That is, whent
reaches a particular instant,t2 , f (t2),k. But system~6!
holds if and only if f (t)5z1Ax21y2.k. Therefore, the
system orbits will go through the planez1Ax21y25k, and
then go back to regionS.

Under condition 0,d,2c, system~1! has a unique
equilibrium,~0,0,0!, and it is unstable. Furthermore, from th
above analysis, it can be seen that whent→1`, system~1!
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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changes dynamical behaviors as the orbits go through
plane z1Ax21y25k repeatedly. That is, system~1! has
folding and stretching dynamics repeatedly, leading to co
plex dynamics such as the appearance of bifurcations
chaos.

Figure 2 shows the directions of the system orbit, d
noted by the arrows, where the corresponding parameter
a53, b520, c5220, k54, d510. For (x0 ,y0 ,z0)
5(0.1,1,20.1), whent,0.5s, the orbit runs inside region

FIG. 4. The maximum Lyapunov exponents of system~1!.
Downloaded 11 May 2002 to 144.214.5.237. Redistribution subject to AIP
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S; when 0.5s,t,1.6s, it will be in region S̄; when 1.6s
,t,2s, it runs back into regionS, and so on.

D. Dynamical structures with parameters variation

Now, the dynamical behaviors of the system~1! is inves-
tigated numerically.

1. Variation of parameter a

Fix parametersb520, c5215, k56, d510, and leta
vary. The system dynamical behaviors are summarized in
following.

~i! Whena,0, the system orbit converges to a point.
~ii ! When a50, there is a limit cycle, as shown in Fig

3~a!.
~iii ! When 0.1,a,6, there is a chaotic region in whic

the maximum Lyapunov exponents are as shown
Fig. 4.

~iv! When a56, there is a limit cycle, as shown in Fig
3~d!.

~v! Whena.6, the system orbit does not converge.

2. Variation of parameter b

Fix parametersa53, c5215, k58, d510, and letb
vary. Numerical simulations show that system~1! is chaotic
or chaoslike for almost all values ofb ~Fig. 5!.
FIG. 5. Phase portraits of system~1!. ~a! b5210; ~b! b50; ~c! b510; ~d! b5100.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 6. Phase portraits of system~1!. ~a! c5210; ~b! c5210.1; ~c! c5230; ~d! c52100.

FIG. 7. Phase portraits of system~1!. ~a! k53; ~b! k53.1; ~c! k510; ~d! k512.
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349Chaos, Vol. 12, No. 2, 2002 Generating chaos with a controller
3. Variation of parameter c

Fix parametersa53, b520, k58, d510, and letc
vary. Whenc>0, the system orbit does not converge; wh
210,c,0, it converges to a point; whenc,210, the sys-
tem is chaotic or chaoslike~Fig. 6!.

4. Variation of parameter k

Fix parametersa53, b520, c5215, d510, and letk
vary. Numerical simulations show that whenk,3, the orbit
of system~1! does not converge; whenk53 or k512, there
is a limit cycle, as shown in Fig. 7; when 3,k,12, it is
chaotic or chaoslike.

IV. CONCLUSIONS

A new chaos generating controller has been introdu
and investigated, which is a simple piecewise-linear fu
tion. Dynamical behaviors of the chaotic controlled syst
have also been analyzed, both theoretically and numeric
It has been known that abundant complex dynamical beh
iors can be generated by piecewise-linear functions w
designed appropriately; however, there does not seem to
general methodology that can provide a generic design f
controller, therefore further research into the subject is s
important and insightful. Although this paper provides o
more class of systems that fall into this category of pie
wiselinear switching control, the new finding is unique a
quite interesting both theoretically and practically, in term
of new chaos generation techniques and possible engine
applications of chaos.
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