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Generating Chaotic Attractors With Multiple
Merged Basins of Attraction: A Switching

Piecewise-Linear Control Approach
Jinhu Lü, Xinghuo Yu, Senior Member, IEEE, and Guanrong Chen, Fellow, IEEE

Abstract—This paper presents several new chaos generators,
switching piecewise-linear controllers, which can generate some
new chaotic attractors with two or three merged basins of attrac-
tion from a given three-dimensional linear autonomous system
within a wide range of parameter values. Based on this success,
chaotic attractors with merged basins of attraction are further
generated using a formalized controller design methodology. Basic
dynamical behaviors of the controlled chaotic system are then
investigated via both theoretical analysis and numerical simula-
tion. To that end, the underlying chaos-generation mechanism
is further explored by analyzing the parameterization of the
controlled system and the dynamics of the system orbits.

Index Terms—Basin of attraction, chaos generation, piecewise-
linear controller, switching system.

I. INTRODUCTION

I
N THE last few years, experience has shown that chaos can
actually be useful and can also be well controlled [1]–[3]. As a

result, the study of chaotic dynamics has seen an expansion from
the traditional concern of understanding and analyzing chaos
to the new attempt of controlling and utilizing it. Recently, ex-
ploiting chaoticdynamics inhigh-tech and industrial engineering
applications has attracted more and more interest, in which much
attention has focused on effectively creating chaos [3]–[5],
particularly using simple devices such as nonlinear circuits
[6]–[8] and switching piecewise-linear controllers [9]–[15].

It is well known that piecewise functions can easily create
various chaotic attractors [8]–[18]. Typical examples include
the -scroll circuits [16], [17]. Motivated by many examples
of this type , Lü et al. [10] introduced a switching piecewise-
linear controller [10], which can create chaos from a given linear
autonomous system within a wide range of parameter values;
Zheng et al. [11] further modified the controller to generate
two chaotic attractors simultaneously. These case studies have
shown that simple analog chaos generators indeed have strong
capability of generating chaos.
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This paper furthers the studies of [10], [11], to investigate
the generation of chaotic attractors with multiple merged basins
of attraction in a simple control system. The key is to redesign
the controller that can generate a chaotic attractor with a single
basin of attraction. Two new switching schemes will be intro-
duced into the piecewise-linear controller previously studied in
[10] and [11], thereby endorsing the redesigned controller an
ability of generating chaotic attractors with two or three merged
basins of attraction, from a given simple linear autonomous
system. Furthermore, a formalized design procedure is sug-
gested for generating chaotic attractors with merged basins of
attraction. Finally, basic dynamical behaviors of the controlled
chaotic system are investigated in some detail, by employing
some mathematical tools developed in [19]. In particular, the
underlying chaos generation mechanism in switching systems
is explored, by analyzing the parameterization of the controlled
system and the dynamics of the system orbits.

II. SWITCHING CONTROLLED CHAOTIC SYSTEM

Consider the following simple linear controlled system:

(1)

where and

with a switching piecewise-linear controller

if

otherwise

(2)

where are real parameters. This controlled system
(1)–(2) can generate chaos within a wide range of parameter
values [9].

Zheng et al. [11] has further improved the controller (2) to be
the following one:

if and

if and

otherwise
(3)
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Fig. 1. Upper and lower chaotic attractors generated by the switching controller (3).

Fig. 2. Three chaotic attractors created by the switching controller (4).

where are real parameters. Under this con-
troller, the controlled system (1)–(3) can simultaneously gen-
erate two chaotic attractors, an upper attractor and a lower at-
tractor, as shown in Fig. 1, when , , ,

, , , and [11]. The maximum Lya-
punov exponents of the two attractors are both .
It is noticed that is the invariant manifold of (1)–(3).

A closer look at the controller (3) reveals that it has two
switchings: one is on the surface ( ) de-
noted by , and the other is on the surface
( ) denoted by . Taking parameters and ,
it is found that the above two switching planes and are
symmetrical about the invariant manifold . Furthermore,
for any point of the upper attractor, belongs
to the lower attractor, that is, the upper attractor and the lower
attractor are symmetrical with respect to the plane shown
in Fig. 1. In fact, the lower attractor can be attained by turning
the upper attractor around the plane by 180 deg.

Similarly, one can easily create attractors simultaneously in
the switching system (1) by two transforms, parallel displace-
ment and rotation. In fact, since the chaotic attractor is bounded
by a finite sphere, one can partition the whole space into dis-
joint subspaces, and then duplicate the original attractor, the
upper attractor or the lower attractor into every subspace. For
example, if one partitions the whole space into two subspaces

and , and then duplicates
the upper attractor into subspace , and finally
overturns the upper attractor, then, two attractors are obtained
simultaneously as shown in Fig. 1.

Now, to further generate three chaotic attractors simultane-
ously in (1), the controller (2) is restructured as follows:

if

if

otherwise

if

if,

otherwise

if,

if

otherwise
(4)
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Fig. 3. Four chaotic attractors (upper and lower) generated by the switching controller (5).

where are real parameters. The controlled
system (1)–(4) can simultaneously generate three chaotic attrac-
tors as shown in Fig. 2, when , , , ,

, , and . It is noticed that , , and
are all invariant manifolds of system (1)–(4).

To simultaneously create four chaotic attractors (upper and
lower) in system (1), the controller (3) is furthermore restruc-
tured as follows:

if

if and

if and

otherwise

if

if and

if and

,

otherwise
(5)

where are real parameters. The con-
trolled system (1)–(5) can simultaneously generate four chaotic
attractors (upper and lower) as shown in Fig. 3, when ,

, , , , , and
.

The above procedure can be carried on and on, so as to gen-
erate attractors using only parallel displacement and rota-
tion transformations. Since the controlled system (1) has a nat-

Fig. 4. Subspaces of (1).

ural symmetry under the coordinates transform
, one can partition the whole space along the axis

into subspaces, with heights , respectively, as
shown in Fig. 4. Then, one can duplicate the original attractor
into every subspaces, thereby generating attractors simulta-
neously in (1). It is noticed that one only needs to segment and
displace the axis. In fact, ( ) were used
above to substitute for in the controller (2) or (3), and it is
very easy to modify the controller this way.

However, it must be noted that the above attractors are in-
dependent of one another. That is, there is no system orbit that
connects all attractors together.

What is more interesting is actually a single and yet complex
chaotic attractor that has multiple merged basins of attraction.
This is the topic of study in the next section.

III. GENERATING CHAOTIC ATTRACTORS WITH MULTIPLE

MERGED BASINS OF ATTRACTION

In this section, the above-designed controllers are further
restructured for generating chaotic attractors with multiple
merged basins of attraction in the controlled system (1).

A closer look at the controller (3) reveals that it has two
switchings on the surfaces and separately, which are
responsible for the creation of the two chaotic attractors. The
switching on the surface is responsible for creating the
upper-chaotic attractor; while the switching on the surface
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(a) (b)

Fig. 5. Chaotic attractor with two merged basins of attraction, generated by the switching controller (6).

creates the lower-chaotic attractor. It is noticed that the plane
is the invariant manifold of (1), which partitions the

whole space into two invariant subspaces,
and . It means that the orbit of the upper
attractor will remain in the subspace , and
not enter into the subspace . Similarly,
the orbit of the lower attractor will not enter the subspace

.
To connect together the orbits of the upper and lower attrac-

tors, one must use control to force the orbit of the upper-at-
tractor to go through the plane and then enter into the
subspace . At the same time, the control
should force the orbit of the lower attractor to go through the
plane and then return to the subspace .
Based on this observation, is used to sub-
stitute for 0 in the controller (3), therefore yielding the fol-
lowing new controller:

if and

if and

otherwise

(6)

where are all real parameters.
In the controller (6), is the control gain, and is

the control direction. When , that is, when the orbit is in
the subspace , the negative control is
added to force the orbit to enter into the subspace

; when , that is, when the orbit is in the subspace

, the positive control is added to force
the orbit to enter into the subspace . Thus,
one can actually connect the orbits of the upper and lower at-
tractors together, thereby forming a single and complex chaotic
attractor. The result is shown in Fig. 5(a), where , ,

, , , and . Fig. 5(b) is
the – plane projection of the attractor.

It is clear from Fig. 5 that the chaotic attractor has two merged
basins of attraction, the upper basin of attraction and the lower
basin of attraction. If the orbit starts from inside of the sub-
space , then, it will run inside the upper
basin of attraction for some time, then move into the subspace

and run inside the lower basin of attraction
for some time, and finally return to the subspace

and then restart a new cycle.
A closer look at the controller (6) reveals that it has three

switching planes: , , and , in which the two switching
planes and are responsible for the generation of two
chaotic attractors, the upper chaotic attractor and the lower
chaotic attractor; while the switching plane is responsible
for the connection of these two chaotic attractors.

Similarly, one can generate a chaotic attractor with three
merged basins of attraction. In doing so, the controller (6) is
furthermore modified. One first partitions the whole space into
two subspaces and . In
subspace , the controlled system (1) has
a chaotic attractor with two merged basins of attraction, as
seen in Fig. 5, while in subspace , (1) has
an upper attractor, as seen in Fig. 1. To generate the intended
chaotic attractor with three merged basins of attraction, one has
to connect the upper attractor to the chaotic attractor with two
merged basins of attraction. Control is used to force the orbit
of the upper attractor to go through the plane and then
enter into the subspace . At the same time,
the control also forces the orbit of the chaotic attractor, the
one that has two merged basins of attraction, to go through the
plane and then return to the subspace .
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(a) (b)

Fig. 6. Chaotic attractor with three merged basins of attraction, generated by the switching controller (7).

To do so, is employed to
substitute for 0 in the controller (2), resulting in the following
new controller:

if

if and

if and

otherwise

if

if

otherwise

(7)

where are all real parameters.
In controller (7), is the control gain, and and

are the control directions. When , that is,
when the orbit is in the subspace , the negative
control is added to force the orbit to enter into the
subspace ; when , that is, when the
orbit is in the subspace , the positive control

is added to force the orbit to enter into the subspace
. This way, the orbits of the upper attractor

and the chaotic attractor with two merged basins of attraction are

connected together, forming a single but more complex chaotic
attractor. The result is shown in Fig. 6(a), where , ,

, , , , and .
Fig. 6(b) is the – plane projection of the attractor.

It is clear from Fig. 6 that the chaotic attractor has three
merged basins of attraction: two upper basins of attraction and
one lower basin of attraction. If the orbit starts from inside of
the subspace , then it will run inside the first
upper basin of attraction for some time, then go into the sub-
space and then run inside the second
upper basin of attraction for some time, and then go into the
subspace and run inside the lower basin
of attraction for some time, and then return to the subspace

and run inside the second upper basin
of attraction for some time, and finally return to the subspace

and then restart a new cycle.
It is clear that the controller (7) has five switching planes,

, , , ,
and . Among them, three switching
planes, , , and

, are responsible for generating three chaotic
attractors separately, and the other two switching planes,

and , are responsible for connecting the above three
chaotic attractors together so as to form a single and complex
chaotic attractor.

Similarly, chaotic attractors with merged basins of attrac-
tion can also be generated. The formalized design method is
summarized as follows.

1) Partition the whole space into subspaces along the
-axis, as shown in Fig. 4.

2) Duplicate the original attractors, the upper-attractor and
the lower-attractor, to every subspaces.

3) Use the switching control strategy to connect all the
independent attractors, so as to form a single complex
chaotic attractor, as depicted by Fig. 7.

Here, the switching control strategy can be chosen as
, where the height (between two neighboring subspaces)

should be smaller than the height of a single chaotic attractor.
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Fig. 7. Illustrative sketch for the connection of orbit.

IV. DYNAMICAL BEHAVIORS OF SWITCHING

CONTROLLED SYSTEM

Dynamical behaviors, such as symmetry, dissipativity, fixed
points, and the structure of system orbit of the chaotic system
(1) under the control of the switching piecewise-linear controller
(6) and (7), respectively, are further investigated in this section.

A. Symmetry

Obviously, (1), controlled by the switching piecewise-linear
controller (6) or (7), has a natural symmetry under the coordi-
nates transform , which persists for
all values of the system parameters.

B. Dissipativity and Existence of Attractor

First, consider the controlled system (1) with controller (6),
where it is assumed that , , , and .

The variation of the volume of a small element,
, in the state space is determined by the divergence of

the flow

which is

for

for

otherwise.

Therefore, (1) is dissipative at an exponential contraction rate

for

for

otherwise.

Hence, a volume element is contracted by the flow into a
volume element in time . That is, each volume con-
taining the system orbit shrinks to zero as at an exponen-
tial rate, , which is independent of . Consequently, all
system orbits will ultimately be confined to a specific subset of
zero volume and the asymptotic motion settles onto an attractor.

Similarly, consider the controlled system (1) with the con-
troller (7), where it is assumed that , , ,

, and . In this case, one has

for

for

otherwise.

Therefore, the controlled system (1)–(7) is also dissipative and
all the system orbits will ultimately be confined to a specific
subset of zero volume, with the asymptotic motion settling onto
an attractor.

C. Equilibria and Stability

Again, first consider the controlled system (1)–(6), where it
is assumed that , , , and . Then the
following conditions hold.

i) If , and , then the con-
trolled system has four equilibria: , ,

, , , , and ,
.

ii) If , and , then the con-
trolled system has two equilibria:
and .

iii) If , and , then the
controlled system has two equilibria: and

.
iv) If , and , then the con-

trolled system has no equilibrium point.
v) If , and , then the con-

trolled system has three equilibria: ,
, and .

vi) If , and , then
the controlled system has one equilibrium point:

.
vii) If , and , then the con-

trolled system has three equilibria: ,
, and .

viii) If , and , then
the controlled system has one equilibrium point:

.
Now, consider the equilibria and

. The system Jacobian at these two points
are both equal to

(8)

which has eigenvalues and . Hence, the sta-
bility of the two equilibria, and ,
can be summarized as follows.

i) If or , then these two equilibria are both
unstable.

ii) If and , then these two equilibria are both
stable.
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Furthermore, it is noticed that with , is a Hopf
bifurcation point.

Next, when , the system Jacobian at the equilib-
rium is

(9)

and its eigenvalues are and . Obviously,
with , is a Hopf bifurcation point. And the stability
of is classified as follows.

i) If and , then is unstable.
ii) If and , then is unstable.

iii) If and , then is stable.
Similarly, when , the system Jacobian for the equi-

librium is

(10)

which has eigenvalues and . Clearly,
with , is a Hopf bifurcation point, and the stability
of this equilibrium, , is summarized as fol-
lows.

i) If and , then is unstable.
ii) If and , then is unstable.

iii) If and , then is stable.
In a similar manner, one can discuss the controlled system

(1)–(7). Assume that , , , and .
Then the following hold.

i) If , and , then the con-
trolled system has six equilibria: ,

, , ,
, and .

ii) If , and , then the con-
trolled system has three equilibria: ,

, and .
iii) If , and , then the

controlled system has three equilibria: ,
, and .

iv) If , and , then the con-
trolled system has no equilibrium point.

v) If , and , then the con-
trolled system has five equilibria: ,

, , ,
and .

vi) If , and , then the con-
trolled system has two equilibria:
and .

vii) If , and ,
then the controlled system has four equilibria:

, , ,
and .

viii) If , and , then
the controlled system has one equilibrium point:

.
Obviously, the equilibria have the same stability,

which can be summarized as follows.

i) If or , then these three equilibria are all
unstable.

ii) If and , then these three equilibria are all
stable.

Next, for the equilibria and , they also have the same
stability as follows.

i) If and , then and are both unstable.
ii) If and , then and are both unstable.

iii) If and , then and are both stable.

Finally, the equilibrium has the following stability.

i) If and , then is unstable.
ii) If and , then is unstable.

iii) If and , then is stable.

V. QUALITATIVE ANALYSIS OF SWITCHING

CONTROLLED SYSTEM

A. Qualitative Analysis of Controlled System (1)–(6)

Consider the controlled system (1)–(6). Define four regions,
,

,
, and . The

controlled system (1)–(6) is then parameterized. When
and , (1) is

(11)

Let , . Then, (11) becomes

(12)

Hence, solving (12) gives the solution

(13)

Similarly, when and , the solution
of system (1) is

(14)

For and , on the other hand, the
solution is

(15)
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Fig. 8. Upper switching plane of the controlled system (1).

Finally, the solution for and is

(16)

Thus, the controlled system (1)–(6) can be classified into the
four systems, from (13)–(16).

The system parameters must satisfy
for generating chaos in system (1). And,

since the upper switching plane is , as shown
in Fig. 8, when the initial point is above the plane

, the dynamical behavior of (1) satisfies
(13). That is, when , one has ,

, and .
To create chaos in (1), the system orbit must go through the

plane at a certain instant , for which .
After this instant , the orbit of (1) goes into region , and
the dynamical equation is described by (15). When ,
one has and . Hence, the orbit
will go through the plane and then go into region at
some instant . In region , the orbit satisfies (16). So, when

, one has , , and
. Therefore, the orbit will go through

the switching plane at a certain instant and
then enter into region . Now, the orbit satisfies (14). When

, one has , , and
.

In order to make (1) create chaos, the system orbit must go
through the switching plane at some instant ,
for which . After this instant , the orbit goes into
region . Since as , the orbit will go
through the plane and then enter into region again at
a certain instant . Similarly, since as ,
the orbit will go through the plane and then return to
the original region again at some instant .

The system orbit will repeat the above motions again and
again, eventually forming a single but complex chaotic attractor.

According to the above theoretical analysis, a necessary con-

dition for chaos generation for the controlled system (1)–(6) is:

, , , , ,
, and .

Therefore, for any initial value , as
, the orbit of the controlled system (1)–(6) will go through

three switching planes , , and
, repeatedly for infinitely many times. The

system has different dynamical behaviors inside the four dif-
ferent regions, , , whose dynamical equations
are given by (13), (15), (16), and (14), respectively. When

, the system changes its dynamical behaviors (folding and
stretching dynamics) repeatedly as the orbit goes through the
four regions alternately and repeatedly, leading to very complex
dynamics such as the appearance of bifurcations and chaos.

Finally, some numerical results are presented. Let ,
, , , , and .

The controlled system (1)–(6) has a chaotic attractor with two
merged basins of attraction, as seen in Fig. 5. Fig. 9(a) shows the
directions of the orbit of the attractor, indicated by the arrows
therein. From Fig. 9(a), one can see that the orbit runs through
in the following sequence:

B. Qualitative Analysis of Controlled System (1)–(7)

Now, consider the controlled system (1)–(7). Define six re-
gions, ,

,
,
,

, and
.

Similarly, parameterize the controlled system (1) and solve
for its solutions. If and , one has

(17)

If and , the solution is

(18)

For and , the solution is the same as (13).
For with , for with ,
and for with , the solutions are the same as
(15), (16) and (14), respectively.

To generate chaos in (1)–(7), the parameters must satisfy
, , , , , . The first upper switching

plane is . When the initial point
is above the plane , the dynamical
behavior of (1) satisfies (17). That is, when , one has

, , and .
In order for (1) to generate chaos, the orbit of (1) must go

through the plane at a certain instant , for which
. After this instant , the system orbit goes into
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(a) (b)

Fig. 9. Structure of system orbit of the switching controlled system. (a) Two merged basins of attraction. (b) Three merged basins of attraction.

region , and the governing dynamical equation is (18). When
, one has , . Hence,

the orbit will go through the plane and then go into region
at some instant . In region , the orbit satisfies (13). And,

when , one has , ,
and .

The orbit of (1) must go through the plane at a
certain instant for creating chaos in system (1). After this
instant , the system orbit goes into region , and the dy-
namical equation is governed by (15). When , one has

and . Hence, the orbit will
go through the plane and then go into region at
some instant . In region , the orbit satisfies (16). So, when

, one has , , and
. Hence, the orbit will go through the

switching plane at a certain instant and then
enter into region , in which the orbit satisfies (14). When

, one has , , and
.

For generating chaos in (1), the system orbit must go through
the switching plane at some instant , for which

. After this instant , the system orbit goes into
region . Since as , the orbit will go
through the plane and then enter into region again at
a certain instant . Since as , the orbit
will go through the plane and then return to region

at some instant . In , as , so the
system orbit must go through the plane at a certain instant

. After this instant , the system orbit goes into region ,
where the dynamics are governed by (18). Finally, notice that

as . Therefore, the orbit will go through
the plane and then return to the original region
again at a certain instant . The system orbit will then repeat
the above process again and again, eventually forming a single
but complex chaotic attractor.

According to the above theoretical analysis, a necessary con-

dition for generating chaos in the controlled system (1)–(7) is:
, , , , ,

, , and .
For any initial value , as , the orbit

of the controlled system (1)–(7) will go through five switching
planes , , , , and ,

repeatedly for infinitely many times. The controlled system has
different dynamical behaviors in these six different regions, ,

, whose dynamical equations are given by (17),
(18), (13), (15), (16), and (14), respectively. When , the
system changes its dynamical behaviors (folding and stretching
dynamics) repeatedly, as the orbit goes through the six regions
repeatedly, leading to complex dynamics such bifurcations and
chaos.

Finally, some numerical results are presented. Let ,
, , , , , and .

The controlled system (1)–(7) has a chaotic attractor with three
merged basins of attraction, as seen in Fig. 6. Fig. 9(a) shows the
directions of the attractor orbit, indicated by the arrows therein.
From Fig. 9(b), one can see that the orbit runs along the fol-
lowing route:

VI. CONCLUSIONS

This paper has presented several new chaos generators, i.e.,
some new switching piecewise-linear controllers. These chaos
generators are simple in structure but are capable of generating
complex chaotic attractors with multiple merged basins of
attraction from a given three-dimensional linear autonomous
system within a wide range of parameter values. Basic dynam-
ical behaviors of the controlled chaotic system have also been
investigated via both theoretical analysis and numerical simu-
lation. Moreover, the underlying chaos generation mechanism
has been explored by analyzing the parameterization of the
controlled system and the dynamics of the system orbits.

It has been known, and verified once again in this paper, that
abundant complex dynamical behaviors can be generated by
piecewise-linear functions if designed appropriately. This paper
provides a simple and viable design method for generating some
seemingly complicated chaotic attractors with multiple merged
basins of attraction. Although this chaos synthesis method is
mainly focused on a special class of piecewise-linear systems, it
seems to have great potential to be further generalized to some
(piecewise but not necessarily piecewise-linear) switching con-
trolled systems. Therefore, this initiative should motivate more
research efforts in the studies of switching systems for chaos
generation.



LÜ et al.: GENERATING CHAOTIC ATTRACTORS WITH MULTIPLE MERGED BASINS OF ATTRACTION 207

REFERENCES

[1] G. Chen and X. Dong, From Chaos to Order: Methodologies, Perspec-

tives and Applications. Singapore: World Scientific, 1998.
[2] J. Lü, J. Lu, and S. Chen, Chaotic Time Series Analysis and Its Applica-

tions. Wuhan, China: Wuhan Univ. Press, 2002.
[3] X. Wang and G. Chen, “Chaotification via arbitrarily small feedback

controls: Theory, method, and applications,” Int. J. Bifurcation Chaos,
vol. 10, pp. 549–570, March 2000.

[4] X. Wang, G. Chen, and X. Yu, “Anticontrol of chaos in continuous-time
systems via time-delayed feedback,” Chaos, vol. 10, pp. 771–779, Dec.
2000.

[5] X. Wang and G. Chen, “Chaotifying a stable LTI system by tiny feedback
control,” IEEE Trans. Circuits Syst. I, vol. 47, pp. 410–415, Mar. 2000.

[6] A. S. Elwakil and M. P. Kennedy, “Construction of classes of circuit-
independent chaotic oscillators using passive-only nonlinear devices,”
IEEE Trans. Circuits Syst. I, vol. 48, pp. 289–307, Mar. 2001.

[7] G. Q. Zhong, K. S. Tang, G. Chen, and K. F. Man, “Bifurcation analysis
and circuit implementation of a simple chaos generator,” Latin Amer.

App. Res., vol. 31, no. 3, pp. 227–232, 2001.
[8] K. S. Tang, K. F. Man, G.-Q. Zhong, and G. Chen, “Generating chaos

via xjxj,” IEEE Trans. Circuits Syst. I, vol. 48, pp. 636–641, May 2001.
[9] X. Yang and Q. Li, “Chaotic attractor in a simple switching control

system,” Int. J. Bifurcation Chaos, vol. 12, pp. 2255–2256, 2002.
[10] J. Lü, T. Zhou, G. Chen, and X. Yang, “Generating chaos with a

switching piecewise-linear controller,” Chaos, vol. 12, no. 2, pp.
344–349, 2002.

[11] Z. Zheng, J. Lü, T. Zhou, G. Chen, and S. Zhang, Generating two chaotic
attractors with a switching piecewise-linear controller, 2002, to be pub-
lished.
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