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Abstract

Systems for inducing classification rules from databases are valuable tools for
assisting in the task of knowledge acquisition for expert systems. In this paper,
we introduce an approach for extracting knowledge from databases in the form of
inductive rules. We develop an information theoretic measure which is used as a
criteria for selecting the rules generated from databases. To reduce the complexity
of rule generation, the boundary of the information measure is analyzed and used
to prune the search space of hypothesis. The system is implemented and tested
on some well known machine learning databases.

1 Introduction

As the hardware and database technology advances, companies have large databases
of information, most of which are perhaps lying idle. For example, a hospital
might have hundreds of thousands of patient records, or a company might have a
database of its customers. The motivation for using rule-based expert systems is
well documented and will not be repeated here. It is notoriously difficult to ob-
tain rules directly from human experts [3] [4]. The problem of manual knowledge
acquisition for such systems is perhaps their major drawbacks. Furthermore, if
the domain requires reasoning under uncertainty, humans are well known to be in-
consistent or even contradictory in their description of subjective probabilities [7].
Hence it is quite clear that if our hypothetical company has an existing database
of sample data available, a rule induction system would be very useful. As we
shall see, the problem can be rendered more general than simply deriving rules for
an expert system-in a sense we are involved in a data reduction process, where
we want to reduce a large database of information to a small number of rules
describing the domain.

2 Information Content of Rules

The format of rules which we will handle in this paper is as follows:
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A=a A B=b A - - - => T=t

where A, B and T are attributes with a, b and t being values in their respective
discrete alphabets. We restrict the right-hand expression to being a single value
assignment expression while the left-hand side may be a conjunction of such ex-
pressions. The instantaneous information is the information content of the rule
given that the left-hand side is true. The critical part is how to define or select a
proper measure which can correctly measure the instantaneous information.

IDS, which generates decision trees from data, has been widely used for classifi-
cation in Quinlan [8]. ID3 uses the following formula as a measure of information.

. (1)

It calculates the difference between the entropy of a priori distribution and that
of a posteriori distribution. However, it is well-known that there is a fundamental
problem with this measures. Consider the case of an n- valued variable where
a particular value of T — t is one, while all the other values in T's alphabet
are zero. In this case, a conditional permutation of these probabilities would be
significant, i.e., a rule which predicts the relatively rare event T — t. However,
the formula (1), because it cannot distinguish between particular events, would
yield zero information for such events.

In this paper a new information measure, called Hellinger measure, is used to
define the information content of rules. The Hellinger divergence was originally
introduced by Beran [1], and is defined as

\
(2)

where Z. denotes the value of attribute T. It becomes zero if and only if both
a priori and a posteriori distributions are identical, and ranges from 0 to \/2.
Unlike other information meaures, this measure is applicable to every possible
case of probability distributions. In other words, the Hellinger measure is contin-
uous on every possible combination of a priori and a posteriori values. It can be
interpreted as a distance measure where distance corresponds to the amount of
divergence between a priori and a posteriori distribution. Therefore, we employ
Hellinger measure(H measure) as a measure of divergence, which will be used as
the information amount of rules.

3 Properties of H Measure

In terms of the probabilistic rules, let us interpret the event A — a as the con-
cept to be learned and the event (possibly conjunctive) B — b as the hypothesis
describing this concept. The information content of the rule is defined as

(3)

where P(a|6) means the conditional probability of A — a under the condition
B — b. Notice that equation (3) has a different form of definition from that of
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equation (2). In rule generation, one particular value of class attribute appears
in the right hand side of the rule, and thus the probabilities for all other values
are included in 1 — F(&). In addition, we squared the original form of Bellinger
measure because (1) by squaring the original form of Hellinger measure, we could
derive a boundary of the H measure, which allows us to reduce the search space
of possible inductive rules. (2) the relative accuracy of each rule is not affected by
the modified Hellinger measure. (3) the weights between two terms of H measure
provides more reasonable trade-off in terms of their value range. This measure
can be interpreted as the cross entropy of A with the variable "A conditioned on
the event B=b." Cross entropy is well-known as an accuracy measure between
two distributions [9].

Another criteria we have to consider is the generality of the rules. The basic
idea behind generality is that the often left-hand side occurs for a rule, the more
useful the rule becomes. The left-hand side must occur relatively often for a rule
to be deemed useful. In this paper, we use ̂ /P(b) to represent the probability
that the hypothesis will occur and, as such, can be interpreted as the measure of
hypothesis generality.

By multiplying the generality with the accuracy of the rules, we have the fol-
lowing term

(4)

which possesses a direct interpretation as a multiplicative measure of the gener-
ality and accuracy of a given rule.

The next step is to derive some quantitative bounds on the nature of special-
ization, which can be used to improve computational performance. The algorithm
starts with generating an initial set of rules, followed by specialization of these
rules to optimize the rule set. The characteristic of the specialization behavior
is critical to the performance of the algorithm. Specialization is the process by
which we try to increase a rule's accuracy by adding an extra condition to the
rule's left-hand side. The consequent necessary decrease in generality of the rule
should be less than an increase in the accuracy to the extent that the overall H
measure is increased. The question we pose is as follows: given a particular gen-
eral rule, what quantitative statements can we make about specializing this rule
? In particular, if we define HS and Hg as the H measures of the specialized and
general rules, respectively, is it possible to find a bound of Ha in terms of Hg ?

Consider that we are given a general rule whose H measure, Hg, is defined as

We try to calculate the bound of

H. = ?M [2 - 2/P(a|6c)P(a) - 2̂ /(l - P(a|6c))(l - P(a))] (6)

[2 - 2/P(a|ic)P(a) - 2̂ /(l - P(a|6c))(l - P(a)
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Given no information about C, we can state the following results: Dut to space
limitation, the proof of these heuristics are provided in Lee [6].

Heuristics 1 If the H measure of a specialized rule satisfies the following bound-
ary:

Hs < max{

where m represents the number of class in the target attribute, the general rule
discontinues specializing.

As a special case of the Heuristics 1, if the success rate(conditional probability)
of general rule becomes 1, the H measure of the specialized rule is always less than
or equal to that of general rule.

Heuristics 2 // the conditional probability of general rule is 1, H measure of
specialized rule cannot be greater than that of general rule. Therefore, the general
rule discontinues specializing.

As a consequence of these theorems we note that since the bound of specialized
rule is achievable without further information about C, we can decide in advance
that the specialized rule cannot be improved with respect to H Measure. The
logical consequence of this statement is that it precludes using the bound to
discontinue specializing based on the value of Hg alone. Conversely, if p(a\b) is
not equal to 1, then with no information at all available about the other variables,
there may always exist a more specialized rule whose information content is strictly
greater than that of the general rule. However, as we shall see, we could certainly
compare the bound with any rules we might already have. In particular, if the
bound is less than the information content of the worst rule, then specialization
cannot possibly find any better rule. This principle will be the basis for restricting
the search space of the system.

4 Rule Generation

We will now define the algorithm and discuss its basis ideas The algorithm takes
sample data in the form of discrete attribute vectors and generates a set of K
rules, where K is a user-defined parameter. The set of generated rules are the
K most informative rules from the data as defined by the H measure. In this
sense the algorithm can be described as optimal. The probabilities required for
calculating the H measures are estimated directly from the data using standard
statistical point estimation techniques. The algorithm proceeds by first finding K
rules, calculating their H measures, and then placing these K rules in an ordered
list. The smallest H measure, that of the Kih element of the list, is then defined as
the running minimum #*. The critical part of the algorithm is the specialization
criterion since it determines how much of the exponentially large hypothesis space
actually needs to be explored by the algorithm. The algorithm employs depth-first
search over possible left-hand sides, starting with the first-order conditions and
specializing from there. The algorithm systematically tries to specialize all first-
order rules and terminates when it has determined that no more rules exist which
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if success rate of Hg
then

H, = max{ V^

2 v/FfHJ -f
if ̂  < ZT* then cease to specialize; /* Heuristics 1 */

else
cease to specialize; /* Heuristics 2 */

Figure 1: Algorithm for specialization

can be specialized to achieve a higher H measure than H+. The decision whether
to continue specializing or to back-up on the depth-first search is determined by
the algorithm in Figure 1.

Due to the inductive nature of the rules the system generates, there exists
the possibility that some rules are contradictory with each other. By providing
a way to decide which class the new instance belongs, we can easily turn the
current rule induction system into a classification system. When a new instance
is given, we first try to classify the instance using the inductive rules generated
from the system. Because of the presence of uncertainty, new instance might
match more than one class, thus, there is a need to decide which specific class it
should be assigned to. For this purpose, the H measure of each inductive rule can
be considered as the weight of the rules. For a given new instance, the system
selects the rules which the new instance can fire, and, among the rules selected,
if a general rule subsumes special rules, the special will be deleted. In words, for
each rule matched with the new instance, the H measures are accumulated based
on the class values, and the class value with the largest H measure collected will
be selected as the final class value.

4.1 Missing Values

The presence of incompletely described instances complicates learning. Rule gen-
eration from incomplete data requires an effective method for handling missing
attribute values. In this paper, we treat "unknown" as a new possible value for
each attribute and deal with it in the same way as other values. When calculating
the H measure of each inductive rule with the presence of missing values, the
system checks whether each instance satisfies the left hand side of the rule. If
the instance matches the left hand side of the rule, the system updates the cor-
responding conditional probability of the rule, P(a\b) of equation 4. The second
important part is how to process the missing values in new instances. For a new
instance, the system looks for rules which the new instance matches. As we men-
tioned earlier, the system handles missing value as another possible value. When
a value of an attribute A is missing, that instance cannot match any of the rules
which have attribute A as part of their left hand side conditions.
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Figure 2: Rules from iris data

5 Experimental Results

We have applied the system to two typical databases: iris flower data set and Monk
robot data, obtained from the University of California Irvine machine learning
database repository. For each data set, the entire data set is read and then the
system generates inductive rules. The results are analyzed in the following.

Iris Flower Data

Iris flower database is perhaps the best known database to be found in the classi-
fication literature (e.g., Breiman [2]). Fisher's paper is a classic in the field and is
referenced frequently to this day. The data set contains 3 classes of 50 instances
each, where each class refers to a type of iris plant. The four attributes are sepal
length(SL), sepal width(SW), petal length(PL), and petal width(PW), and their
ranges are 43-79, 20-44, 10-69, and 1-24 respectively. For simplicity, the values
of iris database are discretized into seven intervals before the system reads this
database. We have applied the context-sensitive discretization method described
in Lee and Shin [5].

The system generates 110 rules by reading the iris data set, and among them
the 15 most informative rules are selected as shown in Figure 2. In essence, the
rules in Figure 2 effectively summarize the hidden characteristics of iris data and
these rules can be used to classify new iris instances for classification. By selecting
25 rules, the system could classify all 150 instances, and classified 148 instances
correctly which results in 98.6% accuracy. To the best of our knowledge, this
classification accuracy is the best result ever known for the iris data set. Figure
3 shows the number of instances the system can classify using the selected rules.
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Figure 3: Number of instances classified by the selected rules

Monk Robot Data

The Monk problems take place in an artificial robot domain where robots are
described by six different attributes: (1) head-shape: round, square, octagon (2)
body-shape: round, square, octagon (3) is_smiling: yes, no (4) holding: sword,
balloon, flag (5) jacket-color: red, yellow, green, blue (6) has.tie: yes, no (7)
class: 0, 1. The learning task is a binary classification task. Each problem is
given by a logical description of a class. There are 124 training instances and
432 test instances. The testing examples are all possible examples(216 positive
and 216 negative). Among the rules generated from the system, the top 15 most
informative rules are shown in Figure 4. As the author of the Monk data set
mentioned, Monk data contains the following implicit rules: (jacket-color = red)
or (head-shape = body .shape). We can see that, in Figure 4, these rules are
generated from the system as the top 4 rules. By selecting 80 rules, the system
could classify all instances, and these rules are used to classify new instances
for classification. The system classified 401 correctly out of 432 instances which
results in 92.8% accuracy.

6 Conclusion

In this paper we have introduced a method of generating inductive classifica-
tion rules from databases. We developed an information theoretic measure which
becomes the criteria for selecting and sorting inductive rules generated. The
boundary of the H measure is analyzed and two heuristics are used to reduce the
computational complexity of the system. The algorithm is applied to a couple of
famous machine learning databases. Missing values can be handled by consider-
ing them as separate categories. The resulting rules generated from the data sets
show how the system describes the hidden pattern of data sets effectively.
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Rule
jacket =red
he ad = octagon, body=octagon
head=square, body— square
head=round, body=round
head^round, body=octagon, jacket =blue
head=octagon, holding^ sword, tie=yes
head=round, smilingly, jacket =blue
head=round, jacket =blue, tie=no
head=square, body=round, smiling=n
head=round, body=square, smiling=n
head=square, body=round, jacket =blue
head=round, body=octagon, smilingly, tie=yes
head=round, body=square, jacket =green
head=octagon, smiling=y, tie=yes
head=round, body=octagon, jacket= yellow

=>
=>
=>
=>
=>
=>
=>
=>
=>
=»
=>
=>
=>
=>
=»

class=l
class=l
class=l
class=l
class— 0
class=l
class^O
class^O
classed
class^O
class=0
class=0
class=0
class=l
class— 0

0,
0
0
0
0
0
0
0
0
0
0
0
0
0
0

H
.2849
.2181
.2049
.1587
.1496
.1496
.1400
.1400
.1400
.1400
.1296
.1296
.1296
.1296
.1296

Figure 4: Rules from Monk data
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