
Generating Client Workloads and High-Fidelity

Network Traffic for Controllable, Repeatable
Experiments in Computer Security�

Charles V. Wright, Christopher Connelly, Timothy Braje,
Jesse C. Rabek��, Lee M. Rossey, and Robert K. Cunningham

Information Systems Technology Group
MIT Lincoln Laboratory

Lexington, MA 02420
{cvwright,connelly,tbraje,lee,rkc}@ll.mit.edu, jesrab@alum.mit.edu

Abstract. Rigorous scientific experimentation in system and network
security remains an elusive goal. Recent work has outlined three basic
requirements for experiments, namely that hypotheses must be falsifi-
able, experiments must be controllable, and experiments must be repeat-
able and reproducible. Despite their simplicity, these goals are difficult
to achieve, especially when dealing with client-side threats and defenses,
where often user input is required as part of the experiment. In this
paper, we present techniques for making experiments involving security
and client-side desktop applications like web browsers, PDF readers, or
host-based firewalls or intrusion detection systems more controllable and
more easily repeatable. First, we present techniques for using statistical
models of user behavior to drive real, binary, GUI-enabled application
programs in place of a human user. Second, we present techniques based
on adaptive replay of application dialog that allow us to quickly and ef-
ficiently reproduce reasonable mock-ups of remotely-hosted applications
to give the illusion of Internet connectedness on an isolated testbed. We
demonstrate the utility of these techniques in an example experiment
comparing the system resource consumption of a Windows machine run-
ning anti-virus protection versus an unprotected system.

Keywords: Network Testbeds, Assessment and Benchmarking, Traffic
Generation.

1 Introduction

The goal of conducting disciplined, reproducible, “bench style” laboratory re-
search in system and network security has been widely acknowledged [1,2], but
remains difficult to achieve. In particular, Peisert and Bishop [2] outline three
� This work was supported by the US Air Force under Air Force contract FA8721-05-

C-0002. The opinions, interpretations, conclusions, and recommendations are those
of the authors and are not necessarily endorsed by the United States Government.

�� Work performed as a student at MIT. The author is now with Palm, Inc.

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 218–237, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Generating Client Workloads and High-Fidelity Network Traffic 219

basic requirements for performing good experiments in security: (i) Hypotheses
must be falsifiable—that is, it must be possible to design an experiment to ei-
ther support or refute the hypothesis. Therefore, the hypothesis must pertain
to properties that are both observable and measurable. (ii) Experiments must
be controllable; the experimenter should be able to change only one variable at
a time and measure the change in results. (iii) Finally, experiments should be
both repeatable, meaning that the researcher can perform them several times
and get similar results, and reproducible, meaning that others can recreate the
experiment and obtain similar results.

Unfortunately, designing an experiment in system or network security that
meets these requirements remains challenging. Current practices for measur-
ing security properties have recently been described as “ad-hoc,” “subjective,”
or “procedural” [3]. Experiments that deal primarily with hardware and soft-
ware may be extremely controllable, and recent work [4,5,6,7,8] has explored
techniques for deploying and configuring entire networks of servers, PCs, and
networking equipment on isolated testbeds, disconnected from the Internet or
other networks, where malicious code may safely be allowed to run with low risk
of infecting the rest of the world. However, the recent shift in attacks from the
server side to the client side [9,10,11,12] means that an experiment involving any
one of many current threats, such as drive-by downloads [13] cross-site scripting,
or techniques for detecting and mitigating such intrusions, must account for the
behavior of not only the hardware and software of the computing infrastructure
itself, but also the behavior of the human users of this infrastructure. Humans
remain notoriously difficult to control, and experiments using human subjects
are often expensive, time consuming, and may require extensive interaction with
internal review boards.

Repeatability of experiments on the Internet is difficult due to the global
network’s scale and its constant state of change and evolution. Even on an iso-
lated testbed, repeatability is hampered by the sheer complexity of modern com-
puter systems. Even relatively simple components like hard disks and Ethernet
switches maintain state internally (in cache buffers and ARP tables, respec-
tively), and many components perform differently under varying environmental
conditions e.g. temperature. Many recent CPUs dynamically adjust their clock
frequency in reaction to changes in temperature, and studies by Google suggest
that temperature plays an important role in the failure rates of hard disk drives
[14]. Reproducibility is even harder. It is unclear what level of detail is sufficient
for describing the hardware and software used in a test, but current practices in
the community likely fall short of the standards for publication in the physical
sciences.

The contributions of this paper address two of the above requirements
for performing scientific experiments in security. Specifically, we describe tech-
niques that enable controllable, repeatable experiments with client-side attacks
and defenses on isolated testbed networks. First, we present techniques for using
statistical models of human behavior to drive real, binary, GUI-enabled appli-
cation programs running on client machines on the testbed, so that tests can be



220 C.V. Wright et al.

performed without the randomness or privacy concerns inherent to using human
subjects. Second, we present adaptive replay techniques for producing convincing
facsimiles of remotely-hosted applications (e.g. those on the World Wide Web)
that cannot themselves be installed in an isolated testbed network, so that the
client-side applications have something to talk to. In doing so, we generate work-
loads on the hosts and traffic on the network that are both highly controllable
and repeatable in a laboratory testbed setting.

On the client side, our approach is to construct a Markov chain model for
the way real users interact with each application. Then, during the experiment,
we use the Markov chains to generate new event streams similar in distribution
to those generated by the real users, and use these to drive the applications on
the testbed. This provides a realistic model of measured human behavior, offers
variability from trial to trial, and provides an experimenter with the ability to
change model parameters to explore new user classes. It also generates a reason-
ably realistic set of workloads on the host, in terms of running processes, files
and directories accessed, open network ports, system call sequences, and system
resource consumption (e.g. CPU, memory, disk). Many of these properties of
the system are important for experiments involving defensive tools like firewalls,
virus scanners, or other intrusion detection systems because they are used by
such systems to detect or prevent malicious behavior. Furthermore, because we
run unmodified application program binaries on the testbed hosts, we can closely
replicate the attack surface of a real network and use the testbed to judge the
effectiveness of various real attacks and defenses against one another.

Using real applications also allows us to generate valid traffic on the testbed
network, even for complicated protocols that are proprietary, undocumented,
or otherwise poorly understood. We discuss related work in more detail in the
following section, but for now it suffices to say that almost all existing work on
synthetically generating network traffic focuses on achieving realism at only one
or two layers of the protocol stack. In contrast, our approach provides realistic
traffic all the way from the link layer up to and including the contents of the
application layer sessions.

For example, by emulating a user replying to an email, with just a few mouse
click events, we can generate valid application-layer traffic in open protocols like
DNS, IMAP, and LDAP, proprietary protocols including SMB/CIFS, DCOM,
and MAPI/RPC (Exchange mail). This is, of course, in addition to the SMTP
connection used to send the actual message. Each of these connections will ex-
hibit the correct TCP dynamics for the given operating system and will generate
the proper set of interactions at lower layers of the stack, including DNS look-
ups, ARP requests, and possibly Ethernet collisions and exponential backoff.
Moreover, if a message in the user’s inbox contains an exploit for his mail client
(like the mass-mailing viruses of the late 1990s and early 2000s), simply inject-
ing a mouse click event to open the mail client may launch a wave of infections
across the testbed network.

For the case where the actual applications cannot be installed on the isolated
test network, we present techniques based on adaptive replay of application



Generating Client Workloads and High-Fidelity Network Traffic 221

dialog that allow us to quickly and efficiently reproduce reasonable mock-ups
that make it appear across the network as if the real applications were actually
running on the testbed. These techniques are particularly useful for creating a
superficially realistic version of the modern World Wide Web, giving the illusion
of connectedness on an isolated network.

To illustrate the utility of these techniques, we perform a simple experiment
that would be labor intensive and time consuming to conduct without such
tools. Specifically, we investigate the performance impact of open source anti-
virus (AV) software on client machines. Conventional folk wisdom in the security
community has been that AV products incur a significant performance penalty,
and this has been used to explain the difficulty of convincing end users to employ
such protection. Surprisingly, relatively little effort has been put in to quantifying
the drop in performance incurred, perhaps due to the difficulty of performing
such a test in a controllable and repeatable manner.

The remainder of the paper is organized as follows. In Section 2, we review re-
lated work in network testbeds, automation of GUI applications, modeling user
behavior, and network traffic generation. In Section 3, we present our techniques
for driving real binary applications and for crafting reasonable facsimiles of net-
worked applications that we cannot actually install on the testbed. In Section 4,
we walk through a simple experiment to demonstrate the utility of these tech-
niques and to highlight some challenges in obtaining repeatable results. Finally,
we conclude in Section 5 with some thoughts on future directions for research in
this area.

2 Related Work

Several approaches for configuring, automating, and managing network labora-
tory testbeds have recently been proposed, including Emulab [4], FlexLab [5],
ModelNet [6], and VINI [7]. Our group’s LARIAT testbed platform [8] grew out
of earlier work in the DARPA intrusion detection evaluations [15,16] and was
designed specifically for tests of network security applications. More recently,
along with others in our group, two of the current authors developed a graphical
user interface for testbed management and situational awareness [17] for use with
LARIAT. The DETER testbed [18] is built on Emulab [4] and, like LARIAT,
is also geared toward network security experiments. The primary contribution
of this paper, which is complementary to the above approaches, is to generate
client-side workloads and network traffic for experiments on such testbeds. The
techniques in Section 3.1 were first described in the fourth author’s (unpublished)
MIT Master’s thesis [19]. USim, by Garg et al. [20], uses similar techniques for
building profiles of user behavior, and uses scripted templates to generate data
sets for testing intrusion detection systems.

Our server-side approach for emulating the Web is similar to the dynamic ap-
plication layer replay techniques of Cui et al. [21,22] and Small et al. [23]. Like
our client-side approach, the MITRE HoneyClient [24] and Strider HoneyMon-
keys from Microsoft Research [25] drive real GUI applications, but that work



222 C.V. Wright et al.

focuses narrowly on automating web browsers to discover new vulnerabilities
and does not attempt to model the behavior of a real human at the controls.
Software frameworks exist for the general-purpose automation of GUI applica-
tions, including autopy [26] and SIKULI [27], but these also require higher-level
logic for deciding which commands to inject. PLUM [28] is a system for learning
models of user behavior from an instrumented desktop environment. Simpson et
al. [29] and Kurz et al. [30] present techniques for deriving empirical models of
user behavior from network logs.

There is a large body of existing work on generating network traffic for use
on testbeds or in simulations, but unfortunately most of these techniques were
not designed for security experiments. Simply replaying real traffic [31,32] does
not allow for controllable experiments. Other techniques for generating synthetic
traffic based on models learned from real traffic [33,34,35,36,37] can match sev-
eral important statistical properties of the input trace at the Network and Trans-
port layers. However, because these approaches do not generate application layer
traffic, they are not compatible with many security tools like content-based filters
and intrusion detection or prevention systems, and they cannot interact with real
applications on a testbed. Sommers et al. [38] present a hybrid replay-synthesis
approach that may be more appropriate for some experiments in security. Mutz
et al. [39], Kayacik and Zincir-Heywood [40], and other work by Sommers et al.
[41] generate traffic specifically for the evaluation of defensive tools.

Commercial products from companies including Ixia, BreakingPoint, and
Spirent can generate application-layer traffic, but their focus is on achieving
high data rates rather than realistic models of individual user behavior, and
their implementations do not necessarily exhibit the same attack surface as the
real applications.

3 Traffic and Workload Generation Techniques

Although our techniques could potentially be applied using any of the exist-
ing network testbeds [4,5,6,7,8,18], our current implementation is built as an
extension of own testbed platform, LARIAT [8], which provides a centralized
database for experiment configuration and logging and a graphical user interface
for launching automated tasks to configure the testbed and for controlling and
monitoring experiments. Since the publication of [8], the scope of the project
has expanded significantly. LARIAT has been used to run distributed experi-
ments on testbeds of more than a thousand hosts. In addition to the user model-
driven actuation capabilities and internet reproduction described in this paper,
components have been added for automatically configuring client and server
software, controlling hosts across a testbed, visualizing the configuration and
logged data [17], and for distributing control across remote physical locations.
The current version can drive user-model behavior on a number of different op-
erating system and physical device platforms including smart phones and router
consoles.



Generating Client Workloads and High-Fidelity Network Traffic 223

3.1 Client-Side Workload Generation

Our approach is to emulate a human user by injecting input events to applica-
tions via the operating system. In principle, we could use any number of possible
techniques to determine what events to inject and when. One simple approach
would be to simply record the sequence of events generated by a real user,
and replay them verbatim to the applications on the testbed. While this “cap-
ture/replay” approach offers a level of realism that is difficult to match with
synthetic workloads, it fails the requirement that experiments be controllable.

Our techniques strike a careful balance between realism of the workloads and
controllability of the experiment. We record the inputs generated by real human
users and then train a hierarchical Markov chain model for the events sent to
each application. Then, during the experiment, we simulate from the Markov
chains to generate new event streams similar in distribution to those generated
by the real users, and use these to drive the applications on the testbed.

Application User State Machines. We call these models Application User
State Machines, or AUSMs, because the Markov chain models describe a finite
state machine model of a human user of the application. Formally, an AUSM is
defined as a 4-tuple (n, A, M, X), where n is the number of states in the finite
state machine model, A = {aij : i, j < n} is the Markov chain state transition
matrix, M = {mi : i < n} is a set of second-level models for the outputs
produced by each state, and X = {Xij : i, j < n} is a set of models describing
the interarrival time distribution when an event of type i is immediately followed
by an event of type j. We describe the training and event generation processes
for these models in greater detail in the following paragraphs.

Setting AUSM Parameters. To collect training data for the AUSM’s, we use
the DETOURS framework [42] from Microsoft Research to instrument a set of
Windows desktop machines as they are driven by real human users. During the
training interval, we record the event ID, process ID, and arrival time of each
COM (Component Object Model) event on these instrumented systems for some
length of time. We then use the sub-sequence of events corresponding to each
application to set the parameters for a hierarchical Markov chain model that we
then use to drive the given application on the testbed.

To create an AUSM, we begin by creating one state for each event ID. We
count the number of times in the training data where event i was immediately
followed by event j, and store this count as cij . We then compute the probability
of a transition from state i to state j, and store this in the Markov model’s state
transition matrix as:

aij =
cij∑
k cik

Modeling State Output Distributions. To allow for flexibility in the level of detail
provided by the AUSMs, the outputs of each state are represented using a second
level of models. Some states may always produce the same output, e.g. a state
that generates a mouse click on the “Start” button. Others, like the state that



224 C.V. Wright et al.

generates input for a text box in Internet Explorer, or the word processor input
model, use an n-gram word model of English to produce blocks of text at a time.

If we have no other source of data, these output models can be trained using
the values observed during the training data collection. In other cases, where we
have some expert knowledge of the application, the output models can be trained
using other, larger external data sources. For example, the model that generates
text for the body of an email could be trained using the contents of real emails
in the Enron corpus [43]. In our experiments, we use a locally-collected corpus
of real emails from the authors’ inboxes to train a bigram word model of English
text.

Modeling Event Interarrival Times. Each state transition edge (i, j) in the
AUSM also has an associated interarrival time distribution Xij , which charac-
terizes the delay between events when event i is immediately followed by event
j. Typically, waiting time distributions are well described by the exponential
distribution (e.g. time between buses arriving at a bus stop, time between ma-
jor hurricanes, etc.). However, the data collected from our users’ workstations
exhibits a heavier tail than the exponential distribution, with more wait times
that are much longer than the mean. Some so-called “heavy-tailed” distributions
that occur as a result of user interaction have been shown to be well described
by a power-law or Pareto distribution in the past [44], although the Pareto
distribution also does not appear to be a good fit for our event interarrivals.
Figure 1 shows the observed empirical distribution of COM event interarrival
times for one state transition, together with the best-fit exponential and Pareto
distributions.

Our hypothesis for the poor fit of these two distributions is that there are
actually two sub-populations of event interarrival times. In the first case, the
user is actively engaged with the application, generating events at shorter and
more regular intervals. In the second case, the user may switch to another appli-
cation or disengage from the system entirely to perform some other task, such

Fig. 1. Empirical distribution of event interarrival times, with best-fit Exponential and
Pareto distributions



Generating Client Workloads and High-Fidelity Network Traffic 225

as answering the telephone, reading a paper, going to a meeting, going home for
the night, or even going on vacation while leaving the system up and running.
To capture this bimodal distribution, we use a mixture model with one Expo-
nential component to represent the periods of active engagement and one Pareto
component to represent the longer periods of inactivity.

Generating Client Workloads. In this section we explain how the state ma-
chine models developed above can be used to feed input to application programs
on a client machine to generate workloads on the host and traffic on the testbed
network. Figure 2 shows at a high level how our modules interface with the Win-
dows OS and applications on the client-side system under test (SUT) to achieve
the illusion of a human user at the controls.

Regarding Repeatability. We note that, in order to achieve repeatable experi-
mental results, the entire testbed needs to be started from a fixed state at the
beginning of each run. While we believe the approach we describe here is a nec-
essary condition for obtaining repeatable experimental results, this alone is not
sufficient. We elaborate on other techniques for improving the repeatability of
an example experiment in Section 4.

To enable repeatable outputs from our state machines, we store a master ran-
dom seed in the LARIAT database for each experiment. As part of setting up
the testbed for the experiment, each host generates its own unique random seed
as a hash of the master random seed and a unique host identifier assigned to
it by the LARIAT testbed management system. At the beginning of an exper-
iment, each host instantiates a Mersenne Twister [45] pseudo-random number
generator, seeded with its host seed. This PRNG is then used to drive the state
machines as explained above. Thus, by keeping the master seed unchanged for
several runs of the experiment, we can repeat a test many times and get the
same sequence of actions from the state machines in each run. Conversely, by
varying the master seed, we can explore the space of possible user actions and
the corresponding experimental outcomes.

Fig. 2. Client-side traffic generation overview



226 C.V. Wright et al.

To simulate the user arriving at the machine and logging in, the master LAR-
IAT server sends a message to the client host’s login module over the control
interface, instructing it to log in the given user. On Windows NT, 2000, and
XP systems, the login module is implemented as a GINA, a dynamic-link li-
brary used by the Windows Winlogon process for Graphical Identification and
Authentication [46]. On Windows Vista and newer versions, it runs as a service.
In either case, the module provides login credentials to the OS to start up a
desktop session for the given user. It also launches the user agent module, which
generates user input to drive the Windows desktop and applications from that
point forward.

Upon login, the user agent module starts with a pseudorandomly-selected
AUSM and, if necessary, launches the corresponding application. Then, until
the user agent process receives a signal instructing it to log the user out, it
generates input for the applications by driving the state machines as follows.

In state i, the user agent first samples from state i’s output model mi to
generate an input to the application. It injects the input events using the Mi-
crosoft COM APIs or as keyboard events so that, from the applications’ point of
view, these events are delivered by the operating system just as if they had been
generated by a real human user. Then, the user agent selects the next state j
by pseudorandomly sampling from row i of the Markov model’s state transition
matrix A. The user agent samples a pseudorandom delay x from the AUSM’s
event interarrival time distribution Xij . It then sleeps for x seconds, resets the
current state to j, and repeats the process. In some cases, the output of state j
may be to launch a new application or switch to another running application.
In such cases, the user agent also switches to using the new application’s AUSM
in the next iteration.

3.2 Server Side Techniques

For our client-side workload generation techniques to truly be useful on an iso-
lated testbed network, there must be something for the client side applications
to talk to. Sometimes this is relatively straightforward. For example, simply in-
stalling and configuring a Microsoft Exchange email and calendaring server on
the client’s local area network is mostly sufficient to enable the MS Outlook
AUSM to function normally. Our previous work [8] presents techniques for gen-
erating emails for the virtual users to receive, and of course the Domain Name
Service and IP layer routing must be properly configured on the testbed so that
clients can discover one another’s SMTP servers and transmit the actual mail.
Some testbed management systems [47,8,18] handle part or all of this setup
process.

For some other network applications, most notably the world-wide web, set-
ting up a realistic environment on an isolated network is much more challenging.
Although installing a server for the underlying HTTP protocol is not especially
difficult, getting realistic content is. In the early days of the web, most pages
consisted solely of static content, which could easily be downloaded and “mir-
rored” on another server to easily replicate the page. While some web pages



Generating Client Workloads and High-Fidelity Network Traffic 227

still use this model, for example many researchers’ profile pages, the majority
of the most popular web sites are currently powered by special-purpose, propri-
etary programs that dynamically generate page content and are only accessible
as a service. Some web applications for dynamically generating page content are
available for installation on the testbed, either as software packages, or as a hard-
ware appliance such as the Google Search Appliance [48], and we do make use of
several such products, including the open source osCommerce [49] e-commerce
engine, the GreyMatter weblog software, and Microsoft Exchange’s webmail
interface.

However, to make it appear on the surface as if the isolated testbed network is
actually connected to the Internet, more sophisticated techniques are required.
Our approach is to use dynamic application-layer replay techniques like those
developed by Cui et al. [22,21] and Small et al. [23] for creating lightweight
server-side honeypots. We elaborate on our approach in the following sections.

Collecting Data. We begin by downloading a large number of web pages using
what is essentially a client-side honeypot [25,24]. That is, we run a web browser
(in our case Microsoft Internet Explorer) on a Windows operating system in a
virtual machine, and we script it to automatically download a list of URLs via
a consumer-grade cable modem connection to the Internet. For each URL in
the list, we retrieve the page using the honeyclient and record the full contents
of each packet that is generated. We revert the VM to a clean state after each
page retrieval. For broad coverage of the Web, we begin with a list of over ten
thousand URLs from a categorized directory of links such as Mozilla’s Open
Directory Project [50] or Yahoo!’s directory [51], as well as lists of the most
popular URLs from the Alexa.com rankings [52]. For increased realism, we can
script the honey client to “crawl” more links to provide increased depth for a
given interactive site.

Then, we perform TCP stream reassembly on the captured packets to recon-
struct the application-layer conversations for each URL and all of the associated
HTTP sessions. For each HTTP request in the collected traces, we store the full
text of the resulting HTTP response, including both the headers and the body,
in a database, keyed based on the hostname used in the request and the URL
requested, as well as some meta-information from the headers such as transport
and content encoding parameters.

Emulating the Web. On the testbed network, we deploy a very simple web
server program to emulate the Web using the data collected above. Upon re-
ceiving an HTTP request, it first parses out the hostname, URL, and other pa-
rameters, then looks up the corresponding HTTP response text in the database,
and finally sends this response back to the client. The content from the database
can be distributed across several web servers to provide the ability to handle
large traffic loads as well as provide more realistic network characteristics for
the traffic.

To give the impression of a much larger network than can be realistically
installed on a testbed, we typically deploy this web server on several Linux



228 C.V. Wright et al.

machines, each configured with hundreds or even thousands of virtual network
interfaces for each physical interface. Each machine can thus respond to HTTP
requests sent to any one of thousands of IP addresses. Each instance of the
web server application listens on a designated subset of the host’s IP addresses
and serves content for a designated set of web sites. This flexibility enables
us to emulate both very simple sites hosted at a single IP address as well as
dynamic, world-wide content distribution networks. We store the mapping from
hostnames to IP addresses and Linux hosts in the testbed’s central LARIAT
database. There, this information is also used to configure the testbed’s DNS
servers, so that client nodes can resolve hostnames to the proper virtual IP
addresses. We also provide artificial Root DNS servers as well as a core BGP
routing infrastructure to redistribute all of the routing information for these IP
addresses.

Discussion and Limitations. This combination of lightweight application-level
replay on the server side with automation of heavyweight GUI applications
on the client side allows us to generate very high-fidelity network traffic for
many use cases. It requires no parsing or understanding of JavaScript, but many
JavaScript-heavy sites can be emulated using this method and appear fully func-
tional from the client’s perspective, limited only by the extent of the data col-
lection. One notable example of such a site is Google Maps.

However, the focus on light weight and efficiency in our server-side replay
techniques leads to some important limitations of the current implementation.
First, because the server is stateless, it cannot do HTTP authorization or any
customization of page content based on cookies. Second, because it only looks
for exact matches in the URLs, some pages that dynamically generate links may
fail to find a matching page when run on the testbed. Pages that dynamically
choose IP addresses or hostnames for links may need to be fetched tens or even
hundreds of times during the data collection step in order to find all IP addresses
or hostnames that should occur in the linked pages’ URLs. Otherwise, any client-
side JavaScript code that uses random numbers to control its actions (e.g. client-
side load balancing) will fail to function given that previously unrequested URLs
will not be found in the new closed environment. Finally, while our approach
could be almost trivially extended to support the concurrent use of multiple
browsers or multiple operating systems, it does not do so currently.

Despite these limitations, the current techniques are sufficient for many kinds
of experiments involving network traffic. They are also valuable for tests that
focus primarily on host behavior, as they enable a wider range of applications
to be run on the host, most notably the web browser. In the next section, we
walk through a simple experiment with a host-based security system where use
of the browser makes up a significant fraction of the client machine’s workload.

4 An Example Experiment

In this section we walk through a simple experiment as an example of the kind
of test our system enables a researcher to perform. Although the underlying



Generating Client Workloads and High-Fidelity Network Traffic 229

LARIAT test range automation tool and the AUSM-based workload generators
are capable of scaling to hundreds or even thousands of nodes, for ease of expo-
sition, we will limit ourselves to a much more limited test scenario in this paper.
Despite its small scale and relative simplicity, we believe this experiment is still
complex enough to illustrate the difficulties in applying the scientific method to
problems in computer security.

Specifically, the goal of our example experiment is to measure and quantify
the performance penalty incurred by running anti-virus protection on desktop
computers. In principle, very nearly the same experiment could be used to mea-
sure the performance impact of many other security tools, including other kinds
of intrusion detection systems such as content-based filters, or many types of
malware like rootkits, adware, spyware, or key loggers. We chose to measure the
impact of AV systems because (1) they are ubiquitous on Internet-connected
machines, and (2) because although users have long complained that AV nega-
tively impacts system performance, very little hard data has been presented to
either refute or support this claim.

Hypothesis. We begin by defining a falsifiable hypothesis. A simple statement
such as “anti-virus makes the system slow” is not a good hypothesis because
slowness is subjective and is therefore not measurable without a substantial user
study; it depends not only on the performance of the system but also on the
perception of the user. Instead, we use a similar hypothesis that we hope will
be a good predictor of perceived slowness, namely that “anti-virus increases the
system’s resource consumption.” In related work, others have tested a similar
hypothesis, namely that “anti-virus increases the time required to complete a
suite of computational tasks” [53,54].

4.1 Testbed Setup

We use a very simple experimental testbed comprised of two physical machines.
One of these machines is a server-class machine (HOST) which we use to pro-
vide the LARIAT infrastructure. HOST is a Dell PowerEdge 2650 with dual
Intel Xeon 2.60GHz processors and 2GB of RAM. On HOST, we deploy two vir-
tual servers using VMWare Server. One of these is the LARIAT control server
(CONTROL) and the other (INTERNET) provides email, DNS, and world-wide
web services (Section 3.2) on the testbed for use by the system under test. The
second machine in our setup is a Dell Latitude D610 laptop (SUT, for “system
under test”) with a 1.7GHz Pentium M processor and 1GB of RAM. We par-
tition the hard disk of the SUT into two pieces. On one partition, we install
Ubuntu Linux 9.10. On the other, we install Windows XP with Service Pack
2, Microsoft Office XP, and our client-side workload generation tools, includ-
ing the login module, the user agent, and the AUSMs for Internet Explorer,
Word, Excel, PowerPoint, and Outlook. To enable the collection of performance
measurements from the system under test, we install components of SGI’s Per-
formance Co-Pilot (PCP) software [55] on the Windows partition of the SUT,



230 C.V. Wright et al.

Fig. 3. Test Network Physical Topology

where it can collect performance information, and on HOST, where it can log
these measurements for future analysis. We also install the winexe remote ad-
ministration tool on HOST so that we can automatically reboot the laptop when
it is in Windows.

Then, from the SUT’s Linux installation, we use the Unix tool dd to make a
byte-level image of the Windows partition and store this as a file in the Linux
system. We then re-boot into the Windows system and install an open source
anti-virus product, reboot back into the Linux system and make another byte-
level copy of the Windows partition with the open source AV product installed.
At the completion of this process, we have two Windows disk images on the Linux
filesystem: (1) a clean snapshot of the Windows system, with no AV software
installed and (2) a snapshot of the clean image with the open source product
installed.

4.2 Experimental Methods

In Section 3.1, we explained how we use pseudorandom number generators to
drive the AUSMs to deliver repeatable user inputs to the application programs
on the testbed. However, more steps are necessary to achieve repeatable results
from a system as complex as a modern computer or network. In this section,
we discuss the steps we take to improve the repeatability of our very small,
simple example experiment. First, we note that we intentionally deploy the SUT
on a physical machine instead of using virtualization because of difficulty in
obtaining repeatable timing measurements on current VM platforms [56]. Our
experimental procedure is outlined in Figure 4; we describe the process in more
detail below.



Generating Client Workloads and High-Fidelity Network Traffic 231

1. Prepare Systems for Test Run
(a) Revert disk images on SUT and INTERNET
(b) Revert system clocks on SUT and INTERNET
(c) Reboot SUT laptop into Windows environment
(d) Seed PRNGs using master experiment seed
(e) Start PCP performance logging service

2. Execute Test Run
(a) Start AUSM-based client workload generation
(b) Let workload generation run for 2 hours
(c) Stop AUSM-based client workload generation

3. Collect Results
(a) Stop PCP performance logging service
(b) Archive performance logs
(c) Reboot SUT laptop into Linux environment

Fig. 4. Experimental Procedure

When running a test, we begin with the SUT booted into its Linux environ-
ment, HOST powered up, and the INTERNET and CONTROL virtual machines
running. We revert the disk images on INTERNET and SUT’s Windows par-
tition to clean states, using VMWare’s snapshot feature and the Unix dd tool,
respectively. This is necessary to ensure that SUT’s filesystem is unchanged from
run to run, and that its view of the Internet, including queued email in the user’s
inbox, is consistent in each run. Next, we set the system clocks on SUT and IN-
TERNET to a constant value. Setting the clocks before each run is important
because many application programs also use pseudorandom number generators,
and many of them seed their PRNG with the current value of the clock when
they start up. Finally, we set the GRUB boot loader on the SUT to load Windows
on its next invocation, and we reboot the laptop. While the laptop performs
its power-on self test and boots into Windows, we start the PCP performance
logger on HOST so that it is ready to begin recording performance metrics from
SUT when it comes on line. To maximize repeatability, all of these actions are
performed automatically by a set of three shell scripts. One script, the master,
runs on HOST and executes the other two scripts to re-set the SUT and the
INTERNET VM before launching each run of the experiment.

In each run, the master script sends a command to CONTROL to start the
experiment, then sleeps for a specified length of time in order to let the test run.
Meanwhile, CONTROL sends the command to SUT, which logs in the virtual
user and starts the AUSMs to drive the client-side applications on the testbed.
When the master script wakes up, it sends another command to CONTROL,
stopping the test and logging the user out. It archives the PCP performance
logs and then uses winexe to reboot the laptop into its Linux environment in
preparation for the next run.

4.3 Experimental Results

Using the above procedure, we select a master experiment seed at random and
repeatedly execute a 2-hour test on our testbed with this seed. We run the test



232 C.V. Wright et al.

Fig. 5. CPU Utilization

under two distinct scenarios: (1) the baseline, with no anti-virus protection on
the SUT and (2) with the open source anti-virus product. These experiments
serve two purposes. First, they allow us to test whether there is any measurable
difference in system resource consumption between the two scenarios. They also
serve to demonstrate the repeatability of results enabled by our techniques.

With the experiment seed that we selected, the user agent launches both
Outlook and Word soon after logging in. It spends several minutes reading and
writing email and writing Word documents, then launches Internet Explorer and
browses to several sites on the emulated web. It keeps these three applications
open for the duration of the experiment and frequently switches back and forth
between them every few minutes.

For each of the two scenarios, we take all of the runs, and show the average
and standard deviation of the CPU utilization (Fig. 5), memory consumption

Fig. 6. Memory Consumption



Generating Client Workloads and High-Fidelity Network Traffic 233

Fig. 7. Disk I/O

(Fig. 6), and disk input/output volume (Fig. 7) for the first hour of the experi-
mental runs. The data was gathered in one second intervals using PCP. In order
to make these plots more readable, we have performed a Gaussian smoothing
over the data with a 5 second radius. In effect, this smooths out some of the
jagged edges in the plot, making them more readable without changing them in
any significant way.

Discussion. We see consistent spikes in both CPU load and disk I/O starting
near 0 seconds when the user agent launches Outlook and Word, and again
near 600 seconds when Internet Explorer is started. In Fig. 5, we see that the
open source AV product consistently causes near 100% CPU use for a period
of nearly 10 minutes. During this same period, the standard deviation of the
CPU utilization is near zero, indicating that this behavior is very repeatable.
Throughout Fig. 5 and Fig. 7, spikes in the average measurements are typically
accompanied by smaller spikes in the standard deviations. However, we note
that during periods of sustained activity, the standard deviation only spikes at
the beginning and the end of the plateau in the mean. This pattern occurs in
Fig. 5 at 600-1000 seconds, 1200-1400 seconds, and 1500-2500 seconds for the
open source product and to a lesser extent from 1800-2000 and 2300-2500 seconds
for the baseline case. This leads us to believe that much of the variance in these
graphs is due to the inexact timing of our automation scripts.

Figures 5 and 6 show clear evidence of the system with open source anti-
virus protection consuming more resources than the same system with no anti-
virus, and formal statistical tests confirm our hypothesis with high confidence
for these data series. In Fig. 7, overall, the anti-virus system does not appear
to cause a statistically significantly increase in disk I/O loads relative to the
baseline system. We are interested in whether these same results would hold for
commercial anti-virus products, which may be developed with a greater focus
on efficiency and performance. In the near future, we may expand the coverage
of our test to include one or more commercial tools as well.



234 C.V. Wright et al.

5 Conclusions and Future Work

We presented new techniques for driving ubiquitous, commercial-off-the-shelf
Windows GUI applications in place of a human user on an isolated testbed
network. Using statistical models of user behavior to generate workloads on the
testbed hosts, together with dynamic application-level protocol replay techniques
to emulate remote services like the World Wide Web, we can generate traffic on
the testbed network that resembles real traffic to a very high degree of fidelity.

We demonstrated a small-scale experiment to show how these techniques help
to enable configurable, repeatable tests involving client-side security tools, and
we highlighted some challenges in achieving repeatable experimental results with
such complex systems.

In the future, we plan to improve on our current techniques in a number of
ways. First, we will collect data from a larger set of users and develop techniques
for validating that the workloads and traffic induced on a testbed faithfully
represent the environments they were modeled after. Second, we will develop
actuators that require a smaller software footprint on the system under test,
to further reduce the risk of test artifacts in experimental results. Finally, we
plan to develop more robust techniques for dynamic application-level replay of
web sites that make heavy use of JavaScript or other active content generation
techniques.

Acknowledgments

The authors extend our sincerest thanks to the members of the MIT-LL Cyber
Testing team who implemented much of the software described here and provided
much helpful feedback on the experiments and the paper.

References

1. Barford, P., Landweber, L.: Bench-style network research in an Internet Instance
Laboratory. ACM SIGCOMM Computer Communication Review 33(3), 21–26
(2003)

2. Peisert, S., Bishop, M.: How to Design Computer Security Experiments. In: Pro-
ceedings of the 5th World Conference on Information Security Education (WISE),
pp. 141–148 (2007)

3. US Department of Homeland Security: A Roadmap for Cybersecurity Research.
Technical report (November 2009),
www.cyber.st.dhs.gov/docs/DHS-Cybersecurity-Roadmap.pdf

4. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. In: Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (December 2002)

5. Ricci, R., Duerig, J., Sanaga, P., Gebhardt, D., Hibler, M., Atkinson, K., Zhang, J.,
Kasera, S., Lepreau, J.: The Flexlab approach to realistic evaluation of networked
systems. In: Proceedings of the 4th USENIX Symposium on Networked Systems
Design & Implementation, pp. 201–214 (April 2007)

www.cyber.st.dhs.gov/docs/DHS-Cybersecurity-Roadmap.pdf


Generating Client Workloads and High-Fidelity Network Traffic 235

6. Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostic, D., Chase, J., Becker,
D.: Scalability and Accuracy in a Large-Scale Network Emulator. In: Proceedings of
the 5th Symposium on Operating Systems Design and Implementation (December
2002)

7. Bavier, A., Feamster, N., Huang, M., Peterson, L., Rexford, J.: VINI veritas: Real-
istic and controlled network experimentation. In: Proceedings of ACM SIGCOMM
(September 2006)

8. Rossey, L.M., Cunningham, R.K., Fried, D.J., Rabek, J.C., Lippmann, R.P.,
Haines, J.W., Zissman, M.A.: LARIAT: Lincoln Adaptable Real-time Information
Assurance Testbed. In: Proceedings of the IEEE Aerospace Conference (2002)

9. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: The Ghost
in the Browser: Analysis of Web-based Malware. In: Proceedings of the First Work-
shop on Hot Topics in Understanding Botnets (HotBots 2007) (April 2007)

10. Fossi, M.: Symantec Internet Security Threat Report: Trends for 2008 (April 2009)
11. Deibert, R., Rohozinski, R.: Tracking GhostNet: Investigating a Cyber Espionage

Network. Technical Report JR02-2009, Information Warfare Monitor (March 2009)
12. Nagaraja, S., Anderson, R.: The Snooping Dragon: Social-Malware Surveillance of

the Tibetan Movement. Technical Report UCAM-CL-TR-746, University of Cam-
bridge Computer Laboratory (March 2009)

13. Provos, N., Mavrommatis, P., Rajab, M., Monrose, F.: All Your iFrames Point to
Us. In: Proceedings of the 17th USENIX Security Symposium (July 2008)

14. Pinheiro, E., Weber, W.D., Barroso, L.A.: Failure Trends in a Large Disk Drive
Population. In: Proceedings of the 5th USENIX Conference on File and Storage
Technologies (February 2007)

15. Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendall, K.R., McClung, D.,
Weber, D., Webster, S.E., Wyschogrod, D., Cunningham, R.K., Zissman, M.A.:
Evaluating Intrusion Detection Systems: The 1998 DARPA Off-Line Intrusion De-
tection Evaluation. In: Proceedings of the 2000 DARPA Information Survivability
Conference and Exposition (2000)

16. Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 DARPA
Off-line Intrusion Detection Evaluation. Computer Networks 34(4), 279–595 (2000)

17. Yu, T., Fuller, B., Bannick, J., Rossey, L., Cunningham, R.: Integrated Environ-
ment Management for Information Operations Testbeds. In: Proceedings of the
2007 Workshop on Visualization for Computer Security (October 2007)

18. Benzel, T., Braden, R., Kim, D., Neuman, C., Joseph, A., Sklower, K., Ostrenga,
R., Schwab, S.: Experience with DETER: A Testbed for Security Research. In:
Proceedings of the 2nd International Conference on Testbeds and Research Infras-
tructures for the Development of Networks and Communities (TRIDENTCOM)
(March 2006)

19. Boothe-Rabek, J.C.: WinNTGen: Creation of a Windows NT 5.0+ network traffic
generator. Master’s thesis, Massachusetts Institute of Technology (2003)

20. Garg, A., Vidyaraman, S., Upadhyaya, S., Kwiat, K.: USim: A User Behavior Simu-
lation Framework for Training and Testing IDSes in GUI Based Systems. In: ANSS
2006: Proceedings of the 39th Annual Symposium on Simulation, Washington, DC,
USA, pp. 196–203. IEEE Computer Society, Los Alamitos (2006)

21. Cui, W., Paxson, V., Weaver, N.C.: GQ: Realizing a System to Catch Worms in
a Quarter Million Places. Technical Report TR-06-004, International Computer
Science Institute (September 2006)

22. Cui, W., Paxson, V., Weaver, N.C., Katz, R.H.: Protocol-Independent Adaptive
Replay of Application Dialog. In: Proceedings of the 13th Annual Symposium on
Network and Distributed System Security (NDSS 2006) (February 2006)



236 C.V. Wright et al.

23. Small, S., Mason, J., Monrose, F., Provos, N., Stubblefield, A.: To catch a predator:
A natural language approach for eliciting malicious payloads. In: Proceedings of
the 17th USENIX Security Symposium (August 2008)

24. Wang, K.: Using HoneyClients to Detect New Attacks. In: RECON Conference
(June 2005)

25. Wang, Y.M., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King,
S.: Automated Web Patrol with Strider HoneyMonkeys: Finding Web Sites That
Exploit Browser Vulnerabilities. In: Proceedings of the 13th Annual Symposium
on Network and Distributed System Security (NDSS 2006) (February 2006)

26. Sanders, M.: autopy: A simple, cross-platform GUI automation toolkit for Python,
http://github.com/msanders/autopy

27. Yeh, T., Chang, T.H., Miller, R.C.: Sikuli: Using GUI Screenshots for Search and
Automation. In: Proceedings of the 22nd Symposium on User Interface Software
and Technology (October 2009)

28. Kleek, M.V., Bernstein, M., Karger, D., Schraefel, M.C.: Getting to Know You
Gradually: Personal Lifetime User Modeling (PLUM). Technical report, MIT
CSAIL (April 2007)

29. Simpson, C.R., Reddy, D., Riley, G.F.: Empirical Models of TCP and UDP En-
dUser Network Trafc from NETI@home Data Analysis. In: 20th International
Workshop on Principles of Advanced and Distributed Simulation (May 2006)

30. Kurz, C., Hlavacs, H., Kotsis, G.: Workload Generation by Modelling User Behavior
in an ISP Subnet. In: Proceedings of the International Symposium on Telecommu-
nications (August 2001)

31. tcpreplay by Aaron Turner, http://tcpreplay.synfin.net/
32. Hong, S.S., Wu, S.F.: On Interactive Internet Traffic Replay. In: Proceedings of the

9th International Symposium on Recent Advances in Intrusion Detection (Septem-
ber 2006)

33. Sommers, J., Barford, P.: Self-configuring network traffic generation. In: Proceed-
ings of the 4th ACM SIGCOMM Conference on Internet Measurement, pp. 68–81
(2004)

34. Cao, J., Cleveland, W.S., Gao, Y., Jeffay, K., Smith, F.D., Weigle, M.C.: Stochastic
models for generating synthetic HTTP source traffic. In: INFOCOM (2004)

35. Weigle, M.C., Adurthi, P., Hernández-Campos, F., Jeffay, K., Smith, F.D.: Tmix: a
tool for generating realistic TCP application workloads in ns-2. ACM SIGCOMM
Computer Communication Review 36(3), 65–76 (2006)

36. Lan, K.C., Heidemann, J.: Rapid model parameterization from traffic
measurements. ACM Transactions on Modeling and Computer Simulation
(TOMACS) 12(3), 201–229 (2002)

37. Vishwanath, K.V., Vahdat, A.: Realistic and Responsive Network Traffic Genera-
tion. In: Proceedings of ACM SIGCOMM (September 2006)

38. Sommers, J., Yegneswaran, V., Barford, P.: Toward Comprehensive Trafc Genera-
tion for Online IDS Evaluation. Technical report, University of Wisconsin (2005)

39. Mutz, D., Vigna, G., Kemmerer, R.: An Experience Developing an IDS Stimulator
for the Black-Box Testing of Network Intrusion Detection Systems. In: Proceedings
of the Annual Computer Security Applications Conference (December 2003)

40. Kayacik, H.G., Zincir-Heywood, N.: Generating Representative Traffic for Intrusion
Detection System Benchmarking. In: Proceedings of the 3rd Annual Communica-
tion Networks and Services Research Conference, pp. 112–117 (May 2005)

41. Sommers, J., Yegneswaran, V., Barford, P.: A framework for malicious workload
generation. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet
Measurement, pp. 82–87 (2004)

http://github.com/msanders/autopy
http://tcpreplay.synfin.net/


Generating Client Workloads and High-Fidelity Network Traffic 237

42. Hunt, G., Brubacher, D.: Detours: Binary Interception of Win32 Functions. In:
Third USENIX Windows NT Symposium (July 1999)

43. Klimt, B., Yang, Y.: Introducing the Enron Corpus. In: Proceedings of the First
Conference on Email and Anti-Spam (CEAS) (July 2004)

44. Paxson, V., Floyd, S.: Wide Area Traffic: The Failure of Poisson Modeling.
IEEE/ACM Transactions on Networking 3(3) (June 1995)

45. Matsumoto, M., Nishimura, T.: Mersenne Twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Mod-
elling and Computer Simulation 8(1), 3–30 (1998)

46. GINA: MSDN Windows Developer Center,
http://msdn.microsoft.com/en-us/library/aa375457VS.85.aspx

47. Hibler, M., Ricci, R., Stoller, L., Duerig, J., Guruprasad, S., Stack, T., Webb,
K., Lepreau, J.: Large-scale Virtualization in the Emulab Network Testbed. In:
Proceedings of the 2008 USENIX Annual Technical Conference (June 2008)

48. Google, Inc.: Google search appliance,
http://www.google.com/enterprise/search/gsa.html

49. osCommerce: Open Source E-Commerce Solutions, http://www.oscommerce.com/
50. DMOZ Open Directory Project, http://www.dmoz.org/
51. Yahoo! Directory, http://dir.yahoo.com/
52. Alexa Top Sites, http://www.alexa.com/topsites
53. AV-Comparatives e.V.: Anti-Virus Comparative Performance Test: Impact of Anti-

Virus Software on System Performance (December 2009),
http://www.av-comparatives.org/comparativesreviews/performance-tests

54. Warner, O.: What Really Slows Windows Down (September 2006),
http://www.thepcspy.com/read/what_really_slows_windows_down

55. Chatterton, D., Gigante, M., Goodwin, M., Kavadias, T., Keronen, S., Knispel, J.,
McDonell, K., Matveev, M., Milewska, A., Moore, D., Muehlebach, H., Rayner, I.,
Scott, N., Shimmin, T., Schultz, T., Tuthill, B.: Performance Co-Pilot for IRIX
Advanced User’s and Administrator’s Guide. 2.3 edn. SGI Technical Publications
(2002), http://oss.sgi.com/projects/pcp/index.html

56. Timekeeping in VMware Virtual Machines,
http://www.vmware.com/pdf/vmware_timekeeping.pdf

http://msdn.microsoft.com/en-us/library/aa375457VS.85.aspx
http://www.google.com/enterprise/search/gsa.html
http://www.oscommerce.com/
http://www.dmoz.org/
http://dir.yahoo.com/
http://www.alexa.com/topsites
http://www.av-comparatives.org/comparativesreviews/performance-tests
http://www.thepcspy.com/read/what_really_slows_windows_down
http://oss.sgi.com/projects/pcp/index.html
http://www.vmware.com/pdf/vmware_timekeeping.pdf

	Generating Client Workloads and High-Fidelity Network Traffic for Controllable, Repeatable Experiments in Computer Security
	Introduction
	Related Work
	Traffic and Workload Generation Techniques
	Client-Side Workload Generation
	Server Side Techniques

	An Example Experiment
	Testbed Setup
	Experimental Methods
	Experimental Results

	Conclusions and Future Work
	References


