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Generating Closed 2-Cell Embeddings in the Torus and the 
Projective Plane 

D. W. Barnette 

Department of Mathematics, University of California, Davis, CA 95615, USA 

Abstract. If a graph G is embedded in a manifold M such that all faces are cells 
bounded by simple closed curves we say that this is a closed 2-cell embedding of 
G in M. We show how to generate the 2-cell embeddings in the projective plane 
from two minimal graphs and the 2-cell embeddings in the torus from six minimal 
graphs by vertex splitting and face splitting. 

1. Introduction 

There are numerous theorems that provide methods for the recursive generation 
of various 2-cell complexes and their associated graphs. (See, for example, [1], 
[2], [3].) Perhaps the best known and most useful is the theorem of  Steinitz [4], 
that the planar 3-connected graphs (which are the graphs of 3-dimensional convex 
polytopes) can be generated from the graph of the tetrahedron by face splitting. 

In this paper  we consider graphs that are embedded in the projective plane 
and the toms.  In our work we will be dealing with the embedding as well as the 
graphs. Since many graphs have more than one embedding in these manifolds 
it is an entirely different matter to generate all embeddings than to generate all 
graphs of a given family. 

We shall say that a graph embedded in a 2-manifold is a closed 2-cell embedding 
provided each face of  the embedding is a 2-cell whose boundary is a simple 
closed curve. (In what follows we shall omit the word "closed.") In this paper  
we show how to construct recursively the 2-cell embeddings of  graphs in the 
projective plane and in the torus. This recursive construction will generate the 
embeddings from a finite set of  graphs using two operations: face splitting and 
vertex splitting. These two operations are illustrated in Fig. 1. 

We shall prove that using our two operations all 2-cell embeddings in the 
projective plane can be generated from the graphs in Fig. 2 and that all 2-cell 
embeddings in the torus can be generated from the graphs in Fig. 7. 
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Fig. 1. 

From now on, whenever we say manifold we shall mean a compact 2-manifold. 
I f  a circuit in a graph embedded in a manifold bounds a cell that is a subset of 
the manifold we say that the circuit bounds. A circuit that does not bound will 
be called nonplanar. A circuit that bounds will be called planar. 

A circuit with n edges is said to have length n and is called an n-circuit. Circuits 
and paths will sometimes be denoted by listing their vertices, thus the path abc 
is the path with an edge from a to b and an edge from b to c. Similarly, edges 
will be denoted using the symbols for their endpoints, thus the edge from a to 
b is denoted ab. Polygons will be denoted using this notation. In the case of 
quadrilaterals the notation abcd denotes a quadrilateral where the upper left 
vertex is a, the upper fight vertex is b, the lower fight vertex is c, and the lower 
left vertex is d. 

1 2 
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2 1 

Fig. 2. 
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The graphs we consider are what are usually called multigraphs, this is, they 
can have multiple edges but not loops. 

I f  G is a graph 2-cell embedded in a manifold M let p~ be the number of 
/-sided faces of  G and let v~ be the number of  i-valent vertices. A well-known 
consequence of  Euler's formula is that 

04 if M is a torus ,  
( 4 -  i)(p~ + v~) = if M is the projective plane. 

From this we conclude 

Lemma 1. A 2-cell embedding in the projective plane without digons (that is, 
2-sided faces) or 2-valent vertices has either a 3-valent vertex or a 3-sided face. A 
2-cell embedding in the torus without digons or 2-valent vertices has a 3-valent 
vertex, a 3-sided face or else all vertices are 4-valent and all faces are 4.sided. 

2. Generating Operations 

We shall use two operations to construct our graphs: face splitting and vertex 
splitting. Face splitting consists of adding a new edge across a face of  the graph. 
There are three ways of doing this depending on how many new vertices are 
created by the splitting. Vertex splitting is the dual of face splitting. It  consists 
of choosing two sets A1 and A2 of neighbors of  the vertex v such Aa w A2 contains 
all neighbors of  v and A1 c~ A2 contains at most the first and last vertices of A1 
and A2. Then replacing v by two vertices each joined to the vertices in one of 
the sets and also joined to each other. There are three types of  vertex splittings 
depending on how many new (3-sided) faces are created by the splitting. Figure 
1 shows the three types of  each operation. The inverses of  these operations will 
be called removing edges and shrinking edges, respectively. Notice that if an edge 
meeting a 3-valent vertex is removed, the vertex disappears, that is, the other two 
edges meeting *.he vertex are coalesced into one edge. Also if an edge lying on 
a 3-sided face is shrunk then the other two edges of the face are coalesced into 
a single edge. 

I f  G is a graph that is 2-celled embedded in a manifold we shall say that an 
edge is removable provided removing the edge produces a graph that is 2-cell 
embedded. One impediment to removability is the creation of faces that are not 
cells. This would occur only when the union of the two faces containing the edge 
is not a cell, that is, they have a multiply connected union. 

Another impediment to removing an edge is that it might create a loop. This 
would happen when one vertex of the edge is 3-valent such that the other two 
edges meeting that vertex constitute a multiple edge. If  the loop produced does 
not bound a face then the faces on both sides of  the loop are not cells. Thus, 
one of  these faces is not a cell when we return the edge to the graph. We conclude 
that one face meeting the loop was a cell and thus the original graph has a digon. 
It follows that if we have a graph without digons then the first impediment is 
the only impediment to removing an edge. 
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We say that an edge e is shrinkable provided shrinking the edge produces a 
graph that is 2-cell embedded. Shrinking an edge could produce a loop if the 
edge is one of  a multiple edge, so this is one impediment to shrinking. Shrinking 
an edge could produce a face that is not a cell only if the edge has both endpoints 
on a face but the edge does not lie on the face. This is thus another impediment 
to shrinking. Actually, our first impediment is a special case of the second if our 
graph has no digons. In this case e is one of  a multiple edge. Let another edge 
of the multiple edge by e'. Any face containing e'  cannot contain e because 
that face would be a digon, thus the endpoints of  e lie on a face that does not 
contain e. 

I f  G is a graph that is 2-cell embedded in a manifold and if no edge is 
shrinkable or removable we say that the graph is minimal (with respect to these 
two operations). Since edge shrinking is the dual operation to edge removal, the 
dual o f  a minimal 2-cell embedding is minimal. 

In order to find out how to generate a family of  embeddings with the two 
operations face splitting and vertex splitting it suffices to find all embeddings in 
that family which are minimal. It follows that from these graphs all o f  the others 
can be generated. 

There are two easy observations that we can make about minimal 2-cell 
embedded graphs in a manifold. I f  our graph has a digon we can remove one 
of its two edges unless this produces a loop. Let the two vertices of  the digon be 
x and y and let its two edges be a and b. To produce a loop one vertex, say x, 
must be 3-valent. Let the other edge meeting x be c. Note that the edge e has 
vertices x and y. The edges b and c lie on a face. Since this is a 2-cell embedding, 
the face is a digon. Similarly, a and c bound a digon. The union of  these three 
digons is a sphere, thus if we are not on a sphere we can remove an edge of any 
digon. We conclude that minimal 2-cell embeddings in the torus and projective 
plane do not have digons. 

By duality, minimal 2-cell ¢mbeddings in the torus and projective plane do 
not have 2-valent vertices. 

I f  graphs G and H are embedded in manifolds we say that the embeddings 
are isomorphic provided there is a one-to-one function taking the vertices, edges 
and faces of  G onto the vertices, edges, and faces, respectively, of  H such that 
incidences are preserved. Clearly, if the embeddings are isomorphic then the 
graphs are isomorphic. It is also easily seen that a graph can have isomorphic 
embeddings in two different manifolds. A graph consisting of a single edge, for 
example, is embeddable in all manifolds and all of  these embeddings are 
isomorphic. 

I f  G and H are graphs embedded in a manifold we say that G is a refinement 
of H provided an embedding isomorphic to G can be obtained from H by adding 
vertices to relative interior points o f  edges. 

We say that an embedding of  G in a manifold is a planar embedding provided 
it is isomorphic to an embedding of  G in the plane. 

Lemma 2. I f  G is embedded in a manifold such that every circuit bounds then the 
embedding is planar. 
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Proof. Suppose G is a counterexample with a minimum number of  edges. I f  G 
has no circuits then it is a forrest and the embeddings clearly must be planar. I f  
G has circuits, let C be a circuit bounding a maximal cell A. I f  there is an edge 
of G inside A then we remove all vertices and edges inside A. This produces a 
graph G '  whose embedding is planar. In an isomorphic embedding of  G '  in the 
plane, the circuit C bounds a face. In this embedding we can return the removed 
vertices and edges giving a planar embedding isomorphic to G. 

I f  there are no edges of G inside A we shrink the circuit to a single vertex V. 
The maximality of  C guarantees that no loops will be created, thus this new 
graph G" has a planar embedding. In an isomorphic embedding of G" in the 
plane we may replace v by a small circuit and obtain an embedding in the plane 
isomorphic to the embedding of G. 

3. Representations of Graphs 

A graph in the projective plane can be represented as a graph drawn on a disc 
with diametrically opposite points identified. A graph on the torus can be represen- 
ted as a graph drawn on a rectangle with the top and bottom sides identified and 
the left and right sides identified. Many of our constructions will make use of  
these representations so it is necessary to establish some facts about them. 

In the representation of a graph on the toms some edges may have points on 
them which are not vertices and which lie on a side of  the rectangle. In this case 
we say that the edge crosses a side of the rectangle. We say that a representation 
of the graph is simple if  no edge of  the graph crosses a side of  the rectangle more 
than once, and no vertex of  the graph lies on a side of  the rectangle. We say that 
the representation of the graph is regular provided the sides of  the rectangle 
consist of  edges of the graph. (In this case the comers necessarily will be a vertex 
of the graph.) A semiregular representation is a representation of  the graph drawn 
on a parallelogram such that the left and fight sides are identified in the usual 
way, the top and bottom are identified so that the upper  left corner is identified 
with a relative interior point of  the bottom side, top and bottom of the 
parallelogram consist of  edges of  the graph, and no edges of  the graph cross 
sides of  the parallelogram. 

The following series of  lemmas leads to the theorem that every graph in the 
torus has a simple representation. The proof  of  the following lemma is rather 
tedious but routine. We shall sketch its proof. 

Lemma 3. Every graph G embedded in the torus has a semiregular representation 
provided it is not a planar embedding. 

Sketch of Proof. We cut along a nonplanar circuit to get an annulus. In the 
resulting graph on the annulus we start at a vertex on one bounding circuit and 
make a cut to the other bounding circuit, cutting across faces and ending at a 
vertex on the other bounding circuit. The two cuts produce the parallelogram 
and the embedding is semiregular. [] 
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We define a representation of a graph in the torus to be a straight representation 
provided all edges that do not cross sides are segments, and each edge that crosses 
n edges is the union of  n + 1 segments. 

Lemma 4. Every nonplanar embedding of a graph G in the torus in which no 
double edge bounds a cell has a straight semiregular representation. 

Proof. We begin with a semiregular representation of G in a parallelogram abcd. 
I f  we ignore the identifications made on the boundary of the parallelogram, then 
we have a graph G '  without multiple edges embedded in the parallelogram. We 
prove by induction that this embedding can be realized with straight edges. I f  
there are no vertices of  G '  inside abcd then all edges are chords of  abcd and 
can be represented by segments (note that if two segments were to intersect then 
the original edges also would have intersected). Proceeding by induction, suppose 
there are vertices inside abcd. In this case we shall look for an edge that we can 
shrink to produce a graph without multiple edges and fewer interior vertices. 

We can shrink an edge e lying inside abcd unless doing so produces a multiple 
edge, which happens when e belongs to a 3-circuit that bounds but does not 
bound a face. I f  such a 3-circuit exists we choose one bounding a minimal cell 
A. There must be at least one edge inside this circuit and that edge cannot belong 
to a 3-circuit that does not bound a face, by the minimality of  A. It follows that 
if  there are interior vertices then there are edges meeting interior vertices that we 
may shrink. 

We shrink such an edge and by induction, this embedding in the parallelogram 
may be realized with straight edges. We now perform the vertex splitting to a 
vertex v that is the inverse to the edge shrinking. In splitting v, we replace v by 
two vertices that are close enough to v such that we may use segments for the 
new edges, thus producing our straight representation. [] 

Lemma 5. Every graph G embedded in the torus such that multiple edges do not 
bound cells has a straight simple representation. 

Proof. I f  the embedding is planar then the theorem is obvious. I f  the embedding 
is nonplanar  we take a straight semiregular representation of G in a parallelogram 
abcd. Assume that the vertex a is directly above a relative interior point a '  of  
the bot tom side. 

We cut with a line parallel to aa' and one perpendicular to aa' so that no 
vertex lies on these lines. Rearranging the four resulting pieces in the obvious 
way yields a straight simple representation. [] 

Theorem 1. Every graph G in the torus has a simple representation. 

Proof. The previous lemma takes care of  the case where multiple edges do not 
bound cells. I f  multiple edges bound cells we prove the theorem by induction 
on the number  of  edges. The previous lemma serves to start the induction. I f  
there exist multiple edges bounding cells we choose a double edge bounding a 
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minimal cell A. I f  the cell is a face we remove one edge of the multiple edge 
(leaving endpoint's). We take a simple representation of  the resulting graph and 
return the removed edge, placing it close enough to the other edge of the multiple 
edge so that it crosses each side at most once. 

Suppose A is not a face. Let e be an edge in the interior of,4. By the minimality 
of  A, e cannot belong to a multiple edge, thus shrinking e to a vertex v produces 
a graph G'.  By induction we may take a simple representation of  G '  and then 
split the vertex v to produce G. By splitting v so that the two vertices that replace 
v are very close to v, we obtain a simple representation. [] 

The next lemma allows us to make certain assumptions about the way some 
subgraphs of  minimal graphs are embedded in a simple representation. 

Let G be the complete graph on five vertices v, a, b, c, d, such that a, b, c, d 
are in cyclic order around v, the circuits vac and vbd do not bound and the 
circuits vab, vbc, vcd, and vda bound. 

Lemma 6. I f  a graph H in the torus contains a refinement of  G (with the above- 
mentioned embedding) then there is a simple representation of  H such that the path 
corresponding to ac cuts the top and bottom sides but not the left and right sides, 
while the path corresponding to bd cuts the left and right sides but not the top and 
bottom sides. 

Proof. I f  in the proof  of  Theorem 1 we make our first cut (as in Lemma 3) along 
circuit adc and the second cut along path abc we can obtain the required 
embedding. This is illustrated in Fig. 3. [] 
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Throughout this paper, when we have a nonplanar  circuit, or several of  them, 
it will be useful to assume that they cross the edges of the rectangle of a 
representation in a certain way. Lemma 6 can be used to justify these assumptions. 

We shall define a simple representation of  a graph in the projective plane to 
be a representation in the disk with diametrically opposite points identified such 
that no vertex is on the bounding circle and no edge cuts the circle more than 
once. With arguments similar to the arguments for the torus one can prove. 

Theorem 2. Every graph in the projective plane has a simple representation. 

Implicit in the rest of  this paper  will be the assumption that we are dealing 
with simple representations. 

4. Minimal Graphs in the Projective Plane 

I f  G is a graph embedded in a manifold then by the incidence graph of  G we 
mean a graph I (G)  whose vertex set consists of  the vertices of  G together with 
vertices corresponding to the faces of  G, one vertex for each face, with two 
vertices joined if and only if one is a vertex v of  G and the other is a vertex 
corresponding to a face containing v. There is a natural embedding of I (G )  in 
the manifold with the vertices corresponding to faces lying in their corresponding 
faces. When the embedding of  G is a 2-cell embedding each edge will belong to 
exactly two faces and thus the incidence graph will have only 4-sided faces. 

Any 4-circuit in I ( G )  that does not bound a face of  I ( G )  will be called a 
nonfacial 4- circuit. 

Lemma 7. I f  G is a minimal graph in a manifold other than the sphere and if  
el = xv is an edge of  I ( G )  where x is a vertex of  G and if  e =xy  is an edge of  G 
lying on the face of  G corresponding to v then el lies in a nonfacial 4-circuit that 
contains the vertices x and y. 

Proof. Let el be an edge of  I ( G )  joining a vertex x of  G to a vertex v of  I (G )  
corresponding to a face F1 of  G. Let e be an edge of/71 meeting x. Let/:2 be the 
other face of  G containing e and let F3 be a face of  G distinct from Ft and F2 
meeting e at vertices x and y. The face F3 exists because e is not shrinkable. Let 
u and w be the vertices of  I ( G )  corresponding to/72 and/:3 respectively. I f  each 
of  the 4-circuits vxuy, vxwy, and xuyw bound then the union of  the cells they 
bound is a sphere or else the cell spanned by one of  them lies in the cell bounded 
by another. In this case vxwy must bound the cell containing one of  the other 
cells and is thus our desired circuit. 

In the case that not all circuits bound, we have at least two of  them do not, 
for any two bounding implies the third bounds. Since vxuy bounds,  vxwy does 
not and is the desired circuit. [] 
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Lemma 8. I f  G is a minimal graph with respect to edge shrinking and edge removal 
then no nonfacial 4-circuit in I(  G) bounds. 

Proof. Suppose there were such a 4-circuit. Let C be one that is minimal with 
respect to the number of  vertices of  I (G)  in the cell A that it bounds. Since I (G)  
is bipartite, and clearly has no multiple edges, no two vertices of  C are joined 
by edges not lying on C. Thus, there must be a vertex v of I (G)  in A. Any edge 
of I (G)  meeting v will lie in a nonfacial 4-circuit C'.  By the minimality if C, 
there must be a vertex of  C '  that is not in A. It follows that the portion of C '  
that lies in A consists of  two edges that meet v and also meet two nonconsecutive 
vertices of  C. This breaks A up into two regions bounded by two 4-circuits each 
consisting of  the two edges meeting v and two edges of  C. By the minimality of  
C, these two 4-circuits bound faces of I(G).  This however gives us a 2-valent 
vertex in I (G) ,  namely v, which implies that G has either a 2-valent vertex or a 
digon, which is a contradiction. [] 

Corollary 1. In a minimal graph, double edges do not bound cells. 

Theorem 3. I f  G is a minimal 2-ceU embedded graph in the projective plane then 
it is one of  the two graphs in Fig. 2. 

Proof. By Lemma 1 there is either a 3-valent vertex or a 3-sided face of  G. 
Suppose there is a 3-valent vertex v. Corresponding to this 3-valent vertex will 
be three faces of  I (G)  (see Fig. 4). 

By Lemma 7, each edge e = vw of I ( G )  lies on a 4-circuit that consists of  two 
edges of  one of the faces F of I (G)  that meets v, another edge of I (G)  meeting 
v and one more edge. (Here the vertex w plays the role of  the vertex v in Lemma 
7. The edge of G across F plays the role of  el in Lemma 7.) Furthermore, these 
4-circuits must be nonplanar by Lemma 8. It follows that we have an edge e in 
I (G) as indicated in Fig. 5. Since there is such a circuit for each edge of I (G)  
meeting v, it follows that I (G)  contains the graph in Fig. 6. Since all planar 
4-circuits of  I (G)  must bound faces of  I (G)  the graph in Fig. 6 is I(G).  Since 
the vertex v in Fig. 6 corresponds to a vertex of G, the graph in Fig. 6 is the 
incidence graph of  graph 1 in Fig. 2. 

Fig. 4. Fig. 5. 
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Fi~6. 

In the case that G contains a 3-sided face, the dual G* has a 3-valent vertex 
and is minimal. Thus in this case G is the dual o f  graph 1 in Fig. 2 and is graph 
2 in Fig. 2. [] 

5. Minimal Graphs in the Torus 

From here on all graphs will be embedded in the toms. 

Lemma 9. A minimal graph cannot have a 3-sided face with a 3-valent vertex. 

Proof Let the 3-sided face F have vertices x, y, and z with z 3-valent. The only 
way a face F '  meeting F on xy can have a multiply connected union with F is 
if F '  c~ F = xy u {z}. But if  z is in this intersection then so is the edge xz because 
z is 3-valent. Since F '  cannot have a multiply connected union with F, the edge 
xy is removable and the graph is not minimal. 

Corollary 2. I f  G is a minimal graph then I ( G) does not have two 3-valent vertices 
joined by an edge. 

Lemma 10. Let G be a minimal 2-cell embedding in the torus and let C be a 
6-circuit in I (  G) bounding a cell A. Then in I (  G) either C has a diagonal lying in 
A or there is exactly one vertex of  I (G)  but no diagonal of  C in A. 

Proof. Suppose that the circuit C is a counterexample bounding a minimal cell 
A. Suppose e is an edge of  I ( G )  in A with neither of  its vertices on C. (We shall 
show that  this is impossible.) The edge e lies on a nonplanar 4-circuit C'. The 
other two vertices of  C '  will lie on C, and since I ( G )  is bipartite they are either 
consecutive on C or are separated by two vertices on C. I f  they are consecutive 
then the circuit C' lies in A (remember I ( G )  has no multiple edges) which is a 
contradiction. 

I f  they are separated by two vertices on C, let these vertices be x and y, and 
let the vertices of  e be z and w, so that C '  is xzwy, The path xzwy together with 
the two paths on C joining x and y form two planar 6-circuits which by the 
minimality of  C have either exactly one edge or exactly one vertex of  I ( G )  inside 
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of them. Let the cells bounded by these two circuits be A' and A". Now the 
vertices z and w can be at most 4-valent, yet they cannot both be 3-valent. I f  one 
of z and w has two edges lying in one region, say A', then A' does not have 
exactly one edge or exactly one vertex inside it. This means that on one side of  
the path xzwy say, in A',  there must emanate an edge from each of  the vertices 
z and w. It follows that exactly one vertex of  I(G) lies inside A' and is thus 
joined to z and w. This contradicts the fact that I(G) is bipartite. 

We now have that any edge of I(G) lying in A has at least one vertex on C 
If  such an edge had both vertices on C then it would be a diagonal of  C breaking 
A up into two 4-sided faces of  I(G) and we are done. I f  exactly one vertex lies 
on C let v be the other vertex. Two other edges must emanate from v and m ~ t  
meet vertices of  C Since I(G) is bipartite, this can be done in only one way 
breaking A up into three 4-sided faces of  I(G), and again we are done. [] 

Theorem 4. The minimal graphs in the torus are the graphs in Fig. 7. 

Proof Let G be a minimal graph. We treat several cases. 

Case I. G has a 3-valent vertex v. In this case I ( G )  has three faces surrounding 
v as in Fig. 8. The edges e' and e" belong to nonplanar 4-circuits. Each such 
4-circuit must use two edges of a face meeting v, another edge meeting v and a 
fourth edge (Lemma 7). By Lemma 6 we may assume that these edges are as in 
Fig. 9. 

By the same argument there is an edge in I(G) from vertex d to vertex c (see 
Fig. 10). The face of  the graph in Fig. 10 that this edge crosses is a 10-gon with 
two pairs of  edges identified. Since this edge fc misses all vertices that are 
identified, all ways of drawing it are combinatorially the same (see Fig. 10). Thus 
I(G) contains the graph in Fig. 11. In this graph the faces labeled F and F '  are 
bounded by 6-circuits, thus each face either has a diagonal in I(G) or has a 
3-valent vertex of I(G) inside of  it. 

Once these diagonals and 3-valent vertices are added all faces will be 4-sided 
thus we will have drawn the entire graph I(G). 

Each face has three ways of  having diagonals drawn and two ways of  adding 
3-valent vertices. It turns out that whenever a diagonal is added to one of these 
faces we will arrive at a graph I(G) for which the graph G is not a 2-cell 
embedding. The reader can quickly check this. 

The four ways of  adding 3-valent vertices to F and F '  yield two nonisomorphic 
incidence graphs shown in Fig. 12. These are the incidence graphs for graphs 1 
and 2 in Fig. 7. 

Case II. G has a 3-sided face. This is the dual of  Case I. It is easily seen 
that an incidence graph for a graph G is also an incidence graph for its dual. G 
therefore has as its incidence graph one of  the two graphs in Fig. 12. In this case 
the graph G is either graph 3 or 4 in Fig. 7. 

Case III .  Every vertex of G is 4-valent and every face is 4-sided. 
Let F be a face with vertices a, b, c, and d. Since ab is not removable there 
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is a face F '  sharing edge ab with F and meeting F at d, c or on edge dc. We 
treat several subcases. 

(i) There is a face abxd (or abxc) for some x # b, c, d. If  the circuit adx is 
planar then ad is removable. If  not we have the configuration in Fig. 13. 
Now the face abxd meets itself at a. Now since F '  is 4-sided it follows 
that an edge e of  G joins a to d or c. Using the same argument for the 
edge ad there is an edge e' joining a to b or c. Since a is 4-valent e and 
e' will lie two nonadjacent 4-sided faces meeting a, thus e' # e. 

(ii) Two edges not on F join a to one of  b, c, or d. This case is ruled out 
because the double edge would have to bound the face that meets F at 
the vertex a and does not contain the edges ab and ad of F. This means 
that G is not minimal. 

We may now assume that no double edges will join two vertices of F 
unless one of them is an edge of F. We can also conclude that two edges 
not on F, join a to two of  the vertices b, c, and d. By symmetry we may 
assume that a is joined to d as shown in Fig. 14. 

(iii) No edge joins diagonally opposite vertices of  F. By the above argument 
we can conclude that two edges join b to a, d and c, thus b is joined to 
c as in Fig. 15. Now a must be joined to b, and c to d, which can be 
done in only one way giving graph 5 in Fig. 7. 
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lO 9 

23 10 9 1 2 3 
I . . . . . .  I 

r- ~ 4  4 ~ ' ~ "  " F - - ~ 4  

8 i \ !8 _./_ L _X__x. _'I 
2 3 10 9 1 2 3 

Fig. 12. 
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Fig. 13. Fig. 14. 
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Fig. 15. Fig. 16. 

(iv) Two diagonal ly opposite vertices o f  F are joined.  We observe here that 
all p lanar  circuits must  have even length because a planar  circuit together 
with the vertices and edges in the cell it bounds  is a planar  graph  with 
all bounde d  faces o f  even length. Since a p lanar  graph cannot  have exactly 
one face of  odd  length the circuit is even. 

1 2 1 1 2 1 1 2 3 1 

1 2 1 1 2 1 1 2 3 1 

1 2 3 4 1 1 2 1 

2 3 4 1 2 1 2 1 

Fig. 17. 
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Suppose without loss of generality that b is joir~d to d. Since G cannot 
have planar 3-circuits, the only way of joining b and d that is not ruled 
out is shown in Fig. 16. Since d is 4-valent in G we see that c must be 
joined to a and b. This gives us graph 6 in Fig. 7. 

Although simple representations were useful in illustrating the proofs, regular 
representations are the simplest to view. Figure 17 shows representations of the 
minimal maps for the torus which are easier to view, most of them regular. [] 
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