
Generating Code Review Documentation for

Auto-Generated Mission-Critical Software

Ewen Denney	 Bernd Fischer

SGT / NASA Ames	 School of Electronics and Computer Science
Moffett Field, CA 94035	 University of Southampton, England

Ewen.W.Denney@nasa.gov	 B.Fischer@ecs.soton.ac.uk

Abstract

Model-based design and automated code generation are
increasingly used at NASA to produce actual flight code,
particularly in the Guidance, Navigation, and Control do-
main. However, since code generators are typically not
qualified, there is no guarantee that their output is correct,
and consequently auto-generated code still needs to be fully
tested and certified. We have thus developed AUTOCERT, a
generator-independent plug-in that supports the certification
of auto-generated code. AUTOCERT takes a set of mission
safety requirements, and formally verifies that the auto-
generated code satisfies these requirements. It generates
a natural language report that explains why and how the
code complies with the specified requirements. The report is
hyper-linked to both the program and the verification con-
ditions and thus provides a high-level structured argument
containing tracing information for use in code reviews.

1. Introduction

Model-based development and automated code generation

are increasingly used by NASA missions (e.g., Constella-

tion uses MathWorks’ Real-Time Workshop), not only for

simulation and prototyping, but also for actual flight code

generation, in particular in the Guidance, Navigation, and

Control (GN&C) domain. However, since code generators

are typically not qualified, there is no guarantee that their

output is correct, and consequently the generated code still

needs to be fully tested and certified. The V&V situation

thus remains unsatisfactory:

Code reviews are still necessary for mission-critical

applications, but the generated code is often difficult

to understand, and requires reviewers to match subtle

details of textbook formulas and algorithms to model

and/or code.

Common modeling and programming languages do

not allow important requirements to be represented

explicitly (e.g., units, coordinate frames, quaternion

handedness); consequently, such requirements are gen-

erally expressed informally and the generated code is

not traced back to these requirements.

. Writing documentation is tedious and therefore often

not completed or kept up to date.

In this paper, we describe a new tool that generates human-

readable and traceable safety documentation from the results

of an automated analysis of auto-generated code. It is based

on the AUTOCERT code analysis tool [1], which takes a set

of mission safety requirements, and formally verifies that the

code satisfies these requirements. It can verify both simple

execution-safety requirements (e.g., variable initialization

before use, array out of bounds, etc.), as well as domain-

and mission-specific requirements such as the consistent use

of Euler angle sequences and coordinate frames. The results

of the code analysis are used to generate a natural language

report that explains why and how the code complies with

the specified requirements. The report makes the following

information explicit: assumptions on the environment (e.g.,

the physical units and constraints on input signals) and

the intermediate variables in the computation (representing

intermediate signals in the model), the algorithms, data

structures, and conventions (e.g., quaternion handedness)

used by the code generator to implement the model, the

dependencies between variables, and the chain of reasoning

which allows the requirements to be concluded from the

assumptions. The analysis tool matches candidate algorithms

for various mathematical operations against the code, and

then uses theorem proving to check that they really are

correct implementations. The report is hyper-linked to both

the program and the verification conditions, and gives trace-

ability between verification artifacts, documentation, and

code. In order to construct a justification that the code meets

its requirements, a diligent code reviewer must “rediscover”

all the information which is automatically generated by

AUTOCERT, so the high-level structured argument provided

by our tool can result in substantial savings in effort.

Our approach, both to the formal verification and to the

construction of the review reports, is independent of the

particular generator used, and we have applied it to code

generated by several different in-house and commercial code



generators, including MathWorks’ Real-Time Workshop. In

particular, we have applied our tool to several subsystems of

the navigation software currently under development for the

Constellation program, and used it to generate review reports

for mission-specific requirements such as the consistent use

of Euler angle sequences and coordinate frames.

2. Background

2.1. Automated Code Generation

Model-based design and automated code generation (or

autocoding) promise many benefits, including higher produc-

tivity, reduced turn-around times, increased portability, and

elimination of manual coding errors [2], [3]. There are now

numerous successful applications of both in-house custom

generators for specific projects, and generic commercial

generators. One of the most popular code generators within

NASA is MathWorks’ Real-Time Workshop (with the add-

on product Embedded Coder), an automatic code generator

that translates Simulink/Stateflow models into embeddable

(and embedded) C code [4]. By some estimates, 50% of all

NASA projects now use Simulink and Real-Time Workshop

for at least some of their code development. Code generators

have traditionally been used for rapid prototyping and design

exploration, or the generation of certain kinds of code (user

interfaces, stubs, header files etc.), but there is a clear

trend now to move beyond simulation and prototyping to

the generation of production flight code, particularly in the

GN&C domain. Indeed, the prime contractor for the Orion

Spacecraft (NASA’s Crew Exploration Vehicle) is making

extensive use of code generators for the development of the

flight software.

2.2. Autocode Assurance

The main challenge in the adoption of code generators in

safety-critical domains is the assurance of the generated

code. Ideally, the code generator, itself, should be qualified

or even formally verified, but this is rarely done: the direct

V&V of code generators is generally too laborious and

complicated due to their complex nature, while testing the

generator itself can require detailed knowledge of the (often

proprietary) transformations it applies [5], [6]. Moreover,

the qualification is only specific to the use of the generator

within a given project, and needs to be repeated for every

project and for every version of the tool. Even worse, if

the generator is upgraded during a project, any qualification

effort which has been carried out on the previous working

version is now lost, the code must be re-certified, and the

entire tool-chain must now essentially be upgraded. This can

offset many of the advantages of using a generator. Also,

even if a code generator is generally trusted, it often re-

quires user-specific modifications and configurations, which

necessitate that V&V be carried out on the generated code

[7]. In summary, the generated code still needs to be fully

tested and certified.

Advocates of the model-driven development paradigm

claim that by only needing to maintain models, and not

code, the overall complexity of software development is

reduced. While it is undoubtedly true that some of burden

of verification can be shifted from code to model, there

are additional concerns and, indeed, more artifacts in a

model-based development process than just models. Users

not only need to be sure that the code implements the

model, but also that the code generator is correctly used

and configured, that the target adaptations are correct, that

the generated code meets high-level safety requirements,

that it is integrated with legacy code, and so on. There can

also be concerns with the understandability of the generated

code. Some explanation of why and how the code satisfies

the requirements, therefore, helps the larger certification

process. Automated support for V&V that is integrated

with the generator can address some of these complexity

concerns. Furthermore, certification requires more than black

box verification of selected properties, otherwise trust in one

tool (the generator) is simply replaced with trust in another

(the verifier).

Automated code generation, therefore, presents a number

of challenges to software processes and, in particular, to

V&V, and this leads to risk. The documentation tool we

describe here mitigates some of that risk.

2.3. Autocode Verification

In contrast to approaches based on directly qualifying the

generator or on testing of the generated code, we have

instead developed an independent autocode analysis tool

which is nevertheless closely integrated with the code gen-

erator. Specifically, AUTOCERT supports certification by

formally verifying that the generated code complies with a

range of mathematically specified requirements and is free

of certain safety violations.

However, in an independent V&V (IV&V) context, we

must consider the larger picture of certification, of which

formal verification is a part, and therefore produce assurance

evidence which can be checked either by machines (during

proof checking) or by humans (during code reviews). Hence,

the tool constructs an independently verifiable certificate,

and explains its analysis in a textual form suitable for code

reviews.

If the tool does not detect any bugs, then it is guaranteed

that the auto-generated source code is meets the stated

requirements. Moreover, the time taken to review and certify

the auto-generated code by hand, could be compared with

with the time taken to do it with support from AUTOCERT.



2.3.1. Code Analysis. In order to certify a system, A UTO

-CERT is given a set of assumptions and requirements.

Assumptions are typically constraints on input signals to the

system, while requirements are constraints on output signals.

The tool then parses, analyzes, and verifies the generated

source code with respect to the specified requirements. Note

that only the code is analyzed, rather than the model or the

generation process. In other words, the code generator is

treated as a black box.

The key technical idea of our approach is to exploit

the idiomatic nature of auto-generated code in order to

automatically infer logical annotations, that is, assertions of

program properties at key locations in the code. Annotations

are crucial in order to allow the automatic formal verification

of the requirements without requiring access to the internals

of the code generator, as well as making a precise analysis

possible. The annotations are used to generate verification

conditions (VCs), which are then proved by an automated

theorem prover. We omit further technical details of the

verification process (see [15], [8]).

During the course of verification, AUTOCERT records

various facts, such as the locations of variable definitions and

uses, which are later used to generate the review document

(Section 4.2).

2.3.2. Customization. AUTOCERT is independent of the

particular generator used, and need only be customized to a

domain via an appropriate set of annotation schemas, which

encapsulate certification cases for matching code fragments.

We omit details of the schema language here (see [9]),

but note that is is based on a generic pattern language for

describing code idioms. Schemas also contain actions which

construct the annotations needed to certify a code fragment,

and can record other information associated with the code,

such as the mathematical conventions it follows. A schema

also has a number of different textual descriptions which

can be parametrized by the variables in the pattern. This is

used during the document generation process.

2.3.3. Certification Browser. The user can view the results

of the verification via a certification browser that is inte-

grated with Matlab. This displays the generated code along

with the VCs and the review document (to be described

below).

By selecting a line in the generated code, the user can

see the list of VCs that are dependent on that line. The

user can also select a VC and navigate to its source in

the code. This action highlights the lines in the RTW-

generated code which contribute to the chosen VC (that

is, they had either an annotation from which the given VC

was generated or contributed a safety obligation). A click

on the source link associated with each VC prompts the

certification browser to highlight all affected lines of code,

and display the annotations for the selected VC in the RTW-

generated code. Conversely, a click on the line number link

at each line of code or on an annotation link will display all

VCs associated with that line or annotation. A further click

on the verification condition link itself displays the formula

which can then be interpreted in the context of the relevant

program fragments.

3. Mathematical Domain

We will illustrate the review document generation using

excerpts that explain the verification of several requirements

for an attitude module of a spacecraft GN&C system. In

addition to being a necessary component of every space-

craft, the GN&C domain is challenging from a verification

perspective due to its complex and mathematical nature.

We just describe the model at the top level sufficient

to understand typical requirements. The attitude sub-system

takes several input signals, representing various physical

quantities, and computes output signals representing other

quantities, such as Mach number, angular velocity, position

in the Earth-Centered Inertial frame, and so on. Signals

are generally represented as floats or quaternions and have

an associated physical unit and/or frame of reference. At

the model level, the transformations of coordinate frames

are usually done by converting quaternions to direction

cosine matrices (DCMs), applying some matrix algebra, and

then converting back to quaternions. Other computations are

defined in terms of the relevant physical equations. Units and

frames are usually not explicit in the model, and instead are

expressed informally in comments and identifier names.

At the code level, equations and transformations are

expressed in terms of the usual loops, function calls, and

sequences of assignments. Depending on the optimization

settings of the generator, the resemblance to the model

can be tenuous. Variables can be renamed and reused, and

structures can be merged (e.g., via loop fusion) or split (e.g.,

to carry out common sub-expression elimination).

The challenge for AUTOCERT is to disentangle this com-

plexity and provide a comprehensible explanation in terms

of concepts from the model and domain (e.g., [10], [11],

[12]). In effect, what the tool must do is reverse engineer

the code.

In practice, this semantic abstraction can be seen as going

up through several levels before reaching the high-level

mathematical concepts appropriate for explanation. Fig.1

shows the relationships between these levels.

At the lowest level is the code itself along with primitive

arithmetic arithmetic operators. This is, of course, the level

at which V&V is actually carried out (we do not consider

object code here). The purpose of comments in the code

(and model) is generally to informally explain the code at a

more abstract level, so AUTOCERT can be seen as formally

checking these implicit conventions. At the next level are

mathematical operations, such as matrix multiplication and



Figure 1. Levels of Abstraction

transpose, while low-level datatypes such as floats corre-

spond, at the more abstract level, to physical values of a

given unit. These, in turn, are used to represent navigational

information in terms of quaternions, DCMs, Euler angles,

and so in, in various coordinate systems. This is the level

at which we explain the verification. There is a further level

of abstraction, at which domain experts think, namely the

principles of guidance, navigation, and control, itself, but

explanation at this level is currently beyond our scope.

4. Generating Review Documents

4.1. Document Purpose and Assumptions

The generated safety documents serve as structured reading

guides for the code and the verification artifacts, show-

ing why and how the code complies with the specified

requirements. However, the documents do not simply as-

sociate source code locations with verification conditions;

in fact, we delegate this to the existing complementary

code browser [1] sketched in Section 2.3.3. Instead, the

documents call out the high-level operations and conventions

used by the generated code (which might be different from

those originally specified in the model from which the

code was generated, due to optimizations) and the relevant

structures in the code (in particular, the paths between the

locations where the requirements manifest themselves and

where they are established) and associates the verification

conditions with these. This provides a “natural” high-level

grouping mechanism for the verification conditions, which

helps reviewers to focus their attention to the artifacts and

locations that are relevant for each safety requirements,

and thus conforms to the usually requirements-driven safety

certification process.

The document construction is based on the assumption

that all relevant information can be derived in the verification

phase, in particular by the annotation inference mechanism.

The document’s overall structure (see Section 4.3) reflects

the way the annotation inference has analyzed the pro-

gram, starting with the variables occurring in the original

requirements. The applied schemas implicitly also indicate

which high-level conventions and operations are used by

the code (see Section 4.4), and a semantic labeling of the

verification conditions [13] allows us to associate only the

small number of VCs with the paths that actually contribute

to demonstrating how a given requirement holds along a

path, as opposed to those that are just coincidentally related

to it (see Section 4.5).

4.2. Technical Approach

The generated documents are heavily cross-referenced

and hyper-linked, both internally and externally, so that

HTML/JavaScript is a suitable technical platform. Cross-

linking follows not only from the hierarchical document

structure (e.g., the links from the requirements summary to

the individual requirements sections, see Fig. 2), but also

from the traceability links recovered by the analysis phase,

primarily the chains of implications from the properties

of one variable to the properties of one or more “depen-

dent” variables. Hyper-links are mostly traceability links to

other artifacts such as external documents, models, code,

or verification conditions that were constructed by by the

analysis and verification phases. Further hyper-links can be

introduced by the concept lexicalization; these usually refer

to to external documents such as RTW documentation or

Wikipedia pages.

The actual document generation process is relatively

lightweight and does not require the application of deep nat-

ural language generation (NLG) technology [14]. Currently,

the document’s overall structure is fixed, so that content

determination and discourse planning are not necessary.

Concept lexicalization, however, relies on text fragments

provided by the annotation schemas (for the mathematical

and data structures and the operations) or stored in a fact

base (for the mathematical operations used in assumptions

and other formulas). This step can thus be customized easily.

The document generator contains canned text for the

remaining fixed parts of the document, and constructs some

additional “glue text”, to improve legibility. The combined

text is post-processed to ensure that the document is syn-

tactically correct. The generator currently directly produces

HTML, but changing the final output to, e.g., XML to

simplify layout and rendering changes is relatively straight-

forward.

4.3. Document Structure

The document consists of a general introduction and a

section for each certified requirement. The introduction

contains a natural language representation of the formalized

requirements and certification assumptions; see Fig. 2 for an



This document describes the results of the safety certification for
the code generated from the model Attitude. It consists of sections
establishing the following safety requirements:

• rty_7 is a value representing Mach at MSL altitude
• rty_2 is a value representing position in the ECI frame
• rty_1 is a value representing velocity in the ECI frame
• VelocityCompNed is a value representing velocity in the

NED frame

The assumptions for the certification are that

• BitwiseOperator_c is positive
• VelocityNED_e is a value representing velocity in the

NED frame
• DCMtoQuat_1 is a quaternion representing a transformation

from the NED frame to the body fixed frame (Body)
• AtmScaleHt_MslAlt represents the altitude entries in a

lookup table
• SpeedOfSound_Lookup represents the speed of sound

entries in a lookup table
• GeodeticHeight_g is a value representing geodetic

height
• Latitude_g is a value representing geodetic latitude
• Longitude_a is a value representing longitude
• rty_11 is a value representing altitude
• rty_12 is a value representing angular velocity

Figure 2. Requirements and Assumptions

example. 1 This allows the reviewers to check that the for-

malization has not (inadvertently) introduced any conceptual

mismatches. The verbalization is based on an analysis of

the formula structure, and uses text templates to verbalize

the relevant predicates. This allows us to customize the

document’s appearance.

The requirements sections are automatically grouped into

categories which correspond to the applied logic (i.e., the

safety policy [15]); this information can be derived from

the structure of the given formalization of the respective

requirements. Each requirement section in turn starts with

a summary of the pertinent information, i.e., the relevant

variables and the high-level conventions and operations used

by the code (see Section 4.4). The system extracts from the

given formalization the program variables that correspond to

the signals for which the requirement has to hold, and then

identifies the intermediate variables (mostly corresponding

to intermediate signals in the model) that form the chain

between the program locations where the requirement holds

and where it is established. The document separately lists

both the initial and the intermediate variables. However,

the system discards variables for which the formal proof

is below a certain threshold of complexity. This reduces the

lists to those variables to which reviewers need to direct

their attention.

1. For presentation purposes, we converted the excerpted HTML docu-

ment fragments into LATEX, but kept their structure and text; to improve
legibility, we also removed most HTML links, in particular those asso-

ciated with source code references and those introduced by the concept
lexicalization.

Each requirements section then concludes with a series of

subsections that explain why and how each of the relevant

variables meets the requirement (see Section 4.5). The

subsections can contain explanations of fragments of code,

and can refer to the explanations for other variables, which

are cross-linked. Whenever the underlying certification tool

has carried out some analysis using the prover (e.g., that

a code fragment establishes some property), the document

provides links to the corresponding verification conditions

(see Section 4.6).

4.4. Inferred Operations and Conventions

As part of its analysis, AUTOCERT effectively “reverse

engineers” the code, and identifies the potentially over-

lapping fragments that correspond to high-level operations

specified in the model. As a side effect of this analysis,

AUTOCERT also identifies both the high-level mathematical

structures that are used by the operations relevant to the

current requirement, e.g., DCMs and quaternions, and the

lower-level data structures used to represent these, e.g.,

matrices and vectors, including any underlying conventions

that manifest themselves in the lower-level data structures

(e.g., quaternion handedness). This analysis also identifies

cases where several lower-level data structures are used to

represent a high-level concept, such as four scalars repre-

senting a quaternion.

The report contains a concise summary of this infor-

mation, going from the abstract mathematical structures to

the the concrete operations; see Fig. 3 for an example. In

each category, the entries are grouped by sub-categories, so

that for example all extracted information concerning the

representation of DCMs is next to each other. This highlights

potential problems caused by different representations used

in different parts of the model or by different operations

(e.g., the representation of DCMs as 9-vectors and three

3-vectors), and directs the reviewers’ attention to this for

further inspection and clarification.2 Note that here we

choose to list the case where a high-level mathematical

structure’s representation is distributed over several variables

(i.e., eml_fv5, eml_fv6, and eml_fv7), but not to list

all the program variables and what they represent, since the

reuse of variables by optimizing generators makes this aspect

less useful. However, both decisions could easily be changed

by simply changing the schemas.

4.5. Explaining Inferred Program Structure

The backbone of the document is a chain of implications

from the properties of one variable to the properties of one

2. Note that different representations are not necessarily unsafe or un-

wanted (in fact, DCMs and quaternions can represent the same information),
but might nevertheless indicate deeper design problems.



The code relevant to this requirement uses the following data
structures:

• DCMs
• Quaternions

The data structures are represented using the following mathemat-
ical conventions:

• DCMs are represented as 9-vectors.
• DCMs are represented as three 3-vectors.
• The vectors eml_fv5, eml_fv6, and eml_fv7 together

represent a DCM.
• Quaternions are right-handed.

In order to certify this requirement, we concentrate on the following
operations used in the code:

• a coordinate transformation using a DCM from ECI to ECEF
• a coordinate transformation using a DCM from NED to ECEF

• a coordinate transformation using a DCM from NED to Nav
• conversion of a DCM to a quaternion
• conversion of a quaternion to a DCM
• matrix multiplication
• matrix transpose

Figure 3. High-level Conventions

The variable T_NED_to_body1 has a single relevant occurrence
at line 235 in file Attitude. cpp. Frame safety for this occur-
rence requires that T_ NED _to_body1 is a DCM representing
a transformation from theN

to

frame to the body fixed frame
(Body), or, formally, that

has_frame(T_NED_to_body1, dcm(ned, body))

holds. Safety of this use gives rise to three verification conditions:

• Attitude frame 016 0025 (i.e., establish the postcondition at
line 235 (#1))

• Attitude frame 016 0026 (i.e., establish the postcondition at
line 235 (#2))

• Attitude frame 016 0027 (i.e., establish the postcondition at
line 235 (#3))

The frame safety is established at a single location, lines
200 to 203 in file Attitude. cpp by matrix multiplication
of T_nav_to_body1 and Reshape 9to3x3columnmajor_o
using Util_Matrix_Multiply, as above. It relies, in turn, on
the frame safety of the following variables:

• T_nav_to_body1

• Reshape9to3x3columnmajor_o

The occurrence of T_NED_to_body1 at line 235 in file

Attitude. cpp is connected to the establishing location at
lines 200 to 203 in file Attitude. cpp by a single path,
which, beginning at this location, runs through the next six
statements, starting with the procedure Util_DCM_to_Quat at
line 205 in file Attitude . cpp, before it calls the procedure
Util_Matrix_Multiply at line 230 in file Attitude. cpp.
This path gives rise to two verification conditions:

• Attitude frame 018 0031 (i.e., establish the postcondition at
line 226 (#1))

• Attitude frame 018 0032 (i.e., establish the postcondition at
line 226 (#2))

Figure 4. Uses and Paths: A Step in the Argument

or more “dependent” variables. The chain starts at those key

variables which appear in the requirement, and continues to

The frame safety is established at a single location, lines 177 to
189 in file Attitude. cpp by definition as a DCM matrix from

NED to NAV. The correctness of the definition gives rise to two
verification conditions:

• Attitude frame 006 0009 (i.e., establish the postcondition at
line 189 (#1))

• Attitude frame 007 0010 (i.e., establish the precondition at
line 177 (#1))

Figure 5. Definitions

variables in the assumptions or input signals. Fig. 4 shows

one step in this chain.

At this step in the justification, we need to show that

the variable T_ NED _to_body1 is a DCM from NED to

the Body frame. First, we show that the information which

has been inferred at this point in the code does indeed give

the variable the requirement properties. Three VCs establish

this (cf. “safety of this use”). Second, the location where

the variable is defined is given, and the correctness of that

definition is established, i.e., that it does define the relevant

form of DCM. In this case, it turns out that that particular

definition has been explained earlier in the document, so a

link is given to the relevant section (cf. “as above”). We

give an example of a definition below. Third, we observe

that this definition – a matrix multiplication – depends, in

turn, on properties of other variables, i.e., the multiplicands,

with which the explanation continues later in the document.

Fourth, we show that the properties of the definition are

sufficient to imply the properties of the use, and that these

properties are preserved along the path connecting the two

locations.

Explaining the definitions. Fig. 5 gives an example where

a DCM has been identified and verified. It gives links to

the appropriate lines in the code and links to the VCs that

demonstrate the correctness of the definition. In this case

there are two VCs: a pre-condition (omitted here), which

states that there exist heading and azimuth variables, and a

post-condition, which states that the constructed matrix does

indeed satisfies the textbook definition of a DCM from Ned

to NAV, with entries equivalent to the appropriate trigono-

metric expressions. Structures that involve loops generally

have considerably more correctness conditions, with VCs

for inner and outer invariants, as well as pre- and post-

conditions.

4.6. Tracing

The provision of traceability links between artifacts is crucial

to providing certification support since things cannot be

understood in isolation. Indeed, the code review document

generated by AUTOCERT can be seen as a structured high-

level overview of the traceability links inferred during ver-

ification. There are both internal links, where items within



Figure 6. Tracing Between Artifacts

Much more can be done to improve the review documents

themselves, such as adding more hierarchy and top-level

summaries, and listing formulas and equations that are

used in the code. In particular, more information could

be gleaned from the proofs, such as the use of constants,

lookup tables, as well as the specific assumptions and axioms

used by individual requirements, and whether there are any

unused assumptions. However, we are already working on

such a proof analysis, and foresee no particular problems

in extending the document generator accordingly. We also

continue to extend the underlying domain theory that is used

to verify the code.

Acknowledgments. Thanks to Allen Dutra for help with the

graphics.

the document are linked to each other, and external links to

other artifacts.

The internal links have been described above, and include

links from requirements to safety policies, variables, and

concepts. Fig. 6 illustrates the different kinds of external

tracing provided by AUTOCERT within the larger Matlab

environment. Matlab/RTW already provides bidirectional

linking between models and code. To this, the AUTOCERT

certification browser adds bidirectional linking between code

and VCs. The review documents provide a further layer of

tracing, linking code, VCs, and external documents such

as Matlab block documentation and Wikipedia articles on

domain concepts.

5. Conclusion

We have described the review documentation feature of

AUTOCERT, an autocode certification tool which has been

customized (but is not limited) to the GN&C domain, and

have illustrated its use on code generated by Real-Time

Workshop from a Matlab model of an attitude sub-system.

AUTOCERT automatically generates a high-level narrative

explanation for why the specified requirements follow from

the assumptions and a background domain theory, and

provides hyperlinks between steps of the explanation and the

relevant lines of code, as well as the generated verification

conditions.

The tool is aimed at facilitating code reviews, thus in-

creasing trust in otherwise opaque code generator without

excessive manual V&V effort, and better enabling the use

of automated code generation in safety-critical contexts.

We are currently working to automate linking of inferred

concepts to a mission ontology database. The idea is that by

automatically annotating the code with inferred concepts,

engineers are relieved of this documentation chore. We also

plan to provide links to mission requirements documents and

other relevant project documentation.

References

[1] E. Denney and S. Trac, “A software safety certification tool
for automatically generated guidance, navigation and control
code,” in IEEE Aerospace Conference Electronic Proceed-
ings. Big Sky, Montana: IEEE, 2008.

[2] K. Czarnecki and U. W. Eisenecker, Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley,
2000.

[3] A. Kleppe, J. Warmer, and W. Bast, MDA Explained. The
Model Driven Architecture: Practice and Promise. Addison-
Wesley, 2003.

[4] MathWorks, “Real-Time Workshop home page,”
http://www.mathworks.com/products/rtw.

[5] I. Stürmer and M. Conrad, “Test suite design for code
generation tools,” in Proceedings of 18th IEEE International
Conference on Automated Software Engineering. IEEE, Oct.

2003, pp. 286–290.

[6] I. Stürmer, D. Weinberg, and M. Conrad, “Overview of
existing safeguarding techniques for automatically generated
code,” SIGSOFT Software Engineering Notes, vol. 30, no. 4,
pp. 1–6, Jul. 2005.

[7] T. Erkkinen, “Production code generation for safety-critical
systems,” MathWorks, Tech. Rep., 2004.

[8] E. Denney and B. Fischer, “A generic annotation inference

algorithm for the safety certification of automatically gen-
erated code,” in Proceedings of the Conference on Genera-
tive Programming and Component Engineering (GPCE ’06).
Portland, Oregon: ACM Press, October 2006, pp. 121–130.

[9]——, “Generating customized verifiers for automatically gen-
erated code,” in Proceedings of the Conference on Genera-
tive Programming and Component Engineering (GPCE ’08).
Nashville, TN: ACM Press, October 2008, pp. 77–87.

[10] D. A. Vallado, Fundamentals of Astrodynamics and Applica-
tions, 2nd ed., Space Technology Library. Microcosm Press
and Kluwer Academic Publishers, 2001.



[11] J. Diebel, “Representing attitude: Euler angles, unit quater-
nions, and rotation vectors,” Stanford University, Tech. Rep.,
Oct. 2006.

[14] E. Reiter and R. Dale, Building Natural Language Generation
Systems. Cambridge University Press, 2000.

[12] J. B. Kuipers, Quaternions and Rotation Sequences. Prince-
ton University Press, 1999.

[13] E. Denney and B. Fischer, “Explaining verification con-
ditions,” in 12th International Conference on Algebraic
Methodology and Software Technology (AMAST 2008), Ur-

bana, Illinois, July 2008.

[15] E. Denney and B. Fischer, “Correctness of source-level safety
policies,” in Proceedings of FM 2003: Formal Methods,
Lecture Notes in Computer Science, vol. 2805. Pisa, Italy:
Springer, Sep. 2003, pp. 894–913.


