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Abstract

Chambers and Jurafsky (2009) demonstrated
that event schemas can be automatically in-
duced from text corpora. However, our analy-
sis of their schemas identifies several weak-
nesses, e.g., some schemas lack a common
topic and distinct roles are incorrectly mixed
into a single actor. It is due in part to their
pair-wise representation that treats subject-
verb independently from verb-object. This of-
ten leads to subject-verb-object triples that are
not meaningful in the real-world.

We present a novel approach to inducing
open-domain event schemas that overcomes
these limitations. Our approach uses co-
occurrence statistics of semantically typed re-
lational triples, which we call Rel-grams (re-
lational n-grams). In a human evaluation, our
schemas outperform Chambers’s schemas by
wide margins on several evaluation criteria.
Both Rel-grams and event schemas are freely
available to the research community.

1 Introduction

Event schemas (also known as templates or frames)
have been widely used in information extraction.
An event schema is a set of actors (also known as
slots) that play different roles in an event, such as
the perpetrator, victim, and instrument in a bomb-
ing event. They provide essential guidance in ex-
tracting information related to events from free text
(Patwardhan and Riloff, 2009), and can also aid in
other NLP tasks, such as coreference (Irwin et al.,
2011), summarization (Owczarzak and Dang, 2010),
and inference about temporal ordering and causality.

Actor Rel Actor
A1:<person> failed A2:test
A1:<person> was suspended for A3:<time period>
A1:<person> used A4:<substance, drug>
A1:<person> was suspended for A5:<game, activity>
A1:<person> was in A6:<location>
A1:<person> was suspended by A7:<org, person>
Actor Instances:
A1: {Murray, Morgan, Governor Bush, Martin, Nelson}
A2: {test}
A3: {season, year, week, month, night}
A4: {cocaine, drug, gasoline, vodka, sedative}
A5: {violation, game, abuse, misfeasance, riding}
A6: {desert, Simsbury, Albany, Damascus, Akron}
A7: {Fitch, NBA, Bud Selig, NFL, Gov Jeb Bush}

Table 1: An event schema produced by our system, rep-
resented as a set of (Actor,Rel, Actor) triples, and a set
of instances for each actor A1, A2, etc. For clarity we
show unstemmed verbs.

Until recently, all event schemas in use in NLP
were hand-engineered, e.g., the MUC templates and
ACE event relations (ARPA, 1991; ARPA, 1998;
Doddington et al., 2004). This led to technology that
could only focus on specific domains of interest and
has not been applicable more broadly.

The seminal work of Chambers and Jurafsky
(2009) showed that event schemas can also be in-
duced automatically from text corpora. Instead of
labeled roles these schemas have a set of relations
and actors that serve as arguments.1 Their system
is fully automatic, domain-independent, and scales
to large text corpora.

However, we identify several limitations in the
schemas produced by their system.2 Their schemas

1In the rest of this paper we use event schemas to refer to
these automatically induced schemas with actors and relations.

2Available at http://www.usna.edu/Users/cs/
nchamber/data/schemas/acl09



Actor Rel Actor
A1 caused A2
A2 spread A1
A2 burned A1
- extinguished A1
A1 broke out -
- put out A1
Actor Instances:
A1: {fire, aids, infection, disease}
A2: {virus, bacteria, disease, urushiol, drug}

Table 2: An event schema from Chambers’ system that
mixes the events of fire spreading and disease spreading.

often lack coherence: mixing unrelated events and
having actors whose entities do not play the same
role in the schema. Table 2 shows an event schema
from Chambers that mixes the events of fire spread-
ing and disease spreading.

Much of the incoherence of Chambers’ schemas
can be traced to their representation that uses pairs
of elements from an assertion, thus, treating subject-
verb and verb-object separately. This often leads to
subject-verb-object triples that do not make sense in
the real world. For example, the assertions “fire
caused virus” and “bacteria burned AIDS” are im-
plicit in Table 2.

Another limitation in schemas Chambers released
is that they restrict schemas to two actors, which can
result in combining different actors. Table 4 shows
an example of combining perpeterators and victims
into a single actor.

1.1 Contributions

We present an event schema induction algorithm that
overcomes these weaknesses. Our basic represen-
tation is triples of the form (Arg1, Relation, Arg2),
extracted from a text corpus using Open Information
Extraction (Mausam et al., 2012). The use of triples
aids in agreement between subject and object of a
relation. The use of Open IE leads to more expres-
sive relation phrases (e.g., with prepositions). We
also assign semantic types to arguments, both to al-
leviate data sparsity and to produce coherent actors
for our schemas.

Table 1 shows an event schema generated by our
system. It has six relations and seven actors. The
schema makes several related assertions about a per-
son using a drug, failing a test, and getting sus-
pended. The main actors in the schema include the
person who failed the test, the drug used, and the
agent that suspended the person.

Our first step in creating event schemas is to tab-
ulate co-occurrence of tuples in a database that we
call Rel-grams (relational n-grams) (Sections 3, 5.1).
We then perform analysis on a graph induced from
the Rel-grams database and use this to create event
schemas (Section 4).

We compared our event schemas with those of
Chambers on several metrics including whether the
schema pertains to a coherent topic or event and
whether the actors play a coherent role in that event
(Section 5.2). Amazon Mechanical Turk workers
judged that our schemas have significantly better co-
herence – 92% versus 82% have coherent topic and
81% versus 59% have coherent actors.

We release our open domain event schemas and
the Rel-grams database3 for further use by the NLP
community.

2 System Overview

Our approach to schema generation is based on the
idea that frequently co-occurring relations in text
capture relatedness of assertions about real-world
events. We begin by extracting a set of relational tu-
ples from a large text corpus and tabulate occurrence
of pairs of tuples in a database.

We then construct a graph from this database and
identify high-connectivity nodes (relational tuples)
in this graph as a starting point for constructing event
schemas. We use graph analysis to rank the tu-
ples and merge arguments to form the actors in the
schema.

3 Modeling Relational Co-occurrence

In order to tabulate pairwise occurences of relational
tuples we need a suitable relation-based represen-
tation. We now describe the extraction and rep-
resentation of relations, a database for storing co-
occurrence information, and our probabilistic model
for the co-occurrence. We call this model Rel-
grams, as it can be seen as a relational analog to the
n-grams language model.

3.1 Relations Extraction and Representation

We extract relational triples from each sentence in
a large corpus using the OLLIE Open IE system

3Available at http://relgrams.cs.washington.edu



Tuples Table
Id Arg1 Rel Arg2 Count
... ... ... ... ...
13 bomb explode in <loc> 547
14 bomb explode in Baghdad 22
15 bomb explode in market 7
... ... ... ... ...
87 bomb kill <per> 173
... ... ... ... ...
92 <loc> be suburb of <loc> 1023
... ... ... ... ...

BigramCounts Table
T1 T2 Dist. Count E11 E12 E21 E22
... ... ... ... ... ... ... ...
13 87 1 27 25 0 0 0
13 87 2 35 33 0 0 0
... ... ... ... ... ... ... ...
13 87 10 62 59 0 0 0
87 13 1 6 0 0 0 0
... ... ... ... ... ... ... ...
92 13 1 12 0 0 12 0
... ... ... ... ... ... ... ...

Figure 1: Tables in the Rel-grams Database: Tuples maps tuples to unique identifiers, BigramCounts provides the
co-occurrence counts (Count) within various distances (Dist.), and four types of argument equality counts (E11-E22).
E11 is the number of times when T1.Arg1 = T2.Arg1, E12 is when T1.Arg1 = T2.Arg2 and so on.

(Mausam et al., 2012).4 This provides relational tu-
ples in the format (Arg1, Relation, Arg2) where each
tuple element is a phrase from the sentence. The
sentence “He cited a new study that was released by
UCLA in 2008.” produces three tuples:

1. (He, cited, a new study)
2. (a new study, was released by, UCLA)
3. (a new study, was released in, 2008)

Relational triples provide a more specific repre-
sentation which is less ambiguous when compared
to (subj, verb) or (verb, obj) pairs. However, using
relational triples also increases sparsity. To reduce
sparsity and to improve generalization, we represent
the relation phrase by its stemmed head verb plus
any prepositions. The relation phrase may include
embedded nouns, in which case these are stemmed
as well. Moreover, tuple arguments are represented
as stemmed head nouns, and we also record seman-
tic types of the arguments.

We selected 29 semantic types from WordNet, ex-
amining the set of instances on a small development
set to ensure that the types are useful, but not overly
specific. The set of types are: person, organization,
location, time unit, number, amount, group, busi-
ness, executive, leader, effect, activity, game, sport,
device, equipment, structure, building, substance,
nutrient, drug, illness, organ, animal, bird, fish, art,
book, and publication.

To assign types to arguments, we apply Stanford
Named Entity Recognizer (Finkel et al., 2005)5, and
also look up the argument in WordNet 2.1 and record

4Available at: http://knowitall.github.io/
ollie/

5We used the system downloaded from: http://nlp.
stanford.edu/software/CRF-NER.shtml and used
the seven class CRF model distributed with it.

the first three senses if they map to our target se-
mantic types. We use regular expressions to recog-
nize dates and numeric expressions, and map per-
sonal pronouns to <person>. We associate all types
found by this mechanism with each argument. The
tuples in the example above are normalized to the
following:

1. (He, cite, study)
2. (He, cite, <activity>)
3. (<person>, cite, study)
4. (<person>, cite, <activity>)
5. (study, be release by, UCLA)
6. (study, be release by, <organization>)
7. (study, be release in, 2008)
8. (study, be release in, <time unit>)
9. (<activity>, be release by, UCLA)
...
In our preliminary experiments, we found that us-

ing normalized relation strings and semantic classes
for arguments results in a ten-fold increase in the
number of Rel-grams with a minimum support.

3.2 Co-occurrence Tabulation

We construct a database to hold co-occurrence
statistics for pairs of tuples found in each document.
Figure 1 shows examples for the types of statistics
contained in the database. The database consists
of two tables: 1) Tuples – Maps each tuple to a
unique identifier and tabulates tuple counts. 2) Bi-
gramCounts – Stores the directional co-occurrence
frequency, a count for tuple T followed by T ′ at a
distance of k, and tabulates the number of times the
same argument was present in the pair of tuples.
Equality Constraints: Along with the co-
occurrence counts, we record the equality of argu-
ments in Rel-grams pairs. We assert an argument



Table 3: Given a source tuple, the Rel-grams language
model estimates the probability of encountering other re-
lational tuples in a document. For clarity, we show the
unstemmed version.

Top tuples related to
(<person>, convicted of, murder)
1. (<person>, convicted in, <time unit>)
2. (<person>, sentenced to, death)
3. (<person>, sentenced to, year)
4. (<person>, convicted in, <location>)
5. (<person>, sentenced to, life)
6. (<person>, convicted in, <person>)
7. (<person>, convicted after, trial)
8. (<person>, sent to, prison)

pair is equal if they are from the same token se-
quence in the source sentence or one argument is a
co-referent mention of the other. We use the Stan-
ford Co-reference system (Lee et al., 2013)6 to de-
tect co-referring mentions. There are four possible
equalities depending on the specific pair of argu-
ments in the tuples are the same, shown as E11, E12,
E21 and E22 in Figure 1. For example, the E21 col-
umn has counts for the number of times the Arg2 of
T1 was determined to be the same as the Arg1 of T2.
Implementation and Query Language: We pop-
ulated the Rel-grams database using OLLIE extrac-
tions from a set of 1.8 Million New York Times arti-
cles drawn from the Gigaword corpus. The database
consisted of approximately 320K tuples that have
frequency ≥ 3 and 1.1M entries in the bigram table.

The Rel-grams database allows for powerful
querying using SQL. For example, Table 3 shows the
most frequent rel-grams associated with the query
tuple (<person>, convicted of, murder).

3.3 Rel-grams Language Model

From the tabulated co-occurrence statistics, we esti-
mate bi-gram conditional probabilities of tuples that
occur within a window of k tuples from each other.
Formally, we use Pk(T ′|T ) to denote the conditional
probability that T ′ follows T within a window of k
tuples. To discount estimates from low-frequency
tuples, we use a δ-smoothed estimate:

6Available for download at: http://nlp.stanford.
edu/software/dcoref.shtml

Pk(T ′|T ) =
#(T, T ′, k) + δ∑

T ′′∈V

#(T, T ′′, k) + δ · |V |
(1)

where, #(T, T ′, k) is the number of times T ′ fol-
lows T within a window of k tuples. k = 1 in-
dicates adjacent tuples in the document. |V | is the
number of unique tuples in the corpus. For experi-
ments in this paper, we set δ to 0.05.

Co-occurrence within a small window is usu-
ally more reliable but is also sparse, whereas co-
occurrence within larger windows addresses sparsity
but may lead to topic drift. To leverage the bene-
fits of different window sizes, we also define a met-
ric with a weighted average of window sizes from 1
to 10, where the weight decays as window size in-
creases. For example, with α set to 0.5 in equation
2, a window of k+1 has half the weight of a window
of k.

P (T ′|T ) =
∑10

k=1 α
kPk(T ′|T )∑10

k=1 α
k

(2)

We believe that Rel-grams is a valuable source
of common-sense knowledge and may be useful for
several downstream tasks such as improving infor-
mation extractors, inference of implicit information,
etc. We assess its usefulness in the context of gener-
ating event schemas.

4 Schema Generation

We now use Rel-grams to identify relations and ac-
tors pertaining to a particular event. Our schema
generation consists of three steps. First, we build a
relation graph of tuples (G) using connections iden-
tified by Rel-grams. Second, we identify a set of
seed tuples as starting points for schemas. We use
graph analysis to find the tuples most related to each
seed. Finally, we merge the arguments in these tu-
ples to create actors and output the final schema.
Next we describe each of these steps in detail.

4.1 Rel-graph construction
We define a Rel-graph as an undirected weighted
graph G = (V,E), whose vertices (V ) are relation
tuples with edges (E), where an edge between ver-
tices T and T ′ is weighted by the symmetric condi-
tional probability SCP (T, T ′) defined as



SCP (T, T ′) = P (T |T ′)× P (T ′|T ) (3)

Both conditional probabilities are computed in
Equation 2. Figure 2 shows a portion of a Rel-graph
where the thickness of the edge indicates symmetric
conditional probability.

(bomb, explode at, <location>) 

(bomb, explode on,  
        <time_unit>) 

(bomb, kill,  
    <person>) 

(bomb, wound,  
     <person>) 

(<person>, plant,  
        bomb) 

(<organization>, claim, responsibility) 

Figure 2: Part of a Rel-graph showing tuples strongly
associated with (bomb, explode at, <location>). Undi-
rected edges are weighted by symmetric conditional
probability with line thickness indicating weight.

4.2 Finding Related Tuples

Our goal is to find closely related tuples that per-
tain to an event or topic. First, we locate high-
connectivity nodes in the Rel-graph to use as seeds.
We sort nodes by the sum of their top 25 edge
weights7 and take the top portion of this list after
filtering out redundant views of the same relation.

For each seed (Q), we find related tuples by ex-
tracting the sub-graph (GQ) from Q’s neighbors
(within two hops from Q) in the Rel-graph. Graph
analysis can detect the strongly connected nodes
within this sub-graph, representing tuples that fre-
quently co-occur in the context of the seed tuple.

Page rank is a well-known graph analysis algo-
rithm that uses graph connectivity to identify impor-
tant nodes within a graph (Brin and Page, 1998). We
are interested in connectivity within a subgraph with
respect to a designated query node (the seed). Con-
nection to a query node can help minimize concept
drift and ensure that the selected tuples are closely
related to the main topic of the sub-graph.

7Limiting to the top 25 edges avoids overly general tuples
that occur in many topics, which tend to have a large number of
weak edges.

In this work, we adapt the Personalized PageR-
ank algorithm (Haveliwala, 2002). The personalized
version of PageRank returns ranks of various nodes
with respect to a given query node and hence is more
appropriate for our task than the basic PageRank al-
gorithm. Within the subgraph GQ for a given seed
Q, we compute a solution to the following set of
PageRank Equations:

PRQ(T )

= (1− d) + d
X
T ′

SCP (T, T ′)PRQ(T ′) if T = Q

= d
X
T ′

SCP (T, T ′)PRQ(T ′) otherwise

Here PRQ(T ) denotes the page rank of a tuple T
personalized for the query tuple Q. It is a sum of
all its neighbors’ page ranks, weighted by the edge
weights; d is the damping probability, which we set
to be 0.85 in our implementation.

The solution is computed iteratively by initializ-
ing the page rank of Q to 1 and all others to 0, then
recomputing page rank values until they converge to
within a small ε. This computation remains scalable,
since we restrict it to subgraphs a small number of
hops away from the query node. This is a standard
practice to handle large graphs (Agirre and Soroa,
2009; Mausam et al., 2010).

4.3 Creating Actors and Relations

We take the top n tuples from GQ according to
their Page rank scores. From each tuple T :
(Arg1, Rel, Arg2) in GQ, we record two actors
(A1, A2) corresponding to Arg1 and Arg2, and add
Rel to the list of relations that they participate in.

Then, we merge actors in two steps. First, we col-
lect the equality constraints for the tuples in GQ. If
the arguments corresponding to any pair of actors
have a non-zero equality constraint then we merge
them. Second, we merge actors that perform simi-
lar actions. A1 and A2 are merged if they are con-
nected to the same actor A3 through the same rela-
tion. For example, A1 and A2 in (A1:lawsuit, file by,
A3:company) and (A2:suit, file by, A3:company),
will be merged into a single actor. To avoid merging
distinct actors, we use a small list of rules that spec-
ify the semantic type pairs that cannot be merged
(e.g., location-date). Also, we do not merge two ac-
tors, if it can result in a relation where the same actor



System A1 Rel A2

Relgrams {bomb, missile, grenade, device} explode in {city, Bubqua, neighborhood}
{bomb, missile, grenade, device} explode kill {people, civilian, lawmaker, owner, soldier}
{bomb, missile, grenade, device} explode on {Feb., Fri., Tues., Sun., Sept.}
{bomb, missile, grenade, device} explode wound {civilian, person, people, soldier, officer}
{bomb, missile, grenade, device} explode in {Feb., Beirut Monday, Sept., Aug.}
{bomb, missile, grenade, device} explode injure {woman, people, immigrant, policeman}

Chambers {bomb, explosion, blast, bomber, mine} explode {soldier, child, civilian, bomber, palestinian}
{soldier, child, civilian, bomber, palestinian} set off {bomb, explosion, blast, bomber, mine, bombing}
{bomb, explosion, blast, bomber, mine} kill {soldier, child, civilian, bomber, palestinian}
{soldier, child, civilian, bomber, palestinian} detonate {bomb, explosion, blast, bomber, mine, bombing}
{bomb, explosion, blast, bomber, mine} injure {soldier, child, civilian, bomber, palestinian}
{soldier, child, civilian, bomber, palestinian} plant {bomb, explosion, blast, bomber, mine, bombing}

Relgrams {Carey, John Anthony Volpe, Chavez, She } veto {legislation, bill, law, measure, version}
{legislation, bill, law, measure, version} be sign by {Carey, John Anthony Volpe, Chavez, She }
{legislation, bill, law, measure, version} be pass by {State Senate, State Assembly, House, Senate, Parliament}
{Carey, John Anthony Volpe, Chavez, She } sign into {law}
{Carey, John Anthony Volpe, Chavez, She } to sign {bill}
{Carey, John Anthony Volpe, Chavez, She } be governor of {Massachusetts, state, South Carolina, Texas, California}

Chambers {clinton, bush, bill, president, house} oppose {bill, measure, legislation, plan, law}
{clinton, bush, bill, president, house} sign {bill, measure, legislation, plan, law}
{clinton, bush, bill, president, house} approve {bill, measure, legislation, plan, law}
{clinton, bush, bill, president, house veto {bill, measure, legislation, plan, law}
{clinton, bush, bill, president, house} support {bill, measure, legislation, plan, law}
{clinton, bush, bill, president, house} pass {bill, measure, legislation, plan, law}

Table 4: “Bombing” and “legislation” schema examples from Rel-grams and Chambers represented as a set of
(A1, Rel, A2) tuples, where the schema provides a set of instances for each actor A1 and A2. Relations and argu-
ments are in the stemmed form, e.g., ‘explode kill’ refers to ‘exploded killing’. Instances in bold produce tuples that
are not valid in the real world.

is both the Arg1 and Arg2.
Finally, we generate an ordered list of tuples using

the final set of actors and their relations. The out-
put tuples are sorted by the average page rank of the
original tuples, thereby reflecting their importance
within the sub-graph GQ.

5 Evaluation

We present experiments to explore two main ques-
tions: How well do Rel-grams capture real world
knowledge, and what is the quality of event schemas
built using Rel-grams.

5.1 Evaluating Rel-grams
What sort of common-sense knowledge is encap-
sulated in Rel-grams? How often does it indicate
an implication between a pair of statements, and
how often does it indicate a common real-world
event or topic? To answer these questions, we con-
ducted an experiment to identify a subset of our Rel-
grams database with high precision for two forms of
common-sense knowledge:

• Implication: The Rel-grams express an im-
plication from T to T’ or from T’ to T, a

bi-directional form of the Recognizing Tex-
tual Entailment (RTE) guidelines (Dagan et al.,
2005).
• Common Topic: Is there an underlying com-

mon topic or event to which both T and T’ are
relevant?

We also evaluated whether both T and T’ are valid
tuples that are well-formed and make sense in the
real world, a necessary pre-condition for either im-
plication or common topic.

We are particularly interested in the highest pre-
cision portion of our Rel-grams database. The
database has 1.1M entries with support of at least
three instances for each tuple. To find the highest
precision subset of these, we identified tuples that
have at least 25 Rel-grams, giving us 12,600 seed
tuples with a total of over 280K Rel-grams. Finally,
we sorted this subset by the total symmetrical con-
ditional probability of the top 25 Rel-grams for each
seed tuple.

We tagged a sample of this 280K set of Rel-grams
for valid tuples, implication between T and T’, and
common topic. We found that in the top 10% of this
set, 87% of the seed tuples were valid and 74% of the
Rel-grams had both tuples valid. Of the Rel-grams



System Id A1 Rel A2

Relgrams R1 bomb explode in city
bomb explode kill people
bomb explode on Fri.
... ... ...

Chambers C1 blast explode child
child detonate blast
child plant bomb
... ... ...

Table 5: A grounded instantiation of the schemas from
Table 4, where each actor is represented as a randomly
selected instance.

with both tuples valid, 83% expressed an implication
between the tuples, and 90% had a common topic.

There were several reasons for invalid tuples –
parsing errors; binary projections of inherently n-ary
relations, for example (<person>, put, <person>);
head-noun only representation omitting essential in-
formation; and incorrect semantic types, primarily
due to NER tagging errors.

While the Rel-grams suffer from noise in the tu-
ple validity, there is clearly strong signal in the data
about common topic and implication between tuples
in the Rel-grams. As we demonstrate in the follow-
ing section, an end task can use graph analysis tech-
niques to amplify this strong signal, producing high-
quality relational schemas.

5.2 Schemas Evaluation

In our schema evaluation, we are interested in
assessing how well the schemas correspond to
common-sense knowledge about real world events.
To this end, we focus on three measures, topical co-
herence, tuple validity, and actor coherence.

A good schema must be topically coherent, i.e.,
the relations and actors should relate to some real
world topic or event. The tuples that comprise a
schema should be valid assertions that make sense
in the real world. Finally, each actor in the schema
should belong to a cohesive set that plays a consis-
tent role in the relations. Since there are no good
automated ways to make such judgments, we per-
form a human evaluation using workers from Ama-
zon’s Mechanical Turk (AMT).

We compare Rel-grams schemas against the state-
of-the-art narrative schemas released by Cham-
bers (Chambers and Jurafsky, 2009).8 Chambers’

8Available at http://www.usna.edu/Users/cs/

System Id A1 Rel A2

Relgrams R11 bomb explode in city
missile explode in city
grenade explode in city
... ... ...

Relgrams R21 missile explode in city
missile explode in neighborhood
missile explode in front
... ... ...

Table 6: A schema instantiation used to test for actor co-
herence. Each of the top instances for A1 or A2 is pre-
sented, holding the relation and the other actor fixed.

schemas are less expressive than ours – they do not
associate types with actors and each schema has a
constant pre-specified number of relations. For a
fair comparison we use a similarly expressive ver-
sion of our schemas that strips off argument types
and has the same number of relations per schema
(six) as their highest quality output set.

5.2.1 Evaluation Design

We created two tasks for AMT annotators. The
first task tests the coherence and validity of rela-
tions in a schema and the second does the same
for the schema actors. In order to make the tasks
understandable to unskilled AMT workers, we fol-
lowed the accepted practice of presenting them with
grounded instances of the schemas (Wang et al.,
2013), e.g., instantiating a schema with a specific ar-
gument instead of showing the various possibilities
for an actor.

First, we collect the information in schemas as a
set of tuples: S = {T1, T2, · · · , Tn}, where each tu-
ple is of the form T : (X,Rel, Y ), which conveys
a relationship Rel between actors X and Y . Each
actor is represented by its highest frequency exam-
ples (instances). Table 4 shows examples of schemas
from Chambers and Rel-grams represented in this
format. Then, we create grounded tuples by ran-
domly sampling from top instances for each actor.

Task I: Topical Coherence To test whether the re-
lations in a schema form a coherent topic or event,
we presented the AMT annotators with a schema as
a set of grounded tuples, showing each relation in
the schema, but randomly selecting one of the top 5
instances from each actor. We generated five such

nchamber/data/schemas/acl09



Figure 3: (a) Has Topic: Percentage of schema instanti-
ations with a coherent topic. (b) Valid Tuples: Percent-
age of grounded statements that assert valid real-world
relations. (c) Valid + On Topic: Percentage of grounded
statements where 1) the instantiation has a coherent topic,
2) the tuple is valid and 3) the relation belongs to the
common topic. All differences are statistically significant
with a p-value < 0.01.

instantiations for each schema. An example instan-
tiation is shown in Table 5.

We ask three kinds of questions on each grounded
schema: (1) is each of the grounded tuples valid (i.e.
meaningful in the real world); (2) do the majority of
relations form a coherent topic; and (3) does each
tuple belong to the common topic. Similar to pre-
vious AMT studies we get judgments from multiple
(five) annotators on each task and use the majority
labels (Snow et al., 2008).

Our instructions specified that the annotators
should ignore grammar and focus on whether a tuple
may be interpreted as a real world statement. For ex-
ample, the first tuple in R1 in Table 5 is a valid state-
ment – “a bomb exploded in a city”, but the tuples
in C1 “a blast exploded a child”, “a child detonated
a blast”, and “a child planted a blast” don’t make
sense.
Task II: Actor Coherence To test whether the in-
stances of an actor form a coherent set, we held the
relation and one actor fixed and presented the AMT
annotators with the top 5 instances for the other ac-
tor. The first example R11 in Table 6 holds the
relation “explode in” fixed, and A2 is grounded to
the randomly selected instance “city”. We present
grounded tuples by varying A1 and ask annotators to
judge whether these instances form a coherent topic
and whether each instance belongs to that common
topic. As with Task I, we create five random instan-
tiations for each schema.

Figure 4: Actor Coherence: Has Role bars compare the
percentage of tuples where the tested actors have a co-
herent role. Fits Role compares the percentage of top
instances that fit the specified role for the tested actors.
All differences are statistically significant with a p-value
< 0.01.

5.2.2 Results

We obtained a test set of 100 schemas per system
by randomly sampling from the top 500 schemas
from each system. We evaluate this test set using
Task I and II as described above. For both tasks we
obtained ratings from five turkers and use the major-
ity labels as the final annotation.

Does the schema belong to a single topic? The
Has Topic bars in Figure 3 show results for schema
coherence. Rel-grams has a higher proportion of
schemas with a coherent topic, 91% compared to
82% for Chambers’. This is a 53% reduction in in-
coherent schemas.
Do tuples assert valid real-world relations? The
Valid Tuples bars in Figure 3 compare the percent-
age of valid grounded tuples in the schema instan-
tiations. A tuple was labeled valid if a majority of
the annotators labeled it to be meaningful in the real
world. Here we see a dramatic difference – Rel-
grams have 92% valid tuples, compared with Cham-
bers’ 61%.

What proportion of tuples belong? The Valid +
On Topic bars in Figure 3 compare the percentage
of tuples that are both valid and on topic, i.e., fits
the main topic of the schema. Tuples from schema
instantiations that did not have a coherent topic were
labeled incorrect.

Rel-grams have a higher proportion of valid tu-
ples belonging to a common topic, 82% compared to



58% for Chambers’ schemas, a 56% error reduction.
This is the strictest of the experiments described thus
far – 1) the schema must have a topic, 2) the tuple
must be valid, and 3) the tuple must belong to the
topic.
Do actors represent a coherent set of argu-
ments? We evaluated schema actors from the top
25 schemas in Chambers’ and Rel-grams schemas,
using grounded instances such as those in Table 6.
Figure 4 compares the percentage of tuples where
the actors play a coherent role (Has Role), and the
percentage of instances that fit that role for the actor
(Fits Role). Rel-grams has much higher actor co-
herence than Chambers’, with 97% judged to have a
topic compared to 81%, and 81% of instances fitting
the common role compared with Chambers’ 59%.

5.2.3 Error Analysis
The errors in both our schemas and those of

Chambers are primarily due to mismatched actors
and from extraction errors, although Chambers’
schemas have a larger number of actor mismatch er-
rors and the cause of the errors is different for each
system.

Examining the data published by Chambers, the
main source of invalid tuples are mismatch of sub-
ject and object for a given relation, which accounts
for 80% of the invalid tuples. We hypothesize that
this is due to the pair-wise representation that treats
subject-verb and verb-object separately, causing in-
consistent s-v-o tuples. An example is (boiler, light,
candle) where (boiler, light) and (light, candle) are
well-formed, yet the entire tuple is not. In addition,
43% of the invalid tuples seem to be from errors by
the dependency parser.

Our schemas also suffer from mismatched actors,
despite the semantic typing of the actors – we found
a mismatch in 56% of the invalid tuples (5% of
all tuples). A general type such as <person> or
<organization> may still have an instance that does
not play the same role as other instances. For exam-
ple a relation (A1, graduated from, A2) has A2 that
is mostly school names, but also includes “church”
which leads to an invalid tuple.

Extraction errors account for 47% of the invalid
tuples in our schemas, primarily errors that truncate
an n-ary relation as a binary tuple. For example, the
sentence “Mr. Diehl spends more time ... than the

commissioner” is misanalysed by the Open IE ex-
tractor as (Mr. Diehl, spend than, commissioner).

6 Related Work

Prior work by Chambers and Jurafsky (2008;
2009; 2010) showed that event sequences (narrative
chains) mined from text can be used to induce event
schemas in a domain-independent fashion. How-
ever, our manual evaluation of their output showed
key limitations which may limit applicability.

As pointed out earlier, a major weakness in
Chambers’ approach is the pair-wise representation
of subject-verb and verb-object. Also, their released
a set of schemas are limited to two actors, although
this number can be increased by setting a chain split-
ting parameter.

Chambers and Jurafsky (2011) extended schema
generation to learn domain-specific event templates
and associated extractors. In work parallel to ours,
Cheung et al. (2013), developed a probabilistic so-
lution for template generation. However, their ap-
proach requires performing joint probability estima-
tion using EM, which can limit scaling to large cor-
pora.

In this work we developed an Open IE based
solution to generate schemas. Following prior
work (Balasubramanian et al., 2012), we use Open
IE triples for modeling relation co-occurrence. We
extend the triple representation with semantic types
for arguments to alleviate sparisty and to improve
coherence. We developed a page rank based schema
induction algorithm which results in more coherent
schemas with several actors. Unlike Chambers’ ap-
proach this method does not require explicit param-
eter tuning for controlling the number of actors.

While our event schemas are close to being tem-
plates (because of associated types, and actor clus-
tering), they do not have associated extractors. Our
future work will focus on building extractors for
these. It will also be interesting to compare with
Cheung’s system on smaller focused corpora.

Defining representations for events is a topic of
active interest (Fokkens et al., 2013). In this work,
we use a simpler representation, defining event
schemas as a set of actors with associated types and
a set of roles they play.



7 Conclusions

We present a system for inducing event schemas
from text corpora based on Rel-grams, a language
model derived from co-occurrence statistics of re-
lational triples (Arg1, Relation, Arg2) extracted by
a state-of-the-art Open IE system. By using triples
rather than a pair-wise representation of subject-verb
and verb-object, we achieve more coherent schemas
than Chambers and Jurafsky (2009). In particular,
our schemas have higher topic coherence (92% com-
pared to Chambers’ 82%; make a higher percentage
of valid assertions (94% compared with 61%); and
have greater actor coherence (81% compared with
59%).

Our schemas are also more expressive than those
published by Chambers – we have semantic typing
for the actors, we are not limited to two actors per
schema, and our relation phrases include preposi-
tions and are thus more precise and have higher cov-
erage of actors involved in the event.

Our future plans are to build upon our event
schemas to create an open-domain event extractor.
This will extend each induced schema to have asso-
ciated extractors. These extractors will operate on a
document and instantiate an instance of the schema.

We have created a Rel-grams database with 1.1M
entries and a set of over 2K event schemas from a
corpus of 1.8M New York Times articles. Both are
freely available to the research community9 and may
prove useful for a wide range of NLP applications.
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