
Generating	Configurable	Hardware	
From	Parallel	Patterns

Raghu	Prabhakar,	David	Koeplinger,	Kevin	J.	Brown,
HyoukJoongLee,	Chris	De	Sa,	Christos	Kozyrakis,	Kunle	Olukotun

Stanford	University

ASPLOS	2016

Motivation

n Increasing	interest	to	use	FPGAs	as	accelerators

n Key advantage: Performance/Watt

n Key	domains:	

n Big	data	analytics,	image	processing,	financial	analytics,	

scientific	computing,	search

2

Problem:	Programmability

n Verilog	and	VHDL	too	low	level	for	software	developers

n High	level	synthesis	(HLS)	tools	need	user	pragmas	to	help	

discover	parallelism

n C-based	input,	pragmas	requiring	hardware	knowledge

n Limited	in	exploiting	data	locality

n Difficult	to	synthesize	complex	data	paths	with	nested	parallelism

3

Hardware Design - HLS

Add 512 integers stored in external DRAM

void(int* mem) {

mem[512] = 0;

for(int i=0; i<512; i++) {

mem[512] += mem[i];

}

}

Sum

Module
DRAM

27,236	clock	cycles	for	computation

Two-orders	of	magnitude	too	long!
4

Optimized Design - HLS

#define CHUNKSIZE (sizeof(MPort)/sizeof(int))

#define LOOPCOUNT (512/CHUNKSIZE)

void(MPort* mem) {

MPort buff[LOOPCOUNT];

memcpy(buff, mem, LOOPCOUNT);

int sum = 0;

for(int i=1; i<LOOPCOUNT; i++) {

#pragma PIPELINE

for(int j=0; j<CHUNKSIZE; j++) {

#pragma UNROLL

sum += (int)(buff[i]>>j*sizeof(int)*8);

}

}

mem[512] = sum;

}

302	clock	cycles	for	computation

Width	of	DRAM	controller	 interface

Burst Access

Use	 local	variable

Special	

compiler

directives

Loop	

Restructuring

Bit shifting	 to	

extract	 individual	

elements

5

So, we need to ...

n Use Higher-level Abstractions

n Productivity: Developer focuses on application

n Performance:

n Capture Locality to reduce off-chip memory traffic

n Exploit Parallelism at multiple nesting levels

n Smart compiler generates efficient hardware

6

Parallel	Patterns

n Constructs	with	special	properties	with	respect	to	

parallelism	and	memory	access

7

map zip reduce groupBy

key1 key3key2

Why Parallel Patterns?

n Concise

n Can express large class of workloads in the machine
learning and data analytics domain

n Captures rich semantic information about parallelism
and memory access patterns

n Enables powerful transformations using pattern matching
and re-write rules

n Enables generating efficient code for different
architectures

8

Parallel Pattern Language

n A data-parallel language that supports parallel patterns

n Example application: k-means

val clusters = samples groupBy { sample =>

val dists = kMeans map { mean =>

mean.zip(sample){ (a,b) => sq(a – b) } reduce { (a,b) => a + b }

}

Range(0, dists.length) reduce { (i,j) =>

if (dists(i) < dists(j)) i else j

}

}

val newKmeans = clusters map { e =>

val sum = e reduce { (v1,v2) => v1.zip(v2){ (a,b) => a + b } }

val count = e map { v => 1 } reduce { (a,b) => a + b }

sum map { a => a / count }

}

// Compute closest mean for each ‘sample’

// 1. Compute distance with each mean

// 2. Select the mean with shortest distance

//Compute average of each cluster

// 1. Compute sum of all assigned points

// 2. Compute number of assigned points

// 3. Divide each dimension of sum by count

9

Our	Approach

Pattern	Transformations
Fusion

Pattern	Tiling

Code	Motion

Parallel	Patterns

Tiled	Parallel	Pattern	IR

Bitstream	Generation

FPGA	Configuration

Hardware	Generation
Memory	Allocation

Template	Selection

Metapipeline	Analysis

MaxJ	HGL

10

Our	Approach

Pattern	Transformations
Fusion

Pattern	Tiling

Code	Motion

Parallel	Patterns

Tiled	Parallel	Pattern	IR

Bitstream	Generation

FPGA	Configuration

Hardware	Generation
Memory	Allocation

Template	Selection

Metapipeline	Analysis

MaxJ	HGL

11

High-level Parallel	Patterns
helps	productivity

Data	Locality	improved	with

parallel	pattern	tiling	

transformations

Nested	Parallelism exploited	

with	hierarchical	pipelines

and	double	buffers

Generate	MaxJ to	generate	VHDL

Delite

Our	Approach

Pattern	Transformations
Fusion

Pattern	Tiling

Code	Motion

Parallel	Patterns

Tiled	Parallel	Pattern	IR

Bitstream	Generation

FPGA	Configuration

Hardware	Generation
Memory	Allocation

Template	Selection

Metapipeline	Analysis

MaxJ	HGL

12

Our	Approach

Pattern	Transformations
Fusion

Pattern	Tiling

Code	Motion

Parallel	Patterns

Tiled	Parallel	Pattern	IR

Bitstream	Generation

FPGA	Configuration

Hardware	Generation
Memory	Allocation

Template	Selection

Metapipeline	Analysis

MaxJ	HGL

13

Parallel	Pattern	Tiling:
MultiFold

n Tiling	using	polyhedral	analysis	limits	data	access	patterns	

to	affine	functions	of	loop	indices

n Current	parallel	patterns	cannot	represent	tiling

n New	parallel	pattern	describes	tiled	computation

14

tile0 tile1 tile2 tile3

multiFold

out_tile0 out_tile1

Parallel	Pattern	Tiling:
MultiFold

15

tile0 tile1 tile2 tile3

map

reduce

out_tile0 out_tile1

reduce

groupBy key

kMeans:	Untiled

n Data dependent (non-affine) access to ‘sum’ and ‘count’

n Lots of data locality

n Typically, n >> k

16

samples

kMeans

sum

count

newKmeans

mindist

minDistIdx
n

k

d

k

k

d

kMeans #reads: n * k * d

Parallel	Pattern	
Strip	Mining

n Transform	parallel	pattern	à nested	patterns

n Strip	mined	patterns	enable	computation	reordering

n Insert	copies	to	enhance	locality

n Copies	guide	creation	of	on-chip	buffers

Parallel	Patterns Strip Mined	Patterns

map(d){i => 2*x(i)} multiFold(d/b){ii =>

xTile = x.copy(b + ii)

(i, map(b){i => 2*xTile(i)

}) }

17

Strip Mining:
kMeans

18

mindist

minDistIdx

sum

count

samples

kMeans kMeansBlock

samplesBlock

kMeans #reads: n * k * d

n

k

bs

bk

Parallel	
Pattern	Interchange

n Reorder	nested	patterns	

n Move ‘copy’ operations out toward outer pattern(s)

n Improves locality and reuse of on-chip memory

Strip	Mined	Patterns Interchanged	Patterns

multiFold(m/b0,n/b1){ii,jj =>

xTl = x.copy(b0+ii, b1+jj)

((ii,jj), map(b0,b1){i,j =>

multiFold(p/b2){kk =>

yTl = y.copy(b1+jj, b2+kk)

(0, multiFold(b2){ k =>

(0, xTl(i,j)* yTl(j,k))

}{(a,b) => a + b})

}{(a,b) => a + b}

})

}

multiFold(m/b0,n/b1){ii,jj =>

xTl = x.copy(b0+ii, b1+jj)

((ii,jj), multiFold(p/b2){kk =>

yTl = y.copy(b1+jj, b2+kk)

(0, map(b0,b1){i,j =>

(0, multiFold(b2){ k =>

(0, xTl(i,j)* yTl(j,k))

}{(a,b) => a + b})

})

}{(a,b) =>

map(b0,b1){i,j =>

a(i,j) + b(i,j) }

})

}

19

Pattern Interchange:
kMeans

20

mindist

minDistIdx

sum

count

samples

kMeans kMeansBlock

samplesBlock

n

k

bs

bk

kMeans #reads: (n / bs) * k * d

Our	Approach

Pattern	Transformations
Fusion

Pattern	Tiling

Code	Motion

Parallel	Patterns

Tiled	Parallel	Pattern	IR

Bitstream	Generation

FPGA	Configuration

Hardware	Generation
Memory	Allocation

Template	Selection

Metapipeline	Analysis

MaxJ	HGL

21

Template	Selection

Memories Description IR	Construct

Buffer Scratchpad	memory	 Statically	 sized	array

Double	buffer Buffer	coupling	 two	stages	in	a	metapipeline Metapipeline

Cache Tagged	memory	exploits	 locality	 in	random	accesses Non-affine	accesses

Pipe.	Exec.	Units Description IR	Construct

Vector SIMD	parallelism Map	over	scalars

Reduction	 tree Parallel	 reduction	of	associative	operations	 MultiFold over	scalars

Parallel	 FIFO	 Buffer	ordered	outputs	of	dynamic	size FlatMap over	scalars

CAM Fully	associative	 key-value	store	 GroupByFold over	scalars

Controllers Description IR	Construct

Sequential Coordinates	 sequential	 execution	 Sequential	 IR	node

Parallel Coordinates	parallel	 execution	 Independent	 IR	nodes

Metapipeline Execute	 nested	parallel	 patterns	in	a	pipelined	

fashion

Outer	parallel	 pattern	with	multiple	 inner	

patterns

Tile	memory	 Fetch	tiles	of	data	from	off-chip	memory	 Transformer-inserted	 array	copy

Controllers Description IR	Construct

Sequential Coordinates	 sequential	 execution	 Sequential	 IR	node

Parallel Coordinates	parallel	 execution	 Independent	 IR	nodes

Metapipeline Execute	 nested	parallel	 patterns	in	a	pipelined	

fashion

Outer	parallel	 pattern	with	multiple	 inner	

patterns

Tile	memory	 Fetch	tiles	of	data	from	off-chip	memory	 Transformer-inserted	 array	copy

Memories Description IR	Construct

Buffer Scratchpad	memory	 Statically	 sized	array

Double	buffer Buffer	coupling	 two	stages	in	a	metapipeline Metapipeline

Cache Tagged	memory	exploits	 locality	 in	random	accesses Non-affine	accesses

22

Metapipelining

n Hierarchical	pipeline:	A	“pipeline	of	pipelines”

n Exploits	nested	parallelism

n Inner	stages	could	be	other	nested	patterns	or	

combinational	 logic

n Does	not	require	iteration	space	to	be	known	statically

n Does	not	require	complete	unrolling	of	inner	patterns

n Intermediate	data	from	each	stage	automatically	 stored	

in	double	buffers

n Allows	stages	to	have	variable	execution	times

n No	need	to	calculate	initiation	 interval	(II)

n Use	asynchronous	control	signals	to	begin	next	iteration

23

M
e
ta
p
ip
e
lin
e
–
4
	s
ta
g
e
s

map(N) { r =>

}

Metapipeline – Intuition

ld ld

st

-

diff

sub

Pipe2

ld ld

st

*

vprod

Pipe3

ld ld

st

-

diff

sub

Pipe2

row

ld ld

st

*

vprod

Pipe3

diff

row

TileMemController

Pipe1

TileMemController

Pipe4

row

TileMemController

Pipe1

vprod

TileMemController

Pipe4

12 1234

row = matrix.slice(r)

diff = map(D) { i =>

row(i) – sub(i)

}

vprod = map(D,D) {(i,j)=>

diff(i) * diff(j)

}

vprod

5r	=	 r	=	

24

Metapipeline Analysis

n Detects	Metapipelines in	the	tiled	parallel	pattern	IR

n Detection

n Chain	of	producer-consumer	parallel	patterns	within	the	body	

of	another	parallel	pattern

n Scheduling

n Topological	sort	of	IR	of	parallel	pattern	body

n List	of	stages,	where	each	stage	consists	of	one	or	more	

independent	parallel	patterns

n Promote	intermediate	buffers	to	double	buffers

25

Putting	It	All	Together:	
kMeans

26

Vector

Dist
(Norm)
Vector

Dist
(Norm)

+

+

/

/

Vector

Dist

(Norm)

samples

Tile

Load

Inc

/

New

kmeans

Tile

Store

+

kmeans

Tile

Load

Scalar

Dist

(Tree +)

(MinDist,

Idx)

kmeansBlock

buffer

samplesBlock

Double buffer
samplesBlock

Double buffer

minIdx

Double buffer

sum

Buffer

count

Buffer

new kmeans

Double Buffer

1 1 12 2 23 3 34 4 4

Similar	to	(and	more	general	than)	hand-written	designs1

[1]	Hussain	et	al,	“Fpga implementation	 of	k-means	algorithm	 for	bioinformatics	application:	 An	accelerated	 approach	

to	clustering	 microarray	data”,	AHS	2011

1.	Load	

kmeans
2.	Metapipeline:	Calculate	sum and	count

3.	Metapipeline:	 Calculate	

new	kmeans,	store	results

Experimental Setup

n Board:

n Altera	Stratix V

n 48	GB	DDR3	off-chip	DRAM,	6	memory	channels

n Board	connected	to	host	via	PCI-e

n Execution	time	reported	=	FPGA	execution	time

n CPU	ßà FPGA	communication,	FPGA	configuration	time	not	

included

n Goal:	How	beneficial	is	tiling and	metapipelining?

27

Experimental Setup

n Baseline

n Auto	generated	MaxJ

n Representative	of	state-of-the-art	HLS	tools

n Baseline	Optimizations

n Pipelined	execution	of	innermost	loops

n Parallelized	(unrolled)	inner	loops

n Parallelism	factor	chosen	by	hand

n Data	locality	captured	at	the	level	of	a	DRAM	burst	(384	bytes)

n Parallelism	 factors	are	kept	consistent	across	baseline	

and	optimized	versions	from	our	flow

28

Evaluation

29

Evaluation

30

Results Summary

31

n Speedup	with	tiling:	up	to	15.5x

n Speedup	with	tiling	+	metapipelining:	 up	to	39.4x

n Minimal	 (often	positive!)	impact	on	resource	usage

n Tiled	designs	have	fewer	off-chip	data	loaders	and	storers

Summary

n Two	key	optimizations:	

tiling and	metapipelining – to	generate	efficient	FPGA	

designs	from	parallel	patterns

n Automatic	tiling	transformations	placing	fewer	

restrictions	on	memory	access	patterns

n Analysis	to	automatically	 infer	designs	with	

metapipelines and	double	buffers

n Significant	speedups	of	up	to	39.4x	with	minimal	 impact	

on	FPGA	resource	utilization

32

