

Generating Configurable Hardware From Parallel Patterns

Raghu Prabhakar, David Koeplinger, Kevin J. Brown, HyoukJoong Lee, Chris De Sa, Christos Kozyrakis, Kunle Olukotun

> Stanford University ASPLOS 2016

Increasing interest to use FPGAs as accelerators

Key advantage: Performance/Watt

Key domains:

 Big data analytics, image processing, financial analytics, scientific computing, search

- Verilog and VHDL too low level for software developers
- High level synthesis (HLS) tools need user pragmas to help discover parallelism
 - C-based input, pragmas requiring hardware knowledge
 - Limited in exploiting data locality
 - Difficult to synthesize complex data paths with nested parallelism

Add 512 integers stored in external DRAM

```
void(int* mem) {
    mem[512] = 0;
    for(int i=0; i<512; i++) {
        mem[512] += mem[i];
     }
}</pre>
```

27,236 clock cycles for computation Two-orders of magnitude too long!

302 clock cycles for computation

Use Higher-level Abstractions

- Productivity: Developer focuses on application
- Performance:
 - Capture Locality to reduce off-chip memory traffic
 - **Exploit Parallelism** at multiple nesting levels

Smart compiler generates efficient hardware

 Constructs with special properties with respect to parallelism and memory access

- Concise
- Can express large class of workloads in the machine learning and data analytics domain
- Captures rich semantic information about parallelism and memory access patterns
- Enables powerful transformations using pattern matching and re-write rules
- Enables generating efficient code for different architectures

- A data-parallel language that supports parallel patterns
- Example application: k-means

```
val clusters = samples groupBy { sample =>
val dists = kMeans map { mean =>
mean.zip(sample){ (a,b) => sq(a - b) } reduce { (a,b) => a + b }
// Compute closest mean for each 'sample'
Range(01.diSemple gth) stance { with each mean
if/(d2stselectiste(jm)eane with shortest distance
}
val newKmeans = clusters map { e =>
val/&Compute caverate(vdfv2ach>oduste(v2){ (a,b) => a + b } }
val/&compute fum =of1allrassign(edapb)ints a + b }
// 2. Compute number of assigned points
sum/#a3.{ Divide #acburdinension of sum by count
}
```


- Tiling using polyhedral analysis limits data access patterns to affine functions of loop indices
- Current parallel patterns cannot represent tiling
- New parallel pattern describes tiled computation

- Transform parallel pattern \rightarrow nested patterns
 - Strip mined patterns enable computation reordering
- Insert copies to enhance locality
 - Copies guide creation of on-chip buffers

Parallel Patterns	Strip Mined Patterns
map (d) {i => 2*x(i) }	<pre>multiFold(d/b) {ii =></pre>
	xTile = x.copy(b + ii)
	(i, map (b) {i => 2*xTile(i)
	<pre>}) }</pre>

- Reorder nested patterns
 - Move 'copy' operations out toward outer pattern(s)
 - Improves locality and reuse of on-chip memory

Strip Mined Patterns	Interchanged Patterns
<pre>multiFold(m/b0,n/b1){ii,jj =></pre>	<pre>multiFold(m/b0,n/b1){ii,jj =></pre>
xTl = x .copy (b0+ii, b1+jj)	xTl = x.copy(b0+ii, b1+jj)
((ii,jj), map (b0,b1){i,j =>	((ii,jj), multiFold (p/b2){kk =>
<pre>multiFold(p/b2) { kk =></pre>	yTl = y. copy (b1+jj, b2+kk)
yTl = y .copy (b1+jj, b2+kk)	(0, map (b0,b1){i,j =>
(0, multiFold (b2) { k =>	(0, multiFold (b2) { k =>
(0, xTl(i,j)* yTl(j,k))	(0, xTl(i,j) * yTl(j,k))
$\{(a,b) => a + b\}$	$\{(a,b) => a + b\}$
}{(a,b) => a + b}	})
})	}{(a,b) =>
}	<pre>map(b0,b1){i,j =></pre>
	a(i,j) + b(i,j) }
	})
	}

Pipe. Exec. Units	Description	IR Construct
Vector	SIMD parallelism	Map over scalars
Reduction tree	Parallel reduction of associative operations	MultiFold over scalars
Parallel FIFO	Buffer ordered outputs of dynamic size	FlatMap over scalars
CAM	Fully associative key-value store	GroupByFold over scalars

Memories	Description	IR Construct
Buffer	Scratchpad memory	Statically sized array
Double buffer	Buffer coupling two stages in a metapipeline	Metapipeline
Cache	Tagged memory exploits locality in random accesses	Non-affine accesses

Controllers	Description	IR Construct	
Sequential	Coordinates sequential execution	Sequential IR node	
Parallel	Coordinates parallel execution	Independent IR nodes	
Metapipeline	Execute nested parallel patterns in a pipelined fashion	Outer parallel pattern with multiple inner patterns	
Tile memory	Fetch tiles of data from off-chip memory	Transformer-inserted array copy	

- Hierarchical pipeline: A "pipeline of pipelines"
 - Exploits nested parallelism
- Inner stages could be other nested patterns or combinational logic
 - Does not require iteration space to be known statically
 - Does not require complete unrolling of inner patterns
- Intermediate data from each stage automatically stored in double buffers
 - Allows stages to have variable execution times
- No need to calculate initiation interval (II)
 - Use asynchronous control signals to begin next iteration

- Detects Metapipelines in the tiled parallel pattern IR
- Detection
 - Chain of producer-consumer parallel patterns within the body of another parallel pattern
- Scheduling
 - Topological sort of IR of parallel pattern body
 - List of stages, where each stage consists of one or more independent parallel patterns
 - Promote intermediate buffers to double buffers

Similar to (and more general than) hand-written designs¹

[1] Hussain et al, "Fpga implementation of k-means algorithm for bioinformatics application: An accelerated approach to clustering microarray data", AHS 2011

Board:

- Altera Stratix V
- 48 GB DDR3 off-chip DRAM, 6 memory channels
- Board connected to host via PCI-e
- Execution time reported = FPGA execution time
 - CPU ← → FPGA communication, FPGA configuration time not included
- Goal: How beneficial is *tiling* and *metapipelining*?

- Baseline
 - Auto generated MaxJ
 - Representative of state-of-the-art HLS tools
- Baseline Optimizations
 - Pipelined execution of innermost loops
 - Parallelized (unrolled) inner loops
 - Parallelism factor chosen by hand
 - Data locality captured at the level of a DRAM burst (384 bytes)
- Parallelism factors are kept consistent across baseline and optimized versions from our flow

- Speedup with tiling: up to 15.5x
- Speedup with tiling + metapipelining: up to 39.4x
- Minimal (often positive!) impact on resource usage
 - Tiled designs have fewer off-chip data loaders and storers

- Two key optimizations: tiling and metapipelining – to generate efficient FPGA designs from parallel patterns
- Automatic tiling transformations placing fewer restrictions on memory access patterns
- Analysis to automatically infer designs with metapipelines and double buffers
- Significant speedups of up to 39.4x with minimal impact on FPGA resource utilization