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I .Abstract 

fic editors are cognisant of the syntax and 
rogramming language they manipulate. 

the various potential advantages of language spe- 
ey have not been widely accepted by software 
serious somare development. On the other 
anipulation editors, which are also cognis- 
es ,they manipulate, have proven to be suc- 
domains such as drawing and VLSI design 
is worthwhile investigating the incorpora- 
nipulation mechanisms into program edit- 

s paper presents a technique for specifying direct 
tirlzg of programs which is amenable to the 

uage specific editors incorporating dir- 
lationpom a specification of the desired editing 

Language specific editors, direct manipulation, 
generation of language specific editors, 

1. Ir$troduction 

re have been many different approaches to address- 
blems of software productivity. One of these has 

e development of language specific editors; these are 
ch are specifically intended for the creation and 
n of programs. There have been a large number 
specifiic editors developed over the last twenty 
1; particularly well known examples include the 

'ynthesizer [161, Mentor [31, Magpie [2] 

have the potential to offer significant ad- 
xt editors by providing help with language 

syntactic and semantic errors before at- 
on, providing semantically based search- 
pite these potential advantages, language 
ve not been widely used by software de- 

velopers for serious software development. Although many 
of the reasons for the lack of widespread use of language 
specific editors are no doubt non-technical, it is worthwhile 
exploring whether there are possible editing mechanisms 
which may be sufficiently attractive and easy to use that 
some of the other barriers to using these tools will be over- 
come. 

One editing paradigm which is used successfully in a 
number of areas is direct manipulation. This approach to 
editing is characterised by being rapid, incremental and re- 
versible, and providing continual feedback[ 151. This tech- 
nique can be found in various editing tools, such as many 
drawing packages (e.g., MacDraw and Idraw) in which 
graphical representations of objects are manipulated by 
pointing, dragging, stretching and gesturing, and the results 
are immediately visible. Given the success of direct manip- 
ulation as an editing mechanism in other contexts, it appears 
to be worth exploring in the context of program editing. In 
particular, it may contribute to making language specific ed- 
itors more attractive to potential users. 

Over the history of language specific editors, there has 
been a clear trend from manually constructed editors to the 
development of appropriate technology to generate editors 
and environments from a description of the language to be 
supported by the environment. Examples include the de- 
velopment of the Synthesizer Generator[ 141 from the Cor- 
ne11 Program Synthesizer[ 161, and the progression from 
Mentor[3] to CENTAUR[l]. This trend has occurred for 
very good reasons, specifically: 

0 removing a lot of the tedious work required to obtain 
an editor for a programming language, a significant 
part of which overlaps with what has already been car- 
ried out to implement editors for other languages, and 

0 the desire to customise the appearance of the editor, 
say to conform to coding standards used with a partic- 
ular organisation. 

If direct manipulation mechanisms were to be introduced 
into language specific editors, we would not wish to lose the 
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advantages of being able to generate an editor from a spe- 
cification of the programming language and some aspects 
of its appearance. Thus, there is a need to explore how 
program editors incorporating direct manipulation editing 
mechanisms can be generated. 

This paper describes a technique for specifying direct 
manipulation editing mechanisms for program editors. This 
technique is amenable to the automatic generation of the 
direct manipulation program editors from a specification. 

The next section of the paper will give an overview 
of language specific editing, covering both textually based 
editing mechanisms and some sample direct manipulation 
mechanisms. Section 3 will discuss the notion of unparsing 
a structured representation of a program into a depiction 
of it which can be edited; this discussion will cover both 
the specification of textual unparsing and the requirements 
for a technique which would accommodate the specification 
of unparsing to a representation which can be edited using 
direct manipulation. Sections 4, 5 and 6 will present our 
technique for specifying direct manipulation editing of pro- 
grams. Finally, the future work planned to achieve the goal 
of automatically generating these editors will be presented. 

2. Program editing 

Language specific editors assist the programmer by 
providing help with the syntax of the language and can also 
provide information based on the static semantics of the 
program. This is done by maintaining a structured repres- 
entation of the program that is being edited. This approach 
contrasts with the alternative of sending the entire program 
to a compiler and awaiting the results. Thus, more meaning- 
ful structural and semantic information is available earlier in 
the development of the program, allowing an editor to take 
advantage of this information. A common underlying struc- 
tural representation used by many language specific editors 
is an abstract syntax tree (AST); the rules for constructing 
an AST are defined in an abstract syntax, which is a descrip- 
tion of the syntax of the language with the concrete syntax 
(i.e., keywords, etc.) removed. An advantage of using ab- 
stract syntax is that there are many proven techniques to 
extend the abstract syntax to maintain the semantic inform- 
ation needed during semantic analysis (e.g., [ 141). 

One example of how language specific editors can guide 
the programmer through the syntax of a language is through 
the use of templates. These templates contain all the 
keywords and punctuation characters required by the con- 
struct, along with placeholders for the other components. 
By selecting a placeholder, the programmer is presented 
with a choice of templates that are valid substitutions for 
the placeholder. For example, Figure 1 shows the stmtseq 
placeholder selected in a language specific editor, with the 
possible templates listed to the left. When the selection is 

made all the associated keywords, text and placeholders that 
make up that construct are inserted, as shown in Figure 2, 
for the case of an if statement. 

Figure 1. Templates in a language specific 
editor. 

Figure 2. Templates in a language s 
editor. 

One disadvantage of this template style of editing is that 
it enforces a top-down approac diting, as discussed fur- 
ther in [ IO]. To offset this sho ng, many language spe- 
cific editors adopt a hybrid approach, and allow both tex- 
tual editing and structure based editing. By allowing tex- 
tual editing, the possibility of errors is introduced and now 
the text must be parsed to discover the structural represent- 
ation. There are many different approaches to parsing and 
error handling in language specific editors, none of which 
is clearly superior, and most of which tend to complic- 
ate the programmer’s interaction with the editor. Many of 
these complications are introduced when programs, which 
are highly structured documents, are edited as simple text. 

An interesting challe to find ways to interact con- 
veniently with the struc representation, but maintain 
the flexibility that is gained through textual editing. Fur- 
thermore, there is no need to represent the program as 
text alone; perhaps augmenting or replacing the textual 
representation with graphical representations (which are 
often used to represent programs anyway, such as when 
flowcharts are employed) will enable some convenient and 
powerful editing mechanisms to be defined. One such pos- 
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(b) 

Figure 3. Inserting a new list item. 

o extenld program editors to include direct ma- 
diting mechanisms. For example, SbyS[9] is an 

some direct manipulation techniques are ex- 
use of a leg0 metaphor, whereby the program 
using drag and drop techniques with language 
s selected from a palette. 

other possible direct manipulation mechanisms 

as to the current location of the fragment and 
h only aillows the fragment to be inserted into 

rsion of a while statement to a 
ent by grabbing the while state- 

ecomes the desired 

concrete example of a possible direct manipula- 
nism is given in Figure 3. The example shows 
represeinted graphically as a tree with the cursor 

nt statement which is part of 
rogrammer wanted to insert 
assignment statement, they 

ment and drag downwards 
ough space is made before 

ation being performed. 

3. Unparsing 

Unparsing is the process of obtaining a displayed rep- 
resentation from an underlying structural representation. In 
many language specific editors, this is a matter of translat- 
ing from an abstract syntax tree to the textual presentation 
with which we are all familiar. The way in which the un- 
derlying representation is unparsed is of crucial importance, 
since it is this unparsed, visual representation that the pro- 
grammer will manipulate. 

An example of a typical textual unparsing schema is 
given in Figure 4. This schema is taken from a specifica- 
tion of a version of TextView[l3], which is a textual lan- 
guage specific editor within the MultiView programming 
environment[q. The language in which the schema is 
written uses similar unparsing schemes to those employed 
by the Synthesizer Generator[ 141 and GandalQl21. The 
schema uses ‘I’ to indicate a new line, and ‘<’ and ‘>’ 
to decrease and increase the indentation, respectively. If 
a string is enclosed in 3’ marks, it is considered to be a 
keyword. Child nodes of the node to which the schema 
applies are indicated using the notation ‘#childnumber’. 
Thus, lines 1 and 2 of Figure 4 indicate that the displayed 
representation of an if statement consists of the keyword 
“ i f ”  followed by whatever is the displayed representation 
of the first child of the if statement’s node (presumably the 
condition within the statement), followed by the keyword 
“then”; a new line is then started and the level of indent- 
ation increased, before the second child (the part to be ex- 
ecuted if the condition is true) is unparsed, and so on. 

One advantage to separately specifying unparsing, as op- 
posed to hardwiring the unparsing into an editor, is that 
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1 i f - s t m t  is '@$if $ #1 $then$ /> # 2  </ 
2 $else$ />  #3 </ $end if$"; 

requals is "#I = #2 " ; 
sassign is  "#1 := I # 2 " ;  
6 P l u s  is "#1 -+ # 2 " ;  

3 

Textual unparsing used in Textview. 

it makes it easier to customise the layout of programs, as 
the formatting information (held in the unparsing schema) 
is separate from the program; hence, it is simply a mat- 
ter of applying a different unparsing schema to change the 
styleAayout of the program. This would be very useful, for 
example, if there is a coding standard in place within an 
organisation, as the coding standard can be captured in the 
unparsing schema. 

Another advantage of specifying the unparsing is that it 
allows for the generation of editors from descriptions. This 
is desirable, as it reduces the effort of reimplementing an 
entire editor for a different language, because the generator 
captures the knowledge about building editors. It also al- 
lows for user interface consistency between editors (e.g., 
if an organisation uses more than language), as they could 
all be derived from similar unparsing specifications, and 
would have similar appearance, interaction modes, and so 
on (since they are all generated by the same tool). 

One disadvantage with the aforementioned systems and 
their unparsing schemes is that they only allow programs to 
be represented textually. The remainder of this paper de- 
scribes an approach which allows the specification of un- 
parsing in such a way that the program can be represented 
graphically, where a textual representation is considered to 
be a specific kind of graphical representation. Furthermore, 
the technique described here allows the specification of dir- 
ect manipulation mechanisms to be applied to this graphical 
representation and is amenable to the generation of an editor 
from the specification. 

ieal unparsing 

A technique for displaying a program with graphical as- 
pects will be presented in this section. This technique in- 
volves building a hierarchy of graphical objects (GOBs). 
There are two kinds of graphical objects: containers and 
leaves. The leaves are graphical objects, such as lines and 
text, that have no children in the hierarchy. The container 
objects are graphical objects, such as a box, that have other 
graphical objects as their children. There is a special kind of 
container, a graphical object called a subtreebox; this object 
contains a reference to a node in the abstract syntax tree. 

The unparsing is specified by attaching an unparsing 
function to a type of node in the abstract syntax tree. When 

an abstract syntax tree representing a program is unparsed, 
the relevant unparsing function returns a graphical object 
which is then associated with that node in the abstract syn- 
tax tree. 

1 DISPLAY-LIST (LABEL-COL: COLOUR) is 
2 subtreebox (COLOuR=>none) 
3 [vbox-resize, vbox-allocation, press-subtree, 
4 elide-subtreel 
5 (  
6 DISPLAY-SUBTREELABEL 
7 box (COLOUR=>none) 
8 [treebox-resize, treebox-allocation1 
9 { 
10 line (COLOUR=>green, STRETCHY=>true) [I 
11 box (COLOUR=>none) 
12 [vbox-resize, vbox~allocationl 
13 I 
14 for CHILD in CHILDREN-OF (@THIS-NODE) loop 
15 DISPLAY-CHILD (CHILD, Ipulldom-listiteml) 
16 end loop 
17 > 
18 > 
19 > 

Figure 5. Textual U s. 

An example of an unparsing function is given in Figure 
5, which specifies how to unparse a program so that it is 
depicted as a tree in a similar manner to the one shown in 
Figure 3.  The function consists of a name, parameters and 
graphical object returned. In this example, it is a subtreebox 
that contains other GOBs as its children. The specification 
of a GOB contains three pieces: the name of the type of ob- 
ject required (e.g., line, box, etc.), a list of attributes for that 
object (including geometry and colour) and finally the name 
of any associated state machines for describing the interac- 
tions and the geometry behaviour. These state machines are 
described in more detail in the next section. 

Unparsing functions can contain calls to other defined 
unparsing functions in place of a GOB specification; an ex- 
ample of this is shown on line 6 in Figure 5. The unparsing 
function can also contain an iterator, as shown on lines 14- 
16 of Figure 5, in this case iterating over all the children of 
the node in the abstract syntax tree. There is also a condi- 
tional expression to allow graphical objects to be optionally 
contained in the graphical object hierarchy. 

Finally, some mechanism is needed to specify where 
the children of a node will be displayed, this is illustrated 
on line 15 of Figure 5 via the call to DISPLAY-CHILD, 
which specifies where the graphical object obtained from 
unparsing the given node will appear in the graphical ob- 
ject hierarchy. It also allows interaction state machines to 
be attached to these graphical objects; in this example, the 
interaction state machine called p u l l  down-1 is tit e m  
(which describes the behaviour when a list item is pulled 
downwards, as in Figure 3) is attached to all the children of 
the unparsed node. 
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5. Stlate machines 

cal objects during unparsing. The idea 
machines to describe the interactions is not 

nes to describe three aspects of the system: the 
gr(aphica1 objects, the geometric behaviour 
ob,jects and the recognition of sequences of 
igher level events. These aspects are now 

Figure 7 shows the two geometry state machines (GSMs) 
needed to describe the behaviour of a graphical object called 
HBox, which is a box that horizontally tiles its children. The 
state machines themselves are very simple; in fact, most of 
the detail is hidden in the command procedures. 

Figure 7. HBox geometry state machine. 

5.1. gnteraction ;state machines 

interaction state machines (ISMs) are used to define 
hical objects (and hence the program) will respond 
terface events, such as key presses and button 

le ISM is shown in Figure 6. When the ISM is 
GOB during unparsing, it is in the start state 
y the: double circled state). The state machine 
er state in response to an event (represented 

above an arc) and a transition function is called; in 
the transition functions are called command pro- 

sented in UPPERCASE below the 

ien the PullDown event is received, the 

for either a Motion event or a PullStop 
events being ignored. 

PirllQown 

LI!PTITEM 

Pull-stop 

LISTITEM 

Motion 

6. Pullldown Listitem interaction state 
achine. 

eometry state machines 

is also used to describe the geo- 
of the objects, more specifically, how a 

to resize requests and allocations. 

One interesting aspect of the relationship between ISMs 
and GSMs is that state machines are being used to describe 
both interaction and geometric behaviour. It would be pos- 
sible to combine the state machines for interaction and geo- 
metry into a single state machine to describe more complex 
interactions that may depend intimately on the geometric 
behaviour. 

5.3. Monitor state machines 

Monitor state machines (MSMs) are used to provide a 
richer set of event types that can be used in other state ma- 
chines. To do this, they monitor all events in the system. 
Unlike the previous two kinds of state machines described, 
which are associated with graphical objects, monitor state 
machines receive all the events generated in the system. 
There are two classes of events in the system: primitive and 
generated. In the current prototype, primitive events come 
directly from underlying window system, which in our case 
is the X window system. 

These monitor state machines are useful for generating 
events from sequences of other (generally more primitive) 
events. An example of this is given in Figure 8, which is 
a MSM that is used to generate some of the events used in 
specifying the example given in Figure 3. The MSM com- 
bines the mouse button press and motion to generate the 
appropriate Pull event in the direction of the mouse motion 
(namely, the events PullLef, PullRight, PullUp and Pull- 
Down), and generates a PullStop event when the mouse but- 
ton is released. 

5.4. Event propagation 

When an event is generated, the current model for event 
propagation checks if any of the MSMs are interested in the 
event and then the graphical object hierarchy is traversed to 
find the GOB deepest in the hierarchy whose geometry con- 
tains the co-ordinates of the event. The event is then propag- 
ated to this child first and is passed back up the graphical 
object hierarchy until a GOB’S ISM uses the event to move 
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BtnZPress 

Motion 

PULLRELEASE 

Figure 8. Pull Generator monitor state 
machine. 

to a new state. Once a GOB’S ISM has used the event, it no 
longer propagates to other GOBS, but all ISMS attached to 
that GOB are able to use the event to move to a new state 
and trigger their COPS. 

An exception to this event propagation model is that 
graphical objects are able to grab the focus. When the fo- 
cus is grabbed by a graphical object, all events are sent to 
the state machines attached to that graphical object until it 
releases the focus. 

6. Command procedures 

Most of the detail for describing interactions is contained 
in the command procedures. An example of a command 
procedure is given in Figure 9, which is the command pro- 
cedure triggered when the PullLeft event is received by the 
ISM given in Figure 6. 

Each state machine can also have some variables asso- 
ciated with it. These variables are used in the command 
procedures to store values across state changes. These vari- 
ables are referred to as SM-VARS in the command proced- 
ures. An example is given on line 3 of Figure 9, where 
these variables are given an initial value; this value would 
be defined when specifying the appropriate state machine. 
An Ada-like syntax is used to reference the variables, as 
shown on line 4, where the state variable called PRESS-Y 
is given the y-coordinate value of the mouse button press. 
The same Ada-like syntax is used to reference attributes of 
the graphical objects and the events. On line 5 and 6, a 
new graphical object is created using the same syntax as 
that used in unparsing (see Figure 5). This graphical object 
is then inserted in to the graphical object hierarchy on lines 
7 and 8. Changes to the abstract syntax tree can also be 
specified in the command procedures. An example of this 
is given on lines 9 and 10, where a new piece of abstract 
syntax tree is created. There is an example of grabbing the 
focus, mentioned in Section 5.4, on line 15. 

1 cop START-DRAGGING-LISTITEM is 
2 begin 
3 INITIALISE (SM-VARS) ; 
4 SM-VARS.PRESS-Y := EV.Y; --store Y locn of btn press 
5 SM-VARS.PLACEHOLDER-GOB 

7 ADD-CHILD-BEFORE (PARENT-OF(GOB), 

9 SM-VARS.EMPTY-LIST-SUBTREE 

6 := rectangle (WIDTH=>5.0, COLOUR =>NONE) [ I ;  

8 SM-VARS.PLACEHOLDER-GOB, GOB); 

10 := CREATE-EMPTY-LISTITEM (GOB.SUBTREE); 
11 SM-VARS.EMPTY-LIST-GOB 
12 := UNPARSE (SM-VARS.EMPTY-LIST-SUBTREE); 
13 SM-VARS.SPACING-GOB 
14 := line (HEIGHT=>I.O, COLOUR=>NONE) [ I ;  
15 GPAB-FOCUS (GOB); 
16 end; 

Figure 9. An example command procedure. 

7. Future work 

This paper has described an approach to the specification 
of graphical unparsing in the context of language specific 
editors which support direct manipulation editing mechan- 
isms. Furthermore, the technique has been designed with 
generation of these editors in mind 

At this stage, the various comp 
paper have been prototyped in a sample editor (the one il- 
lustrated in Figure 3), although these components cannot 
yet be generated from a specification. Future work will ad- 
dress the construction of such generators. 

In terms of the specification technique itself, the specific- 
ation of the command procedures is current1 
ary (and relatively low level) form. Future 
the most appropriate set of primitives to allow common dir- 
ect manipulation mechanisms to be described easily. One of 
many interesting issues in the development of the notation 
for the command procedures is how to conveniently specify 
the graphical feedback that is to be provided while the direct 
manipulation mechanisms are being performed. 

An important factor in generating language specific edit- 
ors is the ease in which they can be specified, and an exten- 
sion to the unparsing schemes that we would like to explore 
is to be able to specify them graphically. If this were done, 
the editor designer would be given better feedback as the 
editor is being designed; suitable direct manipulation mech- 
anisms in the editor for the unparsing schemes may also be 
appropriate. 

The direct manipulation mechanisms presented in this 
paper are meant to be indicative of the kind of mechanisms 
that could be provided, rather than definitive. This work 
will facilitate the rapid prototyping of these direct mani U 

suitability of these mechanisms for program editing. Ulti- 
mately, we trust that such mechanisms will contribute 
availability of better, and more widely accepted, language 
specific editors. 

lation style mechanisms, and hence allow exploration of P -  the 
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