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If K is a finite simplicial complex and h is an injective map from
the vertices of K to R, we show how to extend h to a discrete
Morse function in the sense of Forman [Forman 02] in a reason-
ably efficient manner so that the resulting discrete Morse func-
tion mirrors the large-scale behavior of h. A concrete algorithm
is given for the case where K is a subcomplex of R?.

1. INTRODUCTION

When modelling physical phenomena, one often begins
with a collection of point data. These may be sample
points of a terrain or a collection of temperature values
in a region in 3-space. If one knows in advance that these
points arise from a smooth function f : D — R defined
on some space D, then standard techniques allow one to
analyze the gradient paths, decompose the space into a
Morse-Smale complex, etc. However, the space D is often
sampled, and one has only the values of f at the sample
points. Making the sample more dense does not allow
one to use smooth methods to analyze the qualitative
behavior of f.

This problem was addressed in the case of PL 2-
manifolds by Edelsbrunner et al. in [Edelsbrunner et
al. 03b], where the authors construct a complex whose
combinatorial form matches that of the Morse-Smale
complex, and, therefore, allows one to understand the
qualitative behavior of f. This approach leads to fast
algorithms for visualization of, for example, geographic
terrains. It uses piecewise linear functions on the com-
plex and extends the notion of index of a critical point
to this setting.

Extending the methods of [Edelsbrunner et al. 03b]
to higher dimensions is a challenge, however. Instead,
it is natural to ask if one could use the discrete Morse
theory of R. Forman [Forman 98, Forman 02] to model
the qualitative behavior of f. Giving the values of f on
a sample in D produces a subcomplex of the 0-skeleton
of the region. One would like to extend this to a discrete
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Morse function on the entire space in such a way that the
associated gradient vector field approximates that of f.

In this paper, we present a method for doing this that
is motivated by the techniques developed in [Edelsbrun-
ner et al. 03b]. Let K be a finite simplicial complex and
let h be an injective map from the vertices of K to R.
We will extend h to a discrete Morse function on K (in
the sense of [Forman 02]) in an efficient manner. That
is, the algorithm has reasonable running time for K en-
countered in practice and produces relatively few critical
simplices, so that, for example, it is efficient to compute
the homology of | K| using the critical simplices.

We also incorporate persistence, so that pairs of crit-
ical simplices are cancelled if they are connected by just
one gradient path and their values differ by less than the
persistence p (details about persistence may be found
in [Edelsbrunner et al. 02]). We allow p = oo, so it is
possible to cancel as much as we can. The resulting dis-
crete Morse function mirrors the behavior of i on a scale
greater than the persistence p. For example, critical ver-
tices are at local minima of &, although not every local
minimum of h gives rise to a critical vertex; indeed, if it is
connected to an index-1 saddle whose h value is within p,
then it probably will not. Likewise if, say K is a surface,
then critical 2-simplices are adjacent to local maxima of
h, although if a local maximum is connected to a sad-
dle whose h value is within p, it might not give rise to a
critical 2-simplex.

Other algorithms for constructing optimal Morse func-
tions exist, for example, in [Lewiner et al. 03] and [Hersh
05]. The approach in [Lewiner et al. 03] differs from
ours. While we start with a given function on the ver-
tices of the simplicial complex and construct a discrete
Morse function, which, up to a certain error given by
the persistence, models the given data, the algorithm in
[Lewiner et al. 03] starts with only a simplicial complex
and constructs a discrete Morse function that is as close
as possible to an optimal one. Thus, it can be effectively
used for computing homology. The algorithm generally
produces fewer critical simplices than our algorithm with
persistence set to co. It cannot be used for analyzing spe-
cific Morse functions, though. In [Hersh 05], the author
begins with a given discrete Morse function on a com-
plex and addresses the question of when several gradient
paths may be cancelled simultaneously to further reduce
the complex. The primary applications are to poset order
complexes.

In Section 2, we review the rudiments of discrete Morse
theory. Section 3 outlines our algorithm for defining the
discrete Morse function extending h : Ko — R. We prove

that the result is indeed a discrete Morse function on K.
In Section 5, we incorporate persistence to minimize the
number of critical simplices. An implementation of our
algorithm is discussed in Section 6.

1.1  Notation

We let K; denote the set of i-simplices of K. If an i-
simplex ¢ has vertices vg,v1,...,v;, then we may write

o= [vg vy ... v]. If 7is a face of o, we write 7 <
o. If o = [vg v1 ... v;], then we define maxh(c) =
maxo<;<i{h(v;)}. If o € K; and 7 € K; are disjoint

simplices, then o * 7 is either undefined or the (i +j+1)-
simplex whose vertices are the union of the vertices of o
and 7. For example, if v and w are vertices, then v * w
is undefined if [v w] is not an edge in K; and otherwise
vxw = [vw]. If ve Ky is a vertex, then the link of v is
the simplicial complex L whose simplices are all 7 so that
v * 7 is defined. Following [Edelsbrunner et al. 03a], we
define the lower link of v to be the maximal subcomplex
of the link of v so that all its vertices have h value less
than that of v. In other words, the simplices of the lower
link of v are all simplices 7 of K, so that v * 7 is defined
and maxh(7) < h(v).

2. DISCRETE MORSE THEORY

In this section, we review the basics of Forman’s discrete
Morse theory [Forman 02]. Let M be a simplicial com-
plex. A typical p-simplex will be denoted by a(®).

Definition 2.1. A function f : M — R is a discrete
Morse function, if for every a®) € M, the following two
conditions hold:

L #{BPT) > a|f(B) < fla)} <1,
2. #{y?7V <a|f(y) > fle)} < 1.

Essentially, discrete Morse functions are functions on
M that increase with the dimension of the simplices; that
is, the values on all but at most one face of o must be
smaller than the value on « itself. Discrete Morse func-
tions exist. Indeed, the simplest (and most trivial) ex-
ample is the following. If ¢ is a simplex of M, we define
f: M — R by

f(o) =dimo.

Note that Conditions (1) and (2) in the definition of a
discrete Morse function are exclusive. That is, if one of
the sets has cardinality one, the other is empty. To see
this, assume that o) € M has a coface 7P+ such that
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f(r) < f(o) and a face v®=1) such that f(v) > f(o).
Let ¢/") be a different face of 7 that also contains v.
Then the value f(o’) must be bigger than f(v), since v
already has a coface with smaller value, and similarly the
value of 7 must be bigger than f(c’), so

f(r) < flo) < f(v) < f(o') < f(7),

which is not possible.

It follows that, unless dim K = 1, the function maxh is
definitely not a discrete Morse function. However, Theo-
rem 3.4 says it can be approximated by a discrete Morse
function.

Smooth Morse theory depends heavily on the notion
of critical point; the discrete theory does as well.

Definition 2.2. Let f : M — R be a discrete Morse
function. A simplex o) is critical if the following two
conditions hold:

L #{B%+D > alf(8) < f(a)} =0,
2. #{7*7Y <alf(v) = f(a)} = 0.
A simplex that is not critical is called regular.
For example, if f : M — R is given by f(0) = dim o,
then every cell is critical. An example of a discrete Morse
function on the torus is given in Figure 1.

The critical simplices are the vertex f~1(0), the two
edges f~1(42), f~1(44), and the 2-simplex f~1(86). This
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FIGURE 1. A discrete Morse function on the torus.
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is in keeping with the main theorem of discrete Morse
theory.

Theorem 2.3. [Forman 02, Theorem 2.5] Suppose M is a
simplicial complex with a discrete Morse function. Then,
M is homotopy equivalent to a CW-complex with exactly
one cell of dimension p for each critical simplex of di-
mension p.

As the above example shows, constructing discrete
Morse functions is rather involved, especially if the com-
plex has many simplices. Recall that in smooth Morse
theory, one often works with the gradient vector field of
a Morse function. This encapsulates the qualitative be-
havior of the function so that one need not even know
the values of the function itself. This is possible in the
discrete setting, and it forms the basis for our algorithm.

The fundamental observation is this: regular simplices
occur in pairs. In the example shown in Figure 1, the
vertex f~1(50) is regular since it has an adjacent edge
(f=1(25)) with a lower value. Similarly, the edge f~*(54)
is regular since it is an edge of a triangle with a lower
value. The triangle f~1(27) is regular, as it has an edge
with a higher value. We indicate these pairings by draw-
ing an arrow from the vertex f~1(50) to the edge f~1(25)
and an arrow from f~1(54) to f~1(27).
think of these arrows as a representation of the simpli-
cial collapses needed to prove Theorem 2.3.

For an arbitrary simplicial complex with a discrete
Morse function f, we draw the arrows as follows. If () is
aregular simplex with 8P*1) > o satisfying f(3) < f(a),
then we draw an arrow from « to 8. Figure 2 shows the
arrows for the function in Figure 1.

It is easy to see that every simplex « satisfies exactly
one of the following;:

It is useful to

1. « is the tail of exactly one arrow;
2. « is the head of exactly one arrow;

3. « is neither the head nor the tail of an arrow.

A simplex is critical if and only if it satisfies Condition
(3) above. These arrows can be thought of as the gra-
dient vector field of the Morse function. A better point
of view is the following. A discrete vector field V' can be
thought of as a collection of pairs {a(p),ﬁ(p+1)} of sim-
plices, where a pair «, § is in V' if and only if o < 3 and

f(B) < flo).
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FIGURE 2. A gradient vector field on the torus.

Definition 2.4. A discrete vector field V on M is a collec-
tion of pairs {a(P), BP+1Y of simplices of M with a <
such that each simplex is in at most one pair of V.

Of course, one would like to know if a discrete vec-
tor field V' is the gradient field of some discrete Morse
function on M. The following definition is crucial.

Definition 2.5. Let V be a discrete vector field on M.
A V-path is a sequence of simplices

ol B o gEHD | g o)

such that for each i = 0,...,r, {a;, 3.} € V and 3; >
;11 # ;. Such a path is a nontrivial closed pathif r > 0
and ag = 1.

Forman proved the following two theorems.

Theorem 2.6. [Forman 02, Theorem 3.4] Suppose V is
the gradient vector field of a discrete Morse function f.
Then, a sequence of simplices is a V -path if and only if
o; < Bi > aiqpq fori=0,...,r, and

flao) = f(Bo) > flag) > f(B1) > -
Z f(ﬂv) > f(()ér+1).

In particular, if V' is a gradient vector field, then there
are no nontrivial closed V-paths. The converse is true as
well.

Theorem 2.7. [Forman 02, Theorem 3.5] A discrete vec-
tor field V' is the gradient vector field of a discrete Morse
function if and only if there are no nontrivial closed
V -paths.

A convenient combinatorial description of vector fields
may be given in terms of the Hasse diagram of M. This
is the directed graph whose vertices are the simplices of
M and whose edges are given by the face relations in
M (i.e., there is an edge from ( to « if and only if «
is a codimension-one face of 3). Given a vector field V,
modify the Hasse diagram in the following manner. If
{a < B} € V, then reverse the orientation of the edge
between a and 3. A V-path is then a directed path in
the modified graph.

Theorem 2.8. [Forman 02, Theorem 6.2] There are no
nontrivial closed V -paths if and only if there are mo
nontrivial closed directed paths in the modified Hasse
diagram.

We shall use the following notation for a gradient path
01,02,...,0L:

01 — 03 — +++ — Ok.

In Figure 2, using the value of the function on a simplex
to denote the simplex (the function is injective), we have
the following paths (for example):

85 — 84 — 83 — 82 — 67 — 66 — 65
—64 —63 —62—61l—32—5

and
20— 15—-10—5—0.

3. THE ALGORITHM

As far as computation is concerned, finding an extension
of h to a discrete Morse function is equivalent to finding
the modified Hasse diagram [Forman 02, Theorem 3.5],
so this is what we will do instead.

We will describe a procedure Extract(K,h,p) that
takes as input a finite simplicial complex K, an injective
h: Ko — R, and a persistence p > 0. Its output is:

1. three lists A, B,C of simplices of K so that each
simplex of K is on exactly one list;

2. a one-to-one onto map r: B — A so that r(o) is a
codimension-one face of o.
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This output is meant to encode the relevant data
from a discrete Morse function, in particular, its mod-
ified Hasse diagram. The simplices in C will be critical,
and 7 gives the usual pairing of the noncritical simplices.
Our discrete Morse function will have a larger value on
(o) than on o (but necessarily smaller values on all other
codimension-one faces of o).

We find it convenient to consider subgraphs R; of the
modified Hasse diagram for s = 1,...,dim K. There is a
one-to-one correspondence between directed paths in R;
connecting critical i- and (i — 1)-simplices and Forman’s
gradient paths between those simplices. Let K; denote
the set of i-simplices of K. Let A; = ANK;, B; = BNKj,
and C; = C' N K;. The vertices of R; are of two types:
the (i —1)-simplices in 4,1 UC;_; and the i-simplices in
C; U B;. Put an edge between any i-simplex and each of
its faces in A;_1 U C;_1. These edges are directed from
the simplex to its face with one exception. If o € B;,
then the edge between r(c) and o is directed from r(o)
to o.

The initial vertices in R; are of two types: i-simplices
in C; and (i — 1)-simplices 0 € A;_; whose only coface in
C; U B, is (o). A prime example of the second type
would be a noncritcal edge on the boundary of a surface.

There are, likewise, two types of terminal vertices in
R;. There are (i — 1)-simplices in C;_;. There are i-
simplices 7 all of whose (i — 1)-faces are in B;_1 except
one face r(7).

It is convenient to divide the algorithm Extract into
two parts. ExtractRaw(K,h) produces a preliminary
A, B,C, and r without doing any cancellation. Then
the routine ExtractCancel(K, h,p,j) does all the per-
sistence cancellation of critical j- and (j — 1)-simplices
by modifying A, B,C, and r. So the main outline of the
algorithm is:

Extract(K, h,p)
e ExtractRaw(K, h)
e for j =1 todim K
— ExtractCancel(K,h,p, )

e end for

ExtractRaw(K, h)
e Initialize A, B, C to be empty.
e foreach v € K

— let K’ = the lower link of v

— if K’ is empty then add v to C % local min
— else

x add v to A;

* let h': K — R be the restriction of h or,
alternatively, use the definition given in the
text below;

x Extract(K’,h/,00) and let A’ B',C' r'
denote the resulting partition of the sim-
plices of K’;

« find the wy € C{) so that h/(wp) is the

add [v,wo] to B and define
r([v, wo]) = v;

* for each 0 € C' —wy add v * o to C;

* for each o € B add v*o to B, add v/ (o)
to A, and define (v *x o) = v *1'(0).

— end if

smallest;

e continue foreach

The algorithm ExtractRaw works inductively by using
Extract on the links of vertices. If we have a metric on
K so that we can measure the lengths of edges, there is
an alternative definition of A’ in the lower link of v with
the property that the vertex with the minimum value
of i/ more closely approximates the direction of steep-
est decrease of h. In the alternative definition, we set
R (w) = (h(w) — h(v))/€(Jv,w]), where £([v,w]) is the
length of the edge [v,w]. This might result in duplicate
values of h', in which case we perturb A’ slightly; it is
natural to break such ties using the value h(w).

A naive version of persistence cancelling follows. In
practice, you would probably wait to cancel until you
found the pair 7 € C;_1, 0 € C; connected by exactly one
gradient path so that maxh(o) — maxh(7) is minimized.
Also, for example, if K is a subcomplex of a j-dimensional
manifold, then it is more efficient to find all gradient
paths that end at a 7 € C;_; (since there are at most
two of them), so you would implement it differently.

ExtractCancel(K, h,p,j)
e foreach o € C}
— find all gradient paths o = 0;7 — 040 — ... —
o, € Cj—1 with maxh(c;,) > maxh(o) — p;

— foreach i, if oy, does not equal any other oy,
let m; = maxh(oy, );

— if at least one m; is defined, then

« pick a j so that m; = min{m;};
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* Cancel(K, h,0j,,0,]).
— end if

e continue foreach

The algorithm Cancel (K, h,o,7,j) works if 0 € Cj_1,
7 € C}, and there is only one gradient path from 7 to o.
This cancels the two critical simplices by reversing the
arrows in the gradient path.
Cancel(K, h,o,7,7j)

e find the unique gradient path 7 =7 — 07 — 7™ —
— o0, = o (thus o; = 7(7:41), 0; is a face
of 7, and o; # 0411);

09 — + -+

e delete o and 7 from C, add 7 to B, and add o to A;

e for i =1 to k, redefine r(7;) = 0.

Theorem 3.1. The A,B,C, and r produced by
ExtractRaw have the property that there are no directed
loops in the resulting modified Hasse diagram.

Proof: Note that maxh(r(c)) = maxh(o), since in the
algorithm v is the vertex in all mentioned simplices with
highest value of h. Also, if o is a face of 7, then
maxh(o) < maxh(7). Consequently, maxh is nonincreas-
ing along any directed path in the modified Hasse dia-
gram. So, maxh must be constant on any directed loop.
Let 09 — 01 — --+ — 0 = 0g be a directed loop in the
modified Hasse diagram. Let v be the unique vertex so
h(v) = maxh(o;) for all j. Then, v is a vertex of each
0; so 0 = v x 7; for simplices 7; in the lower link of v.
— T} is a directed loop in the
modified Hasse diagram of the lower link of v, which is
impossible by induction on dimension and the following
theorem. O

But then, 9 — 74 — - -

Theorem 3.2. The Cancel algorithm does mot produce
directed loops. Hence, the A, B,C, and r produced by
Extract have the property that there are no directed loops
in the resulting modified Hasse diagram.

Proof: (see [Forman 02, Theorem 9.1]) Suppose we have
an A, B,C, and r so the resulting modified Hasse dia-
gram has no directed loops. Suppose 7,0 € C are joined
by a unique gradient path. Assume that after perform-
ing Cancel(K, h,o,7,j) we end up with A’, B’,C’, and
r’ so that the resulting modified Hasse diagram has a di-
rected loop a. This was not previously a directed loop,
and hence, a portion of it (say ) must coincide with a
segment (say 7)) of the gradient path. But then we can

construct a different gradient path from 7 to o by replac-
ing 7 by a —~. This violates the condition that there be
only one gradient path from 7 to o. O

The previous theorems allow us to actually construct
a discrete Morse function on K, so we can use all the
machinery of discrete Morse theory. We use the follow-
ing lemma in our three-dimensional implementation of
the algorithm to reduce the number of gradient paths
between critical simplices after cancellation.

Lemma 3.3. The A,B,C,r produced by
ExtractRaw(K, h,p) have the property that there
are no o € C;, © > 0 so that all codimension-one
faces of o are in B;_1, and this property persists under
cancellation.

Proof: Assume that all (i — 1)-faces 7, ...,7; of o be-
long to B;—1. Then, there exist (i — 2)-faces vy, ...,v;
of o such that r(r;) = v; for all j = 0,...,i. Each v;
belongs to precisely two (i — 1)-faces of o, so there is a
directed path

UO_)TO_)Uil_)Ti1_>.'._)vij_)7—i]'

such that 7;, and 7;,,, are the only (i — 1)-faces of o
having v;, as a face. Let 7, be the remaining (i — 1)-
coface of vg. Then,

Tk — Vo — To — Uiy — > Up — Tk

is a directed loop. By Theorem 3.2 this is not possible. []

In practice, it is not necessary to actually construct
a discrete Morse function, since what one really needs is
the modified Hasse diagram. However, the whole point of
our algorithm is that a given function on the vertices of
K gives rise to a discrete Morse function which somehow
has the same behavior. In particular:

Theorem 3.4. There is an extension of h to a discrete
Morse function h' with the same modified Hasse diagram
as that produced by ExtractRaw. Moreover, given € > 0,
we may choose such an h' so that |h'(7) — maxh(7)| < €
for any simplex T.

Proof: We may suppose that 3¢ < |h(v) — h(w)] for all
vertices v # w. If K’ is the lower link of a vertex v,
we may, by Theorems 2.7 and 3.1, find a discrete Morse
function g, on K’. After a linear scaling, we may suppose
the range of g, is in the interval (h(v), h(v) + €]. Let wq
be the vertex of K’ that minimizes h. By Lemma 3.5, we



King et al.: Generating Discrete Morse Functions from Point Data 441

know that wy is critical in K’. Now, define i’ on the lower
star of v by A'([v wg]) = h(v) — e and W/ (v x 7) = g,(7)
for any simplex 7 # wq of K'.

We claim that if 7 is a codimension-one face of o and
R'(1) > h'(0), then 0 € B and 7 = r(0). Conversely,
we claim that A'(r(o)) > h/(0) for all o € B. The first
claim implies that A’ is a discrete Morse function, and
the second then implies that the modified Hasse diagram
for this Morse function coincides with that produced by
ExtractRaw.

Let us prove the claims. Let v be the maximal vertex
of o so h(v) = maxh(c). If 0 # v, let ¢’ be the simplex
so 0 = v * o'. To prove the first claim, let w be the
maximal vertex of 7. If w # v, then h'(r) > h/(0) >
h(v) —e > h(w) + 2e > h'(7) + €, a contradiction; so, in
fact, w = v, i.e., 7 is in the lower star of v. Suppose first
that 7 = v. Then, the only possibility is o = [v wy], so
r(o) = 7. Now, suppose that 7 # v. Then, there is a
simplex 7 in the lower link of v so that 7 = v * 7. So,
gu(7") > g,(0"), and thus, there is only one possibility for
7/ and, in fact, 7 = r(o). Now, let us prove the second
claim. It holds if r(o) = v, since then o = [v wy| and
h' (o) = h(v) —e. But if r(o) # v, then r(o) = v xr'(0’),
S0 W (r(@)) = 9u('(0")) > gol0”) = H(0). 0

Of course, a similar result would not hold for the out-
put of Extract. Recall the smooth case where cancelling
pairs of critical points requires changing the values of
the function. The same thing holds for discrete Morse
functions.

Lemma 3.5. If v is the vertex of K at which h attains its
minimum, then Extract will make v a critical vertez.

Proof: ExtractRaw will make v critical because it is a lo-
cal minimum. But then, ExtractCancel will never can-
cel v. This is because any critical 1-simplex 7 is the
start of exactly two gradient paths. So, if 7 is connected
to v by a single gradient path, it must be connected to
some other vertex w by a single gradient path. Since
maxh(7)—h(w) < maxh(r)—h(v), ExtractCancel would

cancel 7 with w instead of with v, if it cancelled at all. [J

4. AN EXAMPLE

Let K be the torus with the function h : Ky — R given as
in Figure 1. We shall denote each vertex by its h-value.
Implementing the algorithm Extract(K,h,cc) by hand
yields the following. We proceed through the vertices of
K beginning at 0. At each stage, we show the partition

A, B,C. The elements of A and B are listed so that
r(1;) = 0; for 7, € B and 0; € A.

0 : A=0,B=0,C={0}
10 : A={10},B={[10,0]},C = {0}
20 : A={10,20}, B = {[10,0],[20, 10]},C = {0}
30 : A={10,20,30}, B = {[10,0],[20, 10], [30, 10]},
¢ ={0}
40 : A =1{10,20,30,40},
B = {[10,0], [20, 10], [30, 10], [40, 0]},
C = {0, 40, 20], [40, 30]}
50 : A= {10,20,30,40,50, 50, 10], [50, 20], [50, 30], [50, 40]},
B = {[10,0], 20, 10], [30, 10], [40, 0], [50, 0], [50, 10, 0],
[50, 40, 20], [50, 30, 10], [50, 40, 10]},
C = {0, [40, 20], [40, 30]}
60 : A={10,20,30,40,50,60, 50, 10], [50, 20], [50, 30],
50, 40], [60, 10], [60, 20], [60, 30], [60, 40]},
B = {[10,0], [20, 10], [30, 10], [40, 0], [50, 0], [60, 0],
50, 10, 0], [50, 40, 20], [50, 30, 10], [50, 40, 10],
[60, 10, 0], [60, 20, 10], [60, 40, 30], [60, 40, 20] },
C = {0, [40, 20], [40, 30] }
70 A ={10,20,30,40,50,60,70,[50, 10], [50, 20], [50, 30],
[50, 40], [60, 10], [60, 20], [60, 30], [60, 40],
[70, 20], [70, 10], [70, 40], [70, 30]},
B = {[10,0], [20, 10], [30, 10], [40, 0], [50, 0], [60, 0],
[70, 0], [50, 10, 0], [50, 40, 20], [50, 30, 10],
[50, 40, 10], [60, 10, 0], [60, 20, 10], [60, 40, 30],
[60, 40, 20], [70, 20, 10], [70, 30, 10], [70, 40, 0],
[70, 40, 30]},
C = {0, [40, 20], [40, 30] }
80 : A ={10,20,30,40,50,60,70,80,[50, 10], [50, 20],
[50, 30], [50, 40], [60, 10], [60, 20], [60, 30],
[60, 40], [70, 20], [70, 10], [70, 40], [70, 30],
80, 20], [80, 30], [80, 50], [80, 60], [80, 70]},
B = {[10,0], [20, 10], [30, 10], [40, 0], [50, 0], [60, 0],
[70, 0], 80, 0], [50, 10, 0], [50, 40, 20], [50, 30, 10],
[50, 40, 10], [60, 10, 0], [60, 20, 10], [60, 40, 30],
[60, 40, 20], [70, 20, 10], [70, 30, 10], [70, 40, 0]
[70, 40, 30], [80, 70, 20], [80, 50, 30], [80, 50, 20],
[80, 60, 0][80, 70, 0]},
C = {0, 40, 20], [40, 30], [80, 60, 30] }

The ExtractCancel algorithm is not used until one
gets to vertex 50 and becomes increasingly complicated
as the vertex values increase. In fact, for vertex 80, two
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80 40

70,

60

50 10

FIGURE 3. The graph R;.

pairs of critical simplices in the lower link of 80 must be
cancelled.

Note also that the critical 2-simplex produced by the
algorithm is [80, 60, 30], while in Figure 1, the critical
2-simplex is [80, 50, 20]. That is not surprising, since the
algorithm tends to find critical simplices that maximize
the average value of their vertices. For [80, 60, 30], this
average is 170/3, while for [80,50,20], it is 50. Note,
however, that the value on the critical 2-simplex itself
must be greater than the value of h at each of its vertices.
Still, the critical 2-simplex is adjacent to the maximum
of h on K, as one would expect. Also, the critical edges
are the same as those in Figure 1.

The graphs R; and Ry are shown in Figures 3 and
4, respectively. The critical simplices are represented by
solid dots in the graphs.

[4,2]

O
[7.4]
[7,4,0] [43]

FIGURE 4. The graph R, (with function values scaled
by 1/10).

5. INFINITE PERSISTENCE

Applying Extract with infinite persistence in low dimen-
sions yields the minimum possible number of critical sim-
plices for any discrete Morse function. In particular, we
have the following result:

Theorem 5.1. Suppose K has dimension less than 2
or K has dimension 2 and is a subcomplexr of a two-
dimensional manifold. If one applies Extract with infi-
nite persistence, then the number of critical i-simplices is
the rank of H;(|K|;Z/2Z) and, hence, must be minimal.

Proof: By Lemma 5.3, this result is true for ¢ = 0 and 2.
But the Euler characteristic x(]K) is both the alternat-
ing sum of the ranks of H;(|K|;Z/27) and (by Theorem
5.4) the alternating sum of the number of critical sim-
plices of each dimension. So, the result must be true for
1=1. U

Corollary 5.2. Suppose |K| is a manifold of dimension
n < 3 and suppose for every vertex v either

1. the lower link of v is empty (local min),

2. the lower link of v deformation retracts to a (k—1)-
sphere (local maz if k = n; otherwise an index-k
saddle), or

3. the lower link of v deformation retracts to a point
(regular point).

Then, when we perform ExtractRaw, we will obtain ex-
actly one critical simplex for each vertex that is not a
regular point. Each local minimum will be a critical ver-
tex. Fach local mazximum will be in a critical n-simplex.
FEach index-k saddle will be in a critical k-simplex.

Proof: If the lower link of v is empty, ExtractRaw will
designate v a critical O-simplex. If the lower link of v
deformation retracts to a point, then by Theorem 5.1,
when we apply Extract to the lower link of v, we will
get just one critical simplex, a critical vertex, which does
not produce any critical simplices of K. If the lower link
of v deformation retracts to a (k — 1)-sphere, then, when
we apply Extract to the lower link of v, we will get just
two critical simplices, one a critical vertex and the other
a critical (k — 1)-simplex, which just produce a critical
k-simplex of K. O

Lemma 5.3. If you apply Extract to K with infinite per-
sistence, then there will be exactly one critical 0-simplex
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in each connected component of |K|. If K is a subcom-
plex of an n-dimensional manifold, then there will be ex-
actly one critical n-simplex in each component of |K|,
which is itself an n-manifold without boundary; in par-

ticular, the number of critical n-simplices is the rank of
Hy (K|, Z/2Z).

Proof: Each critical 1-simplex is the start of only two
gradient paths. These paths can not end up at different
critical O-simplices, since Extract would have cancelled
one of them. So, both paths end up at the same critical
0-simplex, which means that 9; = 0 in Theorem 5.4,
so Ho(|K|;Z/2Z) = Dy has rank equal to the number
of critical O-simplices; i.e., there is exactly one critical
0O-simplex in each component of |K]|.

Now, suppose K is a subcomplex of an n-dimensional
manifold. Then each (n — 1)-simplex is a face of at most
two n-simplices. Consequently, each critical (n — 1)-
simplex is the end of at most two gradient paths. So
again, 9, = 0 and H,, (|K|;Z/2Z) = D,,. |

The following result is the Z/27Z version of Theorem
7.1 of [Forman 02].

Theorem 5.4. The homology H.(|K|;Z/27) can
computed from a chain complex D,, where D; =
{>vcc, 900 | 9o € Z/2Z}, and the boundary 0;: D; —
D;_1 is determined by 0;(c) = ETGCFI g, T, where g, 18
the number of gradient paths from o to T.

=l

(&

6. IMPLEMENTATION

An implementation of this algorithm for K a subcom-
plex of a three-dimensional manifold is available at http:
//www.math.umd.edu/~hck/MorseExtract.html. It is
fairly fast in practice; for example, for K a triangulation
of the Klein bottle cross the circle with about 12,000,000
simplices, it takes less than 30 seconds to generate a dis-
crete Morse function and cancel all pairs of critical points
with small persistence.

Software for generating simplicial complexes with ran-
dom vertices in R? and function values on the vertices and
an application for viewing the results of the algorithm in-
teractively are also available. We tested the algorithm on
several triangulations of different 3-manifolds; for exam-
ple, K x St (S81)3, (S1)? cross the interval, and their
disjoint unions, and with various functions on the ver-
tices. We also ran the algorithm on a simplicial complex
obtained by computing the Delaunay triangulation on
a natural data set containing meteorological data mea-
sured at 30,793 points, describing the ozone levels as a

function of other meteorological data (temperature, hu-
midity, and pressure). If the persistence is set to a higher
level, the resulting values on the simplicial complex after
cancellation represent a smoother function reflecting the
behavior of the ozone values on a greater scale.

With persistence set to oo, the algorithm can be effec-
tively used for computing homology. If the total number
of simplices is not too big, as many critical simplices as
possible are cancelled. For example, on natural data with
200 vertices and about 4,200 simplices, all critical sim-
plices except the minimum were cancelled. On a data set
with 30,793 vertices and 200,887 simplices, the original
set of critical simplices (283 vertices, 2,391 edges, 2,530
triangles, and 421 tetrahedra) obtained by setting per-
sistence to 0 was reduced to zero critical tetrahedra, one
critical vertex (the minimum), and 124 critical edges and
triangles. On triangulations of 3-manifolds, a maximal
number of critical simplices was cancelled as long as the
number of simplices was not more than a few thousand.
For example, on a disjoint union of two tori with 180
vertices and altogether about 5,000 simplices, the algo-
rithm produced the minimal possible number of critical
simplices, while on a triangulation of the torus with 270
vertices and a total of about 7,500 simplices, one criti-
cal vertex, six critical 1- and 2-handles, and one critical
tetrahedron remain after the cancellation, i.e., three pairs
of critical 1- and 2-handles remain uncancelled.
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