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Abstract. Research in DNA computing was initiated by Leonard Adle-
man in 1994 when he solved an instance of an NP-complete problem
solely by molecules. DNA code words arose in the attempt to avoid un-
wanted hybridizations of DNA strands for DNA based computations.
Given a set of constraints, generating a large set of DNA strands that sat-
isfy the constraints is an important problem in DNA computing. On the
other hand, motivated by the non-determinism of molecular reactions,
A. Ehrenfeucht and G. Rozenberg introduced forbidding and enforcing
systems (fe-systems) as a model of computation that defines classes of
languages based on two sets of constraints. We attempt to establish a
connection between these two areas of research in natural computing by
characterizing a variety of DNA codes that avoid certain types of cross
hybridizations by fe-systems. We show that one fe-system can generate
the entire class of DNA codes of a certain property, for example θ-k-
codes, and confirm some properties of DNA codes through fe-systems.
We generalize by fe-systems some known methods of generating good
DNA code words which have been tested experimentally.

Keywords: fe-systems, fe-families, Biomolecular computing, Watson-
Crick involution, Hybridization, DNA codes.

1 Introduction

In 1994, Adleman [1] solved an instance of an NP-problem by encoding infor-
mation into DNA strands and using these strands to perform the computation
by themselves. Since then, research on DNA computing has had a tremendous
growth. Problems are solved by encoding information on DNA strands. One of
the challenges is choosing the right set of strands for computational purposes,
as the strands may bind to each other in undesirable ways due to Watson-Crick
complementarity. This type of hybridization can occur during a polymerase chain
reaction, a self-assembly step, or in the extraction process. Several authors have
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addressed this issue and proposed various solutions [3, 6, 17, 18]. Generating a
large set of DNA code words is a difficult problem. Recently, in [8], a large set of
DNA code words was designed using DNA metric spaces and it was shown that
such a problem is NP-complete.

In [13], Kari et al. introduced a theoretical approach to the problem of de-
signing code words. Following this approach, a DNA code that avoids all kinds
of unwanted partial bindings was introduced in [14] and was called a θ-k-code
(see Figure 1). Note that for any word w over the alphabet ∆ = {A,C,G, T}
and for an antimorphic involution θ such that θ(A) = T , θ(C) = G and vice
versa, θ(w) denotes the Watson-Crick complement of the strand w.

( a )

( c )

( d ) (e )

( f ) ( g )

(b )

Fig. 1. Various cross hybridizations of molecules avoided by: (a): θ-k-code - one
molecule contains a subword of length k and the other its complement. For a suit-
able k, a θ-k-code also avoids cross bindings of type avoided by (b): θ-comma-free, (c):
θ-strict, (d): θ-intercode, (e): θ-infix, (f): θ-prefix, (g): θ-suffix code.

Motivated by the non-determinism in molecular reactions, A. Ehrenfeucht
and G. Rozenberg introduced forbidding-enforcing systems, fe-systems, in [4, 5]
as a model of computation that defines classes of languages. This model uses a
forbidding set to exclude combinations of subwords from the subwords of each
language in the family and uses an enforcing set to require certain words to be
in the language, provided some pre-specified sets of words are already contained
in the language. One fe-system consisting of a forbidding set and an enforcing
set defines a class of languages, fe-family. These classes were shown in [11] to be
completely different than Chomsky’s classes. On the other hand, fe-systems were
shown to be suitable for defining the solutions to combinatorial problems and
for modeling DNA molecules and splicing with an enzyme [5, 9, 12]. Fe-systems
models in membrane computing were introduced in [2] and [7] proposed modeling
self-assembly of graphs by fe-systems.

The purpose of this paper is to show that the theory of forbidding and enforc-
ing systems is very suitable for generating DNA codes and to initiate research at
the interplay of both areas. We use the fe-systems defined in [4, 5] to characterize
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the types of DNA codes presented in [13, 14, 16]. We show that one can generate
the entire family of DNA codes that avoid certain unwanted cross-hybridizations
by a single fe-system, as opposed to classical language theory where one gram-
mar (automaton) generates (accepts) only one language (DNA code). In the
process, we also confirm some properties of DNA codes, deriving them through
fe-systems. The definitions are recalled in Section 2 and various DNA codes
characterizations are presented in Section 3. In Section 4, as an illustration, we
present fe-systems that characterize DNA code words generated using methods
proposed in [14]. These code words were experimentally tested in [14] and were
shown to have no visible cross-hybridizations.

2 Basic Concepts and Definitions

An alphabet is denoted by Σ, the length of a word w over Σ by |w| and the
empty word by λ. The free monoid Σ∗ contains all words over Σ and the free
semigroup Σ+ = Σ∗ \ {λ}. For k ≥ 1, Σk = {w ∈ Σ∗ | |w| = k} and Σ6k =
{w ∈ Σ∗ | |w| ≤ k}. The set of all languages over Σ is P(Σ∗). For w ∈ Σ∗,
the set of subwords of w is Sub (w) and Sub k(w) = Sub (w)∩Σk. Extended to
languages, Sub (L) denotes all subwords of the language L.

2.1 DNA Involution Codes

We follow the definitions from [13, 14, 16, 15]. An involution θ : Σ → Σ of a set
Σ is a mapping such that θ2 equals the identity mapping, i.e. θ(θ(x)) = x, for
all x ∈ Σ. For words u, v ∈ Σ∗ and morphic θ we have that θ(uv) = θ(u)θ(v)
and for an antimorphic θ, θ(uv) = θ(v)θ(u).

Definition 1. Given an alphabet Σ, let θ : Σ∗ → Σ∗ be a morphic or an
antimorphic involution and X ⊆ Σ+. Then the set (language) X is called a:

1. θ-subword-k-m-code for some positive integers k and m if for all u ∈ Σk we
have Σ∗uΣiθ(u)Σ∗ ∩X = ∅ for all 1 ≤ i ≤ m.

2. θ-subword-k-code for some positive integer k if for all u ∈ Σk we have
Σ∗uΣiθ(u)Σ∗ ∩X = ∅ for all i ≥ 1.

3. θ-strict-code if X ∩ θ(X) = ∅.
4. θ-prefix-code if X ∩ θ(X)Σ+ = ∅.
5. θ-suffix-code if X ∩Σ+θ(X) = ∅.
6. θ-bifix-code if X is both a θ-prefix-code and a θ-suffix-code.
7. θ-intercode of index m for some integer m ≥ 1 if Xm+1 ∩Σ+θ(Xm)Σ+ = ∅.
8. θ-infix-code if Σ∗θ(X)Σ+ ∩X = ∅ and Σ+θ(X)Σ∗ ∩X = ∅.
9. θ-comma-free-code if X2 ∩Σ+θ(X)Σ+ = ∅.
10. θ-k-code for some integer k > 0 if Subk(X) ∩ Subk(θ(X)) = ∅.

A set X ⊆ Σ+ is said to be a θ-strict-P -code if X is both a θ-P -code and
a θ-strict-code, where P ∈ {prefix, suffix, infix, bifix, comma-free, intercode,
k-(code)}.
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Example 2. Let X = {aa, baa} be a language over the alphabet Σ = {a, b} and θ
be a morphic involution on Σ with θ(a) = b and θ(b) = a. Then θ(X) = {bb, abb}.
Note that X is a θ-infix-code since none of the subwords of X are in θ(X)
and X is a θ-comma-free-code since X2 = {a4, a2ba2, ba4, ba2ba2} and none of
the words in θ(X) appears as a subword of any word in X2. Also, note that
Sub 3(X) ∩ Sub 3(θ(X)) = ∅. Hence, X is a θ-3-code. The word baa = baθ(b)
and henceX is not a θ-subword-1-code but there is no word of the type uxvθ(x)w
in X with u,w ∈ Σ∗, v ∈ Σ+ and |x| = 2. Thus, X is a θ-subword-2-code.

2.2 Forbidding-Enforcing Systems

Similar to grammars and automata, forbidding-enforcing systems can be used as
a language defining tool. Unlike grammars and automata, they define languages
based on the principle that “everything that is not forbidden is allowed” as
opposed to “everything that is not allowed is forbidden”. In this paper, we use
the model of fe-systems introduced in [4, 5] where one fe-system defines a family
of languages. The relevant definitions are recalled below.

Definition 3. A forbidding set is a family of finite nonempty subsets of Σ+ for
some alphabet Σ; each element of a forbidding set is called a forbidder.

Given a forbidding set F and a language K: (i) for F ∈ F, we say that K
is consistent with the forbidder F , written K conF , if and only if F ̸⊆ Sub (K)
and (ii) we say that K is consistent with the forbidding set F, denoted K conF,
if and only if K conF for each F ∈ F.

The family of languages consistent with the forbidding set F is denoted by
L(F), i.e. L(F) = {K | K conF}. The class (family) of languages L(F) is an
f-family and is said to be defined by F.

If a language L ̸∈ L(F) then L is not consistent with F, denoted by LnconF.

Note that if K conF, every subset of K is also consistent with F [5]. Also,
F = ∅ if and only if L(F) = P(Σ∗).

Example 4. Let Σ = {a, b}. For the forbidding set F = {{ab, ba}, {aa, bb}} from
[5], the languages in L(F) are precisely the subsets of the languagesK1 = a∗b∪a∗,
K2 = ba∗ ∪ a∗, K3 = b∗a ∪ b∗, and K4 = ab∗ ∪ b∗.

Definition 5. An enforcing set is a family of ordered pairs (X,Y ) such that for
some alphabet Σ all X,Y ⊆ Σ+, X,Y are finite, and each Y ̸= ∅; each element
of an enforcing set is called an enforcer.

Given an enforcing set E over Σ and a language K: (i) for (X,Y ) ∈ E we
say that a language K satisfies the enforcer (X,Y ), written K sat (X,Y ), if and
only if X ⊆ K implies Y ∩K ̸= ∅ and (ii) we say that K satisfies the enforcing
set E, written K satE, if and only if K sat (X,Y ) for each (X,Y ) ∈ E.

The class (family) of all languages that satisfy the enforcing set E is denoted
by L(E), i.e. L(E) = {K | K satE}. The class of languages L(E) is an e-family
and is said to be defined by E.

If a language L ̸∈ L(E), then L does not satisfy E, denoted by LnsatE.
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For enforcers (∅, Y ), K∩Y ̸= ∅ for all K ∈ L(E). Assume that all (X,Y ) ∈ E

are non-trivial, i.e. X ∩ Y = ∅. Thus, L(E) = P(Σ∗) if and only if E = ∅.

Example 6. LetΣ = {a, b} and E = {(∅, {b}), ({b}, {b2}), . . . , ({bn}, {bn+1}), . . .}.
Then, E “enforces” b∗ in every language in L(E), i.e. L(E) = {K | b∗ ⊆ K}.

Definition 7. A forbidding-enforcing system (fe-system) over an alphabet Σ is
a construct (F,E), where F is a forbidding set and E is an enforcing set over Σ.
The class of languages L(F,E), the fe-family, defined by this fe-system consists of
all languages that are consistent with F and satisfy E, i.e L(F,E) = L(F)∩L(E).

Example 8. For Σ = {a, b}, F, K3, and K4 from Example 4 and E from Example
6, we have that L(F,E) = {K | K ⊆ K3,K4 and b∗ ⊆ K}.

Observe that L(∅,E) = L(E) for all E and L(F, ∅) = L(F) for all F. In this
respect, every f-family and every e-family can be regarded as an fe-family.

3 Characterizing Involution Codes with fe-Systems

One benefit of studying DNA codes with fe-systems is that one fe-system can
define an entire class of DNA codes L(F,E) as opposed to just one DNA code X
that has been the norm in constructing/studying DNA code words using classical
formal language theory.

3.1 Characterizations by f-Families

We begin with a finite forbidding set that defines the entire class of θ-subword-k-
m-codes, i.e. for given positive integers k and m one can construct a forbidding
set F such that any language L in the f-family L(F) is a θ-subword-k-m-code
and any θ-subword-k-m-code is in the f-family L(F).

For the rest of this paper, assume that the alphabet Σ is given and θ is
a morphic or an antimorphic involution on Σ extended to Σ∗, unless stated
otherwise. Also, to ease notation, by L ∈ L(F) (resp. L ∈ L(E), L ∈ L(F,E)) we
mean those L for which λ ̸∈ L and L ̸= ∅.

Proposition 9. Let k,m ≥ 1 be integers. For every u ∈ Σk construct Fu =
{{uwθ(u)} | w ∈ (Σ6m \ {λ})} and let F = ∪u∈ΣkFu. Then L is a θ-subword-
k-m-code if and only if L ∈ L(F).

Proof. Note that L is a θ-subword-k-m-code if and only if Σ∗uΣiθ(u)Σ∗∩L = ∅
for all 1 ≤ i ≤ m, which holds if and only if no word in L has a subword of the
kind uwθ(u), where u ∈ Σk and w ∈ (Σ6m \ {λ}), i.e. if and only if LconF for
every F ∈ F, i.e. if and only if L ∈ L(F). ⊓⊔

The next result presents a way to construct a forbidding set that defines the
entire class of θ-subword-k-codes.
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Proposition 10. Let k ≥ 1 be an integer. For every u ∈ Σk construct Fu =
{{uwθ(u)} | w ∈ Σ+} and let F = ∪u∈ΣkFu. Then L is a θ-subword-k-code if
and only if L ∈ L(F).

Proof. Observe that L is a θ-subword-k-code if and only if Σ∗uΣiθ(u)Σ∗∩L = ∅
for all u ∈ Σk and for all i ≥ 1, which holds if and only if no word in L has
a subword of the kind uwθ(u), where u ∈ Σk and w ∈ Σ+, i.e. if and only if
LconF for every forbidder F ∈ F, i.e. if and only if L ∈ L(F). ⊓⊔

Proposition 10 uses an infinite forbidding set. The next result uses a finite
forbidding set, but provides only a sufficient condition for θ-subword-k-codes.

Proposition 11. Let k ≥ 1 be an integer. Consider F = {{u, θ(u)} | u ∈ Σk}.
Then for every L ∈ L(F), L is a θ-subword-k-code.

Proof. Assume that L ∈ L(F). Then, {u, θ(u)} ̸⊆ Sub (L) for every u ∈ Σk.
Hence, for every x ∈ L and for every u ∈ Σk, x cannot contain both u and θ(u)
as subwords. Thus, Σ∗uΣiθ(u)Σ∗ ∩ L = ∅ for all u ∈ Σk and for all i ≥ 1, i.e.
L is a θ-subword-k-code. ⊓⊔

Note that the converse of the above proposition does not necessarily hold,
since a θ-subword-k-code X may have a word x with a subword u1u2v2 such that
u = u1u2 and θ(u) = v1v2 with u2 = v1 for some u ∈ Σk, i.e. u and θ(u) overlap
in x. Such X will not be consistent with the forbidding set F from Proposition
11 as illustrated in the next example.

Example 12. Consider Σ = {a, b} and a morphic θ with θ(a) = b and θ(b) =
a. Note that the set X = {aa, aba} is a θ-subword-2-code by Definition 1.
Construct the forbidding set F from Proposition 11 for k = 2, namely F =
{{aa, bb}, {ab, ba}}. Notice that the second forbidder {ab, ba} ⊆ Sub (X) since
both ab and ba are in the subwords of aba. Hence, X ̸∈ L(F).

Since the forbidding set of Example 4 is the same as F in Example 12, we
note that every nonempty subset of Ki for i = 1, . . . , 4 from Example 4, not
containing λ, is a θ-subword-2-code for the morphic θ from Example 12, but
L(F) does not contain all of the θ-subword-2-codes for this θ.

In the remainder of this section, the forbidding sets constructed from a given
X are finite when X is a finite code.

Proposition 13. Let X ⊂ Σ+ be given and let F = {{u} | u ∈ θ(X)}. Then X
is a θ-strict-infix-code if and only if X ∈ L(F).

Proof. Consider F = {{u} | u ∈ θ(X)}. Note that X is a θ-strict-infix-code if
and only if Σ∗θ(X)Σ∗ ∩X = ∅, which holds if and only if θ(X) ∩ Sub (X) = ∅,
if and only if F ̸⊆ Sub (X) for every F ∈ F if and only if X ∈ L(F). ⊓⊔

The next characterization follows directly from the definitions in Section 2.

Proposition 14. Let X ⊂ Σ+ be given and let Fu = {{ua} | a ∈ Σ} ∪ {{au} |
a ∈ Σ} and let F = ∪u∈θ(X)Fu. Then X is a θ-infix-code if and only if X ∈ L(F).
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Proof. Consider F as defined in the proposition. Assume X is a θ-infix-code.
Then, Σ∗θ(X)Σ+ ∩X = ∅ and Σ+θ(X)Σ∗ ∩X = ∅. This implies that u is not
a proper prefix and not a proper suffix of a word in X and u ̸∈ ( Sub (X) \X)
for every u ∈ θ(X), i.e. for every u ∈ θ(X), u ̸∈ Sub (X) unless u = x for some
x ∈ X. Hence, X conF for every F ∈ F. Therefore, X ∈ L(F). Conversely,
assume X ∈ L(F). Then, for every u ∈ θ(X) it holds that u ̸∈ Sub (X) unless
u = x for some x ∈ X. Therefore, X is a θ-infix-code. ⊓⊔

Proposition 15. Let X ⊂ Σ+ be given, m ≥ 1 be an integer and F = {{u} | u ∈
θ(Xm)}. Then X is a θ-strict-intercode of index m if and only if Xm+1 ∈ L(F).

Proof. Let F = {{u} | u ∈ θ(Xm)}. Note that X is a θ-strict-intercode of
index m if and only if Σ∗θ(Xm)Σ∗ ∩ Xm+1 = ∅, which holds if and only if
θ(Xm) ∩ Sub (Xm+1) = ∅, i.e. if and only if Xm+1 conF for every F ∈ F. ⊓⊔

Similarly, one can define a θ-intercode by a forbidding set.

Proposition 16. Let X ⊂ Σ+ be given, m ≥ 1 be an integer and for every
u ∈ θ(Xm) let Fu = {{aub} | a, b ∈ Σ} and let F = ∪u∈θ(Xm)Fu. Then X is a
θ-intercode of index m if and only if Xm+1 ∈ L(F).

Proof. Consider F as defined in the proposition. Assume X is a θ-intercode of in-
dexm. Then,Σ+θ(Xm)Σ+∩Xm+1 = ∅. This implies that aub ̸∈ Sub (Xm+1) for
every a, b ∈ Σ, where a and b are not necessarily distinct, and every u ∈ θ(Xm).
Hence, Xm+1 conF for every F ∈ F. Therefore, Xm+1 ∈ L(F). Conversely, as-
sume Xm+1 ∈ L(F). Then, for every u ∈ θ(Xm) and every a, b ∈ Σ it holds
that aub ̸∈ Sub (Xm+1). Therefore, Σ+θ(Xm)Σ+ ∩ Xm+1 = ∅. Hence, X is a
θ-intercode. ⊓⊔

Remark 17. Note that a θ-strict-intercode of index 1 is a θ-strict-comma-free-
code and a θ-intercode of index 1 is a θ-comma-free-code.

The corollaries below follow from Propositions 15 and 16 and the above
remark.

Corollary 18. Let X ⊂ Σ+ be given and let F = {{u} | u ∈ θ(X)}. Then X is
a θ-strict-comma-free-code if and only if X2 ∈ L(F).

Corollary 19. Let X ⊂ Σ+ be given and for every u ∈ θ(X) construct Fu =
{{aub} | a, b ∈ Σ} and let F = ∪u∈θ(X)Fu. Then X is a θ-comma-free-code if
and only if X2 ∈ L(F).

We present some θ-k-codes characterizations next. Note that the forbidding
set in the following proposition is finite, even if X is infinite.

Proposition 20. Let X ⊂ Σ+ and k ≥ 1 be given and let F = {{u} | u ∈
Sub kθ(X)}. Then X is a θ-k-code if and only if X ∈ L(F).
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Proof. By definition, X is a θ-k-code if and only if Sub k(X)∩ Sub k(θ(X)) = ∅,
which holds if and only if u ̸∈ Sub (X) for every u ∈ Sub kθ(X), i.e. if and only
if F ̸⊆ Sub (X) for every F ∈ F if and only if X ∈ L(F). ⊓⊔

Observe that if X is a θ-m-code for some fixed m ≥ 1, then X is a θ-k-code
for any k ≥ m. This fact is confirmed by the forbidding-enforcing theory, since if
one constructs Fk = {{u} | u ∈ Sub kθ(X)} and lets F = ∪k≥mFk, the resulting
forbidding set will not be subword incomparable and according to [4], it will be
equivalent to the forbidding set from Proposition 20 for k = m.

While Proposition 20 is a direct “restatement” of the definition for θ-k-codes
in terms of fe-systems, the following proposition presents a sufficient condition
for θ-k-codes that can be used for generating θ-k-codes with specific additional
restrictions on the subwords. It provides a forbidding set, which for a given k
defines a family of θ-k-codes.

Proposition 21. Given a finite alphabet Σ and a fixed k ≥ 1 let Σk = P ∪Q∪R
such that θ(P ) = Q and θ(x) = x for all x ∈ R and P , Q, and R are pairwise
disjoint. Let H = Q ∪ R and let F = {{u} | u ∈ H}. Then, for all L ∈ L(F), L
is a θ-k-code.

Proof. Assume L ∈ L(F). Suppose there exists v ∈ Subk(θ(L)) such that v ∈
Sub (L). Then, v ̸∈ H, since {u} ̸⊆ Sub (L) for every u ∈ H. Hence, v ∈
P . Therefore, θ(v) ∈ Q. Since v ∈ Sub k(θ(L)), there exists y ∈ L such that
v ∈ Sub (θ(y)). Thus, there exists x ∈ Sub (y) such that v = θ(x). Then,
θ(v) = θ(θ(x)) = x. Since θ(v) ∈ Q, it follows that {x} ∈ F and x ̸∈ Sub (L),
which contradicts our supposition that v ∈ Sub (θ(L)) and hence θ(v) ∈ Sub (L).
Thus, L is a θ-k-code. ⊓⊔

We conclude this subsection with a necessary and sufficient condition for
θ-k-codes. Observe that the forbidding set in the next proposition is finite.

Proposition 22. Let k ≥ 1 be an integer. Consider F = {{u, θ(u)} | u ∈ Σk}.
Then, L is a θ-k-code if and only if L ∈ L(F).

Proof. Let L be a θ-k-code and take an arbitrary forbidder F ∈ F. Then
F = {u, θ(u)} for some u ∈ Σk. Suppose {u, θ(u)} ⊆ Sub (L). Then u ∈ Sub (L)
implies θ(u) ∈ Sub (θ(L)). Hence, θ(u) ∈ Sub k(L) ∩ Sub k(θ(L)), which con-
tradicts the assumption that L is a θ-k-code. Therefore, {u, θ(u)} ̸⊆ Sub (L)
and L ∈ L(F). Conversely, assume L is not a θ-k-code. This implies that
there exists u ∈ Sub k(L) ∩ Sub k(θ(L)). Since u ∈ Sub k(θ(L)), there exists
v ∈ Sub k(L) such that u = θ(v). Then θ(u) = θ(θ(v)) = v ∈ Sub k(L), imply-
ing {u, θ(u)} ⊆ Sub (L). Hence, L ̸∈ L(F). ⊓⊔

Example 23. Let Σ = {a, b}, k = 2, and θ be a morphic involution that maps
a → b and b → a. Then F is precisely the forbidding set from Example 4 (and
from Example 12) and the θ-2-codes are precisely the subsets of the languages
Ki for i = 1, . . . , 4. If θ is antimorphic, F = {{aa, bb}, {ab}, {ba}} and every
θ-2-code is either a subset of a∗ or a subset of b∗. For k = 3 and morphic θ
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with a → b and b → a, F = {{aaa, bbb}, {aab, bba}, {aba, bab}, {baa, abb}} and
for antimorphic θ we have F = {{aaa, bbb}, {aab, abb}, {aba, bab}, {baa, bba}}.
Observe that the latter L(F) contains X from Example 30.

Notice that Propositions 22 and 11 confirm the fact that every θ-k-code is a
θ-subword-k-code through fe-systems.

3.2 Characterizations by e-Families

While the previous subsection showed that fe-systems with empty enforcing sets
are capable of characterizing DNA codes, this subsection focuses on DNA code
characterizations obtained by enforcing sets only. Recall that one can view en-
forcing sets as fe-systems with empty forbidding sets. We begin with a charac-
terization of θ-strict-codes.

Proposition 24. Let X ⊆ Σ+ and let z ∈ Σ+ such that z ̸∈ X. For each
w ∈ X construct Ew = {({w, u}, {z}) | u ∈ θ(X)} and let E = ∪w∈XEw. Then,
X is a θ-strict-code if and only if X ∈ L(E).

Proof. Assume that X is a θ-strict-code. Then, X ∩ θ(X) = ∅ implies that
{w, u} ̸⊆ X for every enforcer ({w, u}, {z}) ∈ E, since u ̸∈ X for all u ∈ θ(X).
Thus, X satisfies every enforcer in E trivially. Therefore, X ∈ L(E). Conversely,
assume that X is not a θ-strict-code. This implies that X ∩ θ(X) ̸= ∅. Hence,
there exists y ∈ X ∩ θ(X). Thus, there exists an enforcer ({y}, {z}) ∈ E with
y ∈ X and z ̸∈ X. It follows that X nsat ({y}, {z}). Hence, X ̸∈ L(E). ⊓⊔

Proposition 25. Let X ⊆ Σ+ and let z ∈ Σ+ such that z ̸∈ X. For each w ∈ X
construct E′

w = {({w, ut}, {z}) | u ∈ θ(X), t ∈ Σ+} and E′′
w = {({w, su}, {z}) |

u ∈ θ(X), s ∈ Σ+}. Let E′ = ∪w∈XE′
w, E

′′ = ∪w∈XE′′
w, and let E = E′ ∪ E′′.

Then, the following statements hold.

1. X is a θ-prefix-code if and only if X ∈ L(E′).
2. X is a θ-suffix-code if and only if X ∈ L(E′′).
3. X is a θ-bifix-code if and only if X ∈ L(E).

Proof. 1. Assume that X is a θ-prefix-code. Then, X ∩ θ(X)Σ+ = ∅ implies
that {w, ut} ̸⊆ X for every enforcer ({w, u}, {z}) ∈ E′, since ut ̸∈ X for all
u ∈ θ(X) and all t ∈ Σ+. Thus, X satisfies every enforcer in E′ trivially.
Therefore, X ∈ L(E′). Conversely, assume that X is not a θ-prefix-code.
This implies that X ∩ θ(X)Σ+ ̸= ∅. Hence, there exists y ∈ X ∩ θ(X)Σ+.
Thus, there exists an enforcer ({y}, {z}) ∈ E′ with y ∈ X and z ̸∈ X. It
follows that X nsat ({y}, {z}). Hence, X ̸∈ L(E′).

2. Similar to 1.
3. Follows from 1. and 2. above and the property for enforcing sets L(E′∪E′′) =

L(E′) ∩ (E′′). ⊓⊔

The following result can be proved in a similar way.
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Proposition 26. Let X ⊆ Σ+ and let z ∈ Σ+ such that z ̸∈ X. For each w ∈ X
construct E′

w = {({w, ut}, {z}) | u ∈ θ(X), t ∈ Σ+}, E′′
w = {({w, su}, {z}) |

u ∈ θ(X), s ∈ Σ+}, and E′′′
w = {({w, puq}, {z}) | u ∈ θ(X), p, q ∈ Σ+}. Let

E′ = ∪w∈XE′
w, E

′′ = ∪w∈XE′′
w, E

′′′ = ∪w∈XE′′′
w and let Ẽ = E′ ∪ E′′ ∪ E′′′. Then,

X is a θ-infix-code if and only if X ∈ L(Ẽ).

Since, E ⊆ Ẽ for E and Ẽ from Propositions 25 and 26 respectively, and since
E ⊆ Ẽ implies L(Ẽ) ⊆ L(E), the forbidding-enforcing theory confirms the known
fact that every θ-infix-code is a θ-bifix-code.

Similarly, we obtain the following characterization.

Proposition 27. Let X ⊆ Σ+ and let m ≥ 1 be an integer. Let z ∈ Σ+ such
that z ̸∈ Xm+1. For each w ∈ Xm+1 construct Ew = {({w, sut}, {z}) | u ∈
θ(Xm), s, t ∈ Σ+} and let E = ∪w∈Xm+1Ew, Then, X is a θ-intercode of index
m if and only if Xm+1 ∈ L(E).

The following corollary is a consequence of Proposition 27 and Remark 17.

Corollary 28. Let X ⊆ Σ+ and z ∈ Σ+ such that z ̸∈ X2. For each w ∈ X2

construct Ew = {({w, sut}, {z}) | u ∈ θ(X), s, t ∈ Σ+} and let E = ∪w∈X2Ew.
Then, X is a θ-comma-free-code if and only if X2 ∈ L(E).

In the previous subsection, some ways to present θ-k-codes as f-families were
proposed. We conclude this section with characterizing θ-k-codes by enforcing
sets only and present an example. Note that the enforcing set in the next propo-
sition is finite, even if X is infinite.

Proposition 29. Let X ⊆ Σ+ and k > 0 be an integer. Let z ∈ Σ+ such that
z ̸∈ Sub k(X). For each w ∈ Sub k(X) construct Ew = {({w, u}, {z}) | u ∈
Sub k(θ(X))} and let E = ∪w∈ Sub k(X)Ew. Then, X is a θ-k-code if and only if
Sub k(X) ∈ L(E).

Proof. Assume X is a θ-k-code. Then, Sub k(X)∩ Sub k(θ(X)) = ∅ implies that
for every u ∈ Sub k(θ(X)), u ̸∈ Sub k(X). Hence, for every enforcer {w, u} ∈ E

we have that {w, u} ̸⊆ Sub k(X) and thus Sub k(X) satisfies every enforcer
trivially. Therefore, Sub k(X) ∈ L(E). Conversely, assume that X is not a θ-k-
code. Then, there exists y ∈ Sub k(X) ∩ Sub k(θ(X)), which implies that there
exists an enforcer ({y}, {z}) ∈ E with {y} ⊆ Sub k(X) and z ̸∈ Sub k(X). Since
Sub k(X) does not satisfy ({y}, {z}), we have that Sub k(X) ̸∈ L(E). ⊓⊔

Example 30. ConsiderX = {aab, baab} over the alphabetΣ = {a, b} and let θ be
an antimorphic involution that maps a → b and b → a. Then θ(X) = {abb, abba}
and it is clear that Sub 3(X)∩ Sub 3(θ(X)) = ∅. Hence, X is a θ-3-code by Def-
inition 1. Since Sub 3(X) = {aab, baa}, we construct Eaab = {({aab, abb}, {z}),
({aab, bba}, {z})} and Ebaa = {({baa, abb}, {z}), ({baa, bba}, {z})} where z ̸∈
Sub 3(X). One can verify that for E = Eaab ∪ Ebaa, Sub 3(X) ∈ L(E).
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4 Generating Good Codes by fe-Systems

In the previous section, we characterized some DNA codes through forbidding
sets only and/or through enforcing sets only. In this section, we show how an
fe-system with a nonempty forbidding set and a nonempty enforcing set can
generate θ-k-codes. In contrast to the very special kind of enforcers used in the
previous section, where the strictly enforced word z was chosen not to belong to
the given set, we use a more general type of enforcers to emphasize the compu-
tational, rather than definitional capabilities of fe-systems.

In [14], the authors introduced some methods to generate DNA code words
X such that X+ has the same property. These theoretically generated codes
were also tested experimentally in [14] and were shown to have no visible cross-
hybridizations. In this section, we construct fe-systems that generalize the meth-
ods in [14]. As an illustration, the sets of DNA code words X,X+ generated in
Proposition 4.9 in [14] are in the fe-family. Similar fe-systems constructions can
be given for various other methods described in [14].

Proposition 31. Let Σ be an alphabet and θ a morphic or an antimorphic
involution such that θ(a) ̸= a for each symbol a ∈ Σ. Let b, c ∈ Σ such that
θ(b) = c. Consider the forbidding set F = {{c}}∪{{u} | u ∈ (Σ \{b, c})k}. Then
L ∈ L(F) implies L is a θ-k code.

Proof. Assume L is not a θ-k-code. Then there exists u ∈ Σk such that u ∈
Sub k(L) ∩ Sub k(θ(L)). If u contains the symbol c, then LnconF, so we may
assume that u ∈ (Σ \ {c})k. Since u ∈ Sub (θ(L)) there exists v ∈ Sub (L) such
that u = θ(v). This implies that θ(u) = θ(θ(v) = v ∈ Sub (L). So, both u and
θ(u) are in the subwords of L. If u contains the symbol b, then θ(u) contains
c, which implies that LnconF. Otherwise, u ∈ (Σ \ {b, c})k and thus {u} ∈ F,
which also implies LnconF. In all cases, L ̸∈ L(F). ⊓⊔

Note that the above condition is sufficient for θ-k-codes but not necessary,
i.e. there exist θ-k-codes that are not in L(F), as shown in the next example.

Example 32. Let b, c, Σ and θ be as in Proposition 31. Let Y = (Σ \{b, c})k and
let Y = P ∪Q∪R where for all x ∈ R, θ(x) = x, and for all x ∈ P , θ(x) ∈ Q and
vice versa with P , Q, and R pairwise disjoint. Then for Z = P ∪{c+}, Z /∈ L(F)
since both c, u ∈ Sub (Z) for u ∈ P ⊆ (Σ \{b, c}k). However, one can verify that
Z is indeed a θ-k-code.

Given ∆ = {A,C, T,G}, let θ be a morphic or an antimorphic involution.
In particular, θ can be the Watson-Crick complementarity such that θ(A) = T ,
θ(T ) = A, θ(C) = G, and θ(G) = C, where θ is antimorphic. We obtain the
following consequence of Proposition 31.

Corollary 33. Let the forbidding set F = {{G}} ∪ {{u} | u ∈ (∆ \ {G,C})k}
be given. Then L ∈ L(F) implies L is a θ-k code.
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Corollary 33 generalizes the experiment performed in [14] in that the forbid-
der {G} models the fact that only three types of nucleotides were used in the
sequence design and the rest of the forbidders ensure that every k consecutive
nucleotides contain a C. It imposes less restrictions on the set of strands com-
pared to the stricter requirements proposed in Proposition 4.9 in [14]. Note that
X,X+ from Proposition 4.9 in [14] are in the above L(F), but there is L ∈ L(F),
such that L+ ̸∈ L(F). Hence, the following stronger condition.

Proposition 34. Let Σ be an alphabet and θ a morphic or an antimorphic
involution such that θ(a) ̸= a for each symbol a ∈ Σ. Let b, c ∈ Σ such that θ(b) =
c and k ≥ 2. Consider the forbidding set F = {{c}}∪{{u} | u ∈ (Σ\{b, c})k} and
the enforcing set E = (∅, {ub | u ∈ (Σ \ {c})k−1}) ∪ {({u, v}, {uv}) | u, v ∈ Σ∗}.
If L ∈ L(F,E) then L is a θ-k-code. Furthermore, if L ∈ L(F,E) then L = L+.

Proof. If L is not a θ-k-code, then by Proposition 31, L ̸∈ L(F) and hence
L ̸∈ L(F,E). Assume that L ∈ L(F,E). Then LsatE and hence if any two words
u and v are in L, their concatenation uv is also in L, which is the definition of
L+. Consequently, L = L+. ⊓⊔

Corollary 35. Let the alphabet be ∆, F = {{G}} ∪ {{u} | u ∈ {A, T}k}, and
E = (∅, {uC | u ∈ {A, T,C}k−1}) ∪ {({u, v}, {uv}) | u, v ∈ ∆∗}. Then, L ∈
L(F,E) implies that L is a θ-k-code. Furthermore, if L ∈ L(F,E) then L = L+.

Fe-systems can be used as a definitional tool or viewed as a one-step com-
putation, but they can also be used as a computational tool which models the
evolution of a molecular system. The Γ -tree presented in [5] is based on the idea
that one can start with smaller sets of strands and “build” larger sets by apply-
ing enforcers in such a way that the resulting sets comply with the forbidden
conditions.

In [14], 10 θ-5-codes of length 20 were selected from X (Prop. 4.9) and were
tested experimentally. It was shown that no duplexes were detected when all 10
θ-5-codes were annealed and also no cross-hybridizations were observed.

Corollary 35 generalizes this experiment and can be used for a Γ -tree com-
putation as follows. Fix an integer k ≥ 1. Let S = Y , where (∅, Y ) is the first
enforcer of E. Input S. Observe that S conF. Apply all applicable enforcers from
E (denote them by E1), i.e. the enforcers of the kind (X,Y ) with X ⊆ S. Observe
that S sat (∅, S). The rest of the applicable enforcers ensure that any two strands
from S can now anneal. The resulting set of strands S1 contains all the strands
from S and from S2 and S1 ∈ L(F,E1). In the next step, apply all applicable
enforcers to S1 (denote them by E2). Apply these enforcers in one step again,
i.e. allow all possible annealing of strands from S and S2 to occur. The resulting
set S2 contains all the strands from S, S2, S3, and S4, i.e. S2 = S ∪S2∪S3∪S4

and S2 ∈ L(F,E2). The process can be applied as many steps as desired, e.g.
until sequences of a desired length have been generated. After the ith step, the
resulting set Si is in the fe-family L(F,Ei) and Si is a θ-k-code. The process can
terminate at any step n by discarding all enforcers that are not applicable up



Generating DNA Code Words by fe-Systems 13

to step n to obtain an enforcing set En. We observe that Sn ∈ L(F,En), Sn is a
θ-k-code and the fe-system (F,En) is finite for any n ≥ 1.

Note that in the experiment performed in [14] the input S consisted of 10
θ-5-codes of length 20. The above algorithm can be modified by replacing the
first enforcer by (∅, S) and continuing until a desired set of strands has been
generated, i.e. a predetermined length of strands has been reached.

5 Concluding Remarks

Since forbidding-enforcing systems impose restrictions on the subwords and
words of a language, they can be used to model the restrictions imposed by
unwanted hybridizations and thus, provide a natural framework to study DNA
codes. This paper investigated ways to generate DNA codes using fe-systems
that define classes of languages (classes of DNA codes). We showed that one
fe-system can define an entire class of codes, for example θ-k-codes for a given
k, as opposed to just one language (code) generated by a grammar or accepted
by an automaton. We see this work as the beginning of research connecting the
two areas. Using fe-systems, we confirmed some known properties of DNA codes,
which shows a potential for discovering new properties of these codes through
fe-systems. DNA codes can also be studied through other variants of fe-systems,
such as the single-language fe-system model as defined in [9]. Using the connec-
tion between a family of languages defined by a forbidding set as in [5] and a
set of words defined by the same forbidding set as described in [9, 10] and the
results in this paper, one can generate all words (strands) complying with a
certain type of codes, any subset of which will be a desired code. Computation
using fe-systems was described through evolving along the Γ -tree introduced in
[5]. Defining Γ -tree computations that generate specific DNA codes can have
applications in laboratory experiments.

On the other hand, applying fe-systems to DNA codes may enrich the the-
ory of forbidding and enforcing by suggesting new directions in investigating
proposed fe-systems, as well as, a need for defining and studying new fe-system
models. Different variants of fe-systems defining languages, words, or graphs
were shown to be capable of defining solutions to NP-complete problems [5, 9,
12]. Since laboratory experiments in DNA computing can be modeled by lan-
guages and graphs, including DNA codes in the set of structures defined by
fe-systems adds to the development of the theory of fe-systems as a natural
framework to study molecular computation.
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