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Abstract

The dominating set problem has many practical applications but is
well-known to be NP-hard. Therefore, there is a need for efficient ap-
proximation algorithms, especially in applications such as ad hoc wireless
networks. Most distributed algorithms proposed in the literature assume
that each node has knowledge of the network structure. We propose a
distributed approximation algorithm that uses two rounds of communi-
cation, and where each node has only local information, both in terms
of network structure and dominating set assignment. First, each node
calculates a local centrality measure to determine whether it is part of
the dominating set D. The second round guarantees D is a dominating
set by adding any non-dominated nodes. We compare several centrality
measures and show that the Shapley value, introduced in game theory, is
theoretically motivated and performs well in practice on several synthetic
and real-world networks.
Keywords – Network, Dominating, Approximation, Shapley.
MSC – 05C69, 05C85 .

1 Introduction

A dominating set in a network is a subset of nodes so that every node is either
in the dominating set or has a neighbor in the set. Dominating sets and their
variations have many applications [21, 23, 37]. Often, the objective is to find a
dominating set of minimum size.

Deciding whether or not a graph has a dominating set of size k is NP-
complete [16]. The current fastest exact algorithm for identifying a minimum
dominating set was introduced in 2011 by Van Rooij and Bodlaender [33] and
runs in O(1.4969n) time. Certain classes of graphs admit polynomial-time ap-
proximation schemes for the minimum dominating set problem. One example
of such a class is unit disk graphs. This class includes random geometric graphs,
as well as many types of ad hoc wireless networks [9, 18, 27]. Instead of iden-
tifying a dominating set globally, there are also distributed algorithms where
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decisions are made at the level of individual nodes with limited rounds of com-
munications [6, 13, 17, 19, 22, 35]. In most of these distributed algorithms,
it is assumed that each node has full global information regarding the struc-
ture of the network, but only local information regarding the dominating set
assignment. In some applications, nodes may have none or limited global in-
formation. A pertinent example of such an application is ad-hoc and wireless
sensor networks [15, 20, 31, 36].

The Space Communication and Navigation (SCaN) program office manages
NASA’s space communication activities. One of their goals is to understand
satellite communication, including routing, radio technology, and network mod-
eling. In the future of space science, autonomous robotic missions to other
planets will be a primary means for humans to explore our solar system. In
particular, satellite swarm missions akin to HelioSwarm have the opportunity
to offer us great insight into the nature of other planets [29]. The power of
satellite swarm missions comes from the wide variety of different roles that small
satellites can serve. However, to enable interplanetary satellite swarm missions,
it will be essential that satellites can autonomously organize and optimize the
variety of roles available to the swarm.

One motivation for this paper comes from this consideration. Two general
roles that satellites fall into are communications satellites and data collection
satellites. Future swarms may have the flexibility to switch between these roles
as the needs of the swarm demand. To enable the most efficient distribution of
communications and data collection satellites, each satellite needs to be able to
detect and adapt to the needs of the network autonomously. Communications
satellites should form a dominating set over the swarm so that each data collector
has the capacity to collate and transmit their data, but we also want to minimize
the number of communications satellites so as to maximize the amount of data
the swarm can collect.

Finding a minimum dominating set in these types of applications is often
not feasible, because there may not be a central processor with access to the
full network structure. Instead, the objective is to find an approximately mini-
mum dominating set in a distributed manner where nodes can access only local
information in the network.

Let G(V,E) be a simple, undirected graph on n nodes, and let γ(G) be the
domination number of G; the cardinality of a minimum dominating set. One
of the most fundamental results in the theory of dominating sets is an upper
bound in terms of the minimum degree δ(G) of G:

γ(G) ≤ 1 + ln(1 + δ(G))

1 + δ(G)
n. (1)

This result was proved independently by [4, 5, 24, 28]. The proof given in [4] has
become a standard example of the power of the probabilistic method. It gives
a simple, two-step probabilistic algorithm that yields a dominating set whose
cardinality is in expectation of the upper bound in Inequality 1. The algorithm
works as follows. In the first round, each vertex is assigned to a set X with a
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fixed probability p, independently of other vertices. In the second round, each
vertex not dominated by X is added to a set Y . The output is an approximately
minimum dominating set X ∪ Y . This algorithm is both fast, as it is linear in
the size of the graph, and highly local, as decisions are made at the vertex level
with communication only to immediate neighbors.

Wu and Li [35], proposed a similar algorithm with a deterministic first step.
It uses the local clustering coefficient to select a dominating set [34]. This
algorithm assigns a node v to the dominating set if it has a clustering coefficient
less than 1. In this case, a connected dominating set is guaranteed, and there
is no need for a second round.

Inspired by this style of algorithm, we propose an algorithm for generating
dominating sets with the help of local centrality measures. Our algorithm is
not guaranteed to generate a minimum dominating set, but we show that it
performs well in practice in finding small dominating sets. In the first step,
the algorithm selects vertices based on a centrality measure meeting a certain
threshold. In the second step, more vertices are added as needed to guarantee
a dominating set.

We compare several different centrality measures on synthetic and real-world
networks. The best-performing measure in our analysis is the Shapley value,
introduced in game theory [30]. It is used in various contexts to measure the
importance of an actor in game theory [7, 8, 26, 32]. There are various definitions
of the Shapley value in the literature. Here we use the definition from [8], which
defines the Shapley value of a node as the sum of the reciprocals of the degrees
of its neighbors. (These authors then subtract 1 from each value, which we will
not do.)

In Section 2, we define the two-step algorithm and a few centrality mea-
sures that appear to effectively select small dominating sets. We compare their
performance in the two-step algorithm on various synthetic and real-world net-
works in Section 3 and 4, respectively. Section 5 provides counterexamples to
a few conjectures about the two-step algorithm that we developed from the
simulations. Lastly, in Section 6, we discuss a few natural future directions.

2 Dominating set algorithms using thresholds

In Section 2.1 we outline the two-step algorithm explicitly. In Section 2.2,
we define the centrality measures considered in this study with a few basic
observations that motivate their use in this context.

2.1 The two-step algorithm

Let c(v) be a locally computed node centrality measure on the node set of a
network V (G), and τ ≥ 0 a threshold constant. The two-step algorithm has
two rounds: the first round selects all nodes v such that c(v) > τ , and the
second round selects all nodes v such that neither v nor any of its neighbors
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were selected in the first round. The second step ensures that the final set of
selected nodes forms a dominating set in G. Let N(v) = {u ∈ V |(u, v) ∈ E(G)}.

Two-step Algorithm

1. Let X be the set of nodes v with c(v) > τ .

2. Let Y be the set of nodes v such that (N(v) ∪ {v}) ∩X = ∅.

3. Let D = X ∪ Y .

This algorithm can be executed in a distributed manner. To perform the
first step, each node sends the necessary information to its neighbors so that
each of them can calculate c(v). Then, each node communicates to its neighbors
whether they are in the set and carries out the second step. All of the measures
we consider in Section 2.2 can be computed using one round of communication
with the immediate neighborhood of each node, supposing each node knows
its degree. However, local or not, any centrality measure can be used in the
algorithm. If the algorithm is implemented in a distributed manner and a local
centrality measure is used, it runs in timeO(∆(G)), where ∆(G) is the maximum
degree of the network. In the application of ad-hoc wireless networks, this often
implies sublinear or even constant run time.

This algorithm performs best when X is close to a dominating set so that Y
is small. Thus, the goal of the measure c(v) is to capture nodes in X likely to
appear in a minimum dominating set. In Section 2.2, we define a few centrality
measures of interest. We compare their performance in the two-step algorithm
on various synthetic and real-world networks in Section 3 and 4, respectively.

2.2 Centrality measures

Since we want our two-step algorithm to be local, we focus on centrality mea-
sures that can be determined locally. Specifically, we consider centrality mea-
sures that depend only on the immediate neighborhood of a node.

Uniform random measure (URM): Alon investigates which threshold
minimizes the expected size of the set constructed in the two-step algorithm
and gives an upper bound on the domination number [3]. Refer to Section 1 for
more information.

Clustering coefficient (ICC): In [35], Li and Wu show that the collection
of all nodes with two non-adjacent neighbors is a connected dominating set.
This is quantified by finding the proportion of non-adjacent neighbors, known
as the clustering coefficient [34] of a node v

CC(v) =
tv(
kv
2

) =
2tv

kv(kv − 1)
.

Here, tv is the number of triangles that node v is a part of, and kv is the degree
of node v.
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Based on simulated data, we suspect that the nodes representative of stronger
dominating set candidates tend to have lower values of CC(v). For this reason,
we let

ICC(v) = 1− CC(v) =

(
kv
2

)
− tv(
kv
2

) .

It is worth noting that ICC is not a new centrality measure but rather our
adjustment of the clustering coefficient that allows for more convenient compar-
isons with the other centrality measures, as they all tend to correlate positively
with the likelihood of appearing in minimum dominating sets.

Using the language of our paper, Li and Wu show that the first step of two-
step algorithms constructs a connected dominating set with measure ICC and
a threshold of 0.

Relative neighbor degree (RND): Ai, Li, Su, Jiang, and Xiong define

the neighbor-degree centrality of v as ND(v) =
∑

u∈N(v) ku

ki
[1]. We propose the

relative neighbor-degree centrality of v as

RND(v) =
kv

ND(v)
=

k2v∑
u∈N(v) ku

which measures how the average degree of nodes in N(v) compares to the degree
of v itself. If a node v has a relative neighbor degree of 1, then the average degree
of the neighbors of v equals the degree of v. If v has a relative neighbor degree
larger than 1, then v makes for a good dominating set candidate as its degree
is larger than its neighbor’s degree on average.

Shapley value (SV): The Shapley value was originally proposed in [30],
but was not introduce in network theory until later. Bozzo, Franceschet, and
Rinaldi describe the Shapley value of a node v in a network as the sum of the
reciprocals of the neighbors’ degrees,

SV (v) =
∑

u∈N(v)

1

deg(u)
[8, 30].

A node with a high Shapley value is likely adjacent to many low-degree nodes.
For the remainder of the paper, we compare all four measures and specifically

focus on how SV and RND, as they seem to perform best in this setting. From
some simple analysis, these two measures are related. For instance, Proposition
2.1 shows that the number of nodes selected in the first round of the two-step
algorithm with SV is always greater than that with RND.

Proposition 2.1. For node v in a network N , if RND(v) ≥ τ , then SV(v) ≥ τ .

Proof. Suppose that RND(v) ≥ τ . Then the average degree of a node in Nv is
less than kv/τ . By Jensen’s inequality, the average of the set {1/ku|u ∈ Nv} is
at least τ/kv. Hence, SV(v) =

∑
u∈Nv

1/ku ≥ kv τ
kv

= τ .

We give the expected value of SV in Proposition 2.2 below. This proposition
shows that even though SV is a locally computed measure, we know how each
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node will compare to the average without knowing anything about the network’s
structure. The expected value of RND is not as easily described.

Proposition 2.2. Let G = (V,E) graph. The expected Shapley value of a node
v ∈ V is 1.

Proof. Let A be the adjacency matrix of a network N = (V,E) with n = |V |.
Let M be the stochastic matrix with Mij =

Aij

kj
and 1 be the n-dimensional

vector with 1 in each entry. Notice that (M ·1)i = SVi for each i ∈ V . Since the
stochastic matrix preserves the average of vectors, then the expected Shapley
value is 1.

From Proposition 2.2, τ = 1 is a natural choice of threshold if we use SV in
our two-step algorithm. To round out this section, we give additional evidence
suggesting that τ = 1 is a reasonable choice of threshold in a vacuum.

Observation 2.3. If deg(v) = 1, then v is adjacent to a node u with SV(u) ≥ 1.

Observation 2.4. If deg(v) ≥ deg(u) for all u ∈ N(v), then RND(v) ≥ 1.

According to Observation 2.3, a threshold of τ = 1 will, among others, select
all nodes adjacent to degree 1 nodes in the first round of the algorithm. We
will see in Section 3 and 5, other thresholds better find minimal dominating sets
using the two-step algorithm.

3 Simulated data

We test our algorithm on simulated graphs generated from three random graph
families. We generate 100 networks for each family with 100 nodes and an
expected degree of 10. Below we describe the families and present the compu-
tational results.

Erdős-Rényi Model [14] In Figure 1, we compare the average size of a
dominating set created by the two-step algorithm using a variety of thresholds
over instances of Erdős-Rényi graphs. We sample each graph using 100 nodes
and a probability p = 0.1.

Random Geometric Graphs [12] In Figure 2, we compare the size of the
dominating set found by the two-step algorithm with different threshold values
in random geometric graphs on the unit square with 100 nodes and a radius
r = 0.178. The motivation for using this radius is that the average degree
100(0.178)2 is about 10, consistent across the other random graph families.

Chung-Lu Model [2, 10, 11] We use the Chung-Lu model to sample graphs
with a longer-tailed degree distribution and create the degree sequence using
a negative binomial degree distribution. Figure 3 compares the size of the
dominating set for each threshold on 100 different graphs sampled using the
Chung-Lu model. We create the degree sequence using the negative binomial
distribution with n = 1 and p = 0.1.
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In each of Figures 1, 2, and 3, SV and RND construct the smallest domi-
nating sets across all thresholds, with SV slightly outperforming RND. Notice
that the minimal dominating set in each family typically occurs at a threshold
greater than 1 rather than precisely at 1. Because SV generally performed best,
we focus on the Shapley value in Section 4.
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Figure 1: Erdős-Rényi Model with 100 nodes and probability 0.1.
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Figure 2: A comparison of the centrality measures in the local domination
algorithm for random geometric graphs G(100, 0.178).
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Figure 3: Chung-Lu model with 100 nodes and a degree distribution sampled
from a negative binomial distribution.

4 Real-world data

We test the two-step algorithm using the Shapley value on two real-world net-
works: the Iridium satellite network and the European Natural Gas Pipeline
network. We first show how the algorithm performs with τ = 1. In the case of
the Iridium network, we see a case where choosing a different threshold offers
us a smaller dominating set.

4.1 Iridium Satellite Network

The Iridium satellites form a network in Low-Earth Orbit. Figure 4a indicates
which nodes are selected in the two-step algorithm (in pink) with the Shapley
value and threshold τ = 1. Figure 4b shows the dominating set chosen by the
two-step algorithm with the Shapley value when τ = 1.2.

4.2 European Natural Gas Pipeline Network

The International Energy Agency (IEA) data, analysis, and policy recommenda-
tions have collected data from 31 participating countries to create the European
natural gas network (ENGN). We use the Shapley value in the two-step algo-
rithm to find a dominating set. In Figure 5, the nodes colored pink are selected
by the two-step algorithm with SV centrality measure and a threshold of τ = 1.

Figure 6 is a subgraph of the ENGN where the Shapley value scales each
node. This visual represents how the Shapley value can vary quite a bit from
node to node.
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(a) τ = 1 (b) τ = 1.2

Figure 4: Comparing thresholds in the two-step algorithm with SV centrality
measure on an instance of the Iridium satellite network. The color pink indicates
a node in the dominating set.

Figure 5: European Natural Gas Pipeline Network with dominating set.
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Figure 6: Subgraph of the European Natural Gas Pipeline Network. Each node
size is scaled to its Shapley value.

5 Oddities

This section presents a set of counterexamples to natural conjectures regarding
the two-step algorithm with the SV centrality measure. These counterexam-
ples are enlightening, revealing exciting relationships between the measures we
examined here and some general oddities surrounding the two-step algorithm.

With a threshold in the first filtering for the two-step algorithm, much of
our questioning centered on choosing the best threshold. Inspired by Wu and
Li [35], we initially sought a universal threshold for constructing a dominating
set. If there were such a threshold for SV or RND, we could reduce our two-step
algorithm to just one step: compute the measure and determine whether or not
you are in the dominating set. If the threshold is 0, only one step is necessary,
but perhaps a small non-zero threshold will also guarantee a dominating set in
one step.

It turns out that there is no such non-zero threshold, but our construction
to show this is unwieldy and unlikely to appear in graphs with relatively small
numbers of nodes. We present this construction in the proof of the following
proposition.

Proposition 5.1. Given a threshold τ > 0, let Sτ be the set of nodes such that
SV(v) > τ . There exists a graph G such that Sτ is not a dominating set of G.

Proof. We construct a graph with node a that satisfies the following properties:

1. For node a, SV(a) < τ .

2. For all nodes b ∈ N(a), SV(b) < τ .

Given τ > 0, there exists some N1 ∈ N such that 1
N1

< τ . So, we can

construct a set of N1 nodes {bi}N1

i=1 such that each bi is adjacent to a. Thus,

deg(a) = N1, and N(a) = {bi}N1

i=1.
Since N1, τ > 0, there exists N2 ∈ N such that N2 > N1

τ . For each bi,

construct N2 − 1 nodes {ci,j}N2−1
j=1 such that each is adjacent to bi. Thus,

10



deg(bi) = N2, and N(bi) = {a} ∪ {ci,j}N2−1
j=1 for each i. Then, by construction,

SV(a) = N1

N2
< τ .

Since 1
N1

< τ , τ − 1
N1

> 0, and since N2 ∈ N, N2 − 1 ≥ 0. Thus, there

exists N3 ∈ N such that N3 >
N2−1
τ− 1

N1

. So, for each ci,j , construct N3 − 1 nodes

{di,j,k}N3−1
k=1 such that each is adjacent to ci,j . Thus, deg(ci,j) = N3 for each j.

So, by construction, for each bi,

SV(bi) =
1

deg(a)
+

N2−1∑
j=1

1

deg(ci,j)
=

1

N1
+
N2 − 1

N3
< τ.

Thus, any graph containing this construction as a subgraph would satisfy the
conditions above.

From the construction in Proposition 5.1, and the relationship between RND
and SV given in Proposition 2.1, we get the following result.

Corollary 5.2. Given a threshold τ > 0, let Rτ be the set of nodes such that
RND(v) > τ . There exists a graph G such that Rτ is not a dominating set of
G.

The choice of threshold then depends on the graph structure we are ex-
amining. However, in the plots we generated, the graphs appeared to have a
consistent shape, including a single local minimum. For the minimum to be
unique, one condition would be that for any three thresholds τ < σ < ρ, one
could never see f(τ) < f(σ) > f(ρ).

Unfortunately, this is not true in general. Figure 7 depicts one counterex-
ample of this idea. In particular, when we use SV with the two-step algorithm
at three different thresholds (5/6, 1, and 11/6), the size of the dominating set
generated goes from 19 to 20 and back to 19.

We conclude our catalog of oddities by focusing on the threshold of 1. Thanks
to Proposition 2.2, we know that 1 holds a special place concerning the SV and
RND values.

However, returning to the data represented in Figures 2,3, and 1, there was
one further counterexample to consider. When we set the threshold at 1, the
dominating set generated with RND was generally larger than the dominating
set developed with SV. However, Figure 8 shows an example where the number
of nodes selected in the two-step algorithm is smaller in SV (Figure 8a) than in
RND (Figure 8b) using the threshold τ = 1. Here, the black nodes are chosen
in the first round and the pink nodes in the second.

There is undoubtedly more exploration in characterizing the function de-
scribed in the plots. Both experimentally and theoretically, further investigation
is warranted.
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(a) τ = 5/6
|D| = 19

(b) τ = 1
|D| = 20

(c) τ = 11/6
|D| = 19

Figure 7: The size of the dominating set formed by the two-step algorithm
with the Shapley value does not achieve a unique local minimum. The purple
triangles represent 100 leaf nodes. A black node suggests that it was chosen in
the first round of the two-step algorithm, and red suggests it was chosen in the
second round.

(a) SV (b) RND

Figure 8: An example where the dominating set generated using RND is greater
than the dominating set generated using SV.
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6 Future directions

Various algorithms aim to approximate a minimum dominating set for graphs
[25]. Our approach of using a two-step algorithm allows for a larger variety of
node measures than we propose for generating dominating sets. However, we
focused on four local measures to highlight some methods that could be practical
in robot swarm and autonomous system communications.

We see several directions to take this work into the future. First, an anal-
ysis of different measures and their properties when plugged into the two-step
algorithm may be an excellent method for comparing the effects of other mea-
sures. Included with this, a more in-depth theoretical analysis of the two-step
algorithm is warranted to explore its effectiveness further.

One concept we have toyed with is constructing bounds for the thresholds
in various situations. For example, one might wonder whether there are certain
classes of networks that yield natural bounds. For instance, with regular graphs,
the Shapley value at each node is necessarily 1. In graphs that are regular or
close to regular, it may be effective to combine for example the Shapley value
with a random measure. Predicting optimal thresholds based on network struc-
ture alone or time-varying network structure alone is a powerful tool in robotic
mission design. Moreover, if the ability to find bounds analytically proves in-
tractable, passing this information into a neural network may be an exciting
problem to pursue. A Graph Neural Network that intakes graph structure and
outputs a substantial threshold for achieving a dominating set could enable more
optimizations, especially if this could be computed locally in some way.
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[15] Carlos F Garćıa-Hernández, Pablo H Ibarguengoytia-Gonzalez, Joaqúın
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