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ABSTRACT 

In this paper, we address bilevel multi-objective programming problems (BMPP) in which the decision maker at each 
level has multiple objective functions conflicting with each other. Given a BMPP, we show how to construct two artifi-
cial multiobjective programming problems such that any point that is efficient for both the two problems is an efficient 
solution of the BMPP. Some necessary and sufficient conditions for which the obtained result is applicable are provided. 
A complete procedure of the implementation of an algorithm for generating efficient solutions for the linear case of 
BMPP is presented. A numerical example is provided to illustrate how the algorithm operates. 
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1. Introduction 

Bilevel programming is proposed in the literature for 
dealing with hierarchical systems. It involves two opti-
mization problems where the data of the first one is im-
plicitly determined by the solution of the second. Each 
decision maker (DM) tries to optimize its own objective 
function without considering the objective of the other 
party, but the decision of each party affects the objective 
value of the one party as well as the decision space. 
Bilevel problems occur in diverse applications, such as 
transportation, economics, ecology, engineering and oth-
ers.  

Standard bilevel programming problems where each 
DM has only one objective have been extensively studied 
in the literature [1,2]. Recent books by Dempe [3] and J. 
F. Bard [4] present results, applications and solution 
methods for standard formulation where the objective 
functions and constraints are not necessarily linear. 
However, despite their multiple applications [5], the spe-
cial case of bilevel programming problems where each 
DM has more than one objective function has not yet 
received a broad attention in the literature. We have 
found only about a dozen articles related to this class of 
problems in the literature [6-11]. The lack of work is due 
certainly to the difficulty of searching and defining opti-
mal solutions. Contrarily to the standard two levels pro- 

gramming problem where it is usually assumed that the 
set of rational responses of the follower is a singleton, in 
the bilevel multi-objective problem, the lower level op-
timization problem has a number of trade-off optimal 
solutions and the task of the upper level is to focus its 
search on multiple trade-off solutions which are members 
of optimal trade-off solutions of lower level optimization 
problem. Bilevel Multi-objective Programming Problem 
is then computationally more complex than the conven-
tional Multi-Objective Programming Problem or a bilevel 
Programming Problem.  

In this paper, we address bilevel multi-objective prob-
lems in which the decision maker at each level has mul-
tiple objective functions conflicting with each other. 
Given a BMPP, we show how to construct two artificial 
multi-objective programming problems such that any 
point that is efficient for both the two problems is an ef-
ficient solution of the BMPP. Based on this result, we 
provided a general algorithm for generating efficient so-
lutions of BMPP. A complete procedure of its imple-
mentation for the linear case of BMPP is presented. A 
numerical example is provided to illustrate how the algo-
rithm operates. 

The paper is organized as follows. In the next section, 
in addition to some notations and definitions that are 
given, we present the formulation of the problem on 
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which we will focus. In Section 3, we show how to con-
struct two artificial multi-objective programming prob-
lems whose resolutions can permit to generate efficient 
solutions of BMPP. Section 4 provides some necessary 
and sufficient conditions for the application of the ob-
tained relation. Section 5, is devoted essentially to the 
implementation of the algorithm for the generation of 
efficient points in bilevel linear multi-objective pro-
gramming problems. We give in Section 6 a numerical 
example to illustrate the proposed algorithm. Finally, the 
paper is concluded in Section 7.  

2. The Bilevel Multi-Objective Programming 
Problem (BMPP) 

2.1. Preliminaries and Notations 

A multi-objective programming problem is formulated in 
general as follows: 

“min”     1 2h x h x h     , , , Qx h x
.s t x U

:h R R
R



             (MOPP) 

where n Q  is the objective function vectors and 
 the set of constraints. n

In order to solve (MOPP), it is necessary to define 
how objective function vectors 

U 

     , , , Qx h x1 2h x h  
should be compared for different alternatives x U . So 
one must define on  h U

QR


 the order that should be used 
for the comparison. Due to the fact that, for , there 
is no canonical (total) order in  as there is on R, one 
can just define partial orders on 

Q 2

h U
K  QR

. Let K be an ar-
bitrary cone such that , a binary relation with 
respect to the cone K (noted ≤K) can be defined by: 

Ka  b a K 

 y h U

 

b  if and only if  

Partial orders introduced by closed pointed convex 
cones are the most used. Due to the fact that it could not 
be possible to find a solution that optimize simultane-
ously all the objective functions, a weaker concept, the 
concept of Non-dominated point is used. 

Definition 1 
A point 0 is a Non-dominated point with re-

spect to the cone K if and only if there does not exist a 
point y h U , 0  such that 0 . If 6y  Ky yy y   is 
a non-dominated point with respect to the cone K, then 
x U   such that  y h x   is called Pareto-optimal 
point with respect to the cone K. 

The following definition of efficient points is the most 
used in the literature [12-15]. 

Definition 2 
A feasible point x U   is called Pareto-optimal if 

there does not exist x U

  
 

,

, , ,

Q

Q

h x

h x

 such that 

   

   
1 2

1 2

, ,h x h x

h x h x 


  

and  

      
      

1 2

1 2

, , ,

,  , , .

Q

Q

h x h x h x

h x h x h x  




 

If x  is Pareto-optimal then  is called Non- 
dominated point. 

 h x

The efficient (or Pareto optimal) solutions are then so-
lutions that cannot be improved in one objective function 
without deteriorating their performance in at least one of 
the rest. Let us remark that Definition 2 is a particular 
case of Definition 1 where the cone used is  \ 0R q

 


Q

Solving a multi-objective optimization problem con-
sists in finding a part or the whole set of efficient points 
and to present it for evaluation to the Decision maker 
(DM). The choice of the DM is then considered as the 
optimal solution of the multi-objective optimization 
problem.   

. 

2.2. The Optimistic Formulation of BMPP  

A standard Bilevel Programming Problem (BPP) can be 
formulated as follows:  


 

 

0

min ,min , subject to
solves

. , 0

y Yx X

G x

f x yF x y
y

s t g x y



 
  


 (BPP) 

 

1 2 , ,  :,n n Fx X R y R X YY f R    

, : X Y R 

 ,

 are the outer 
(planner’s or leader’s) problem objective function and 
the inner (behavioral or follower’s) problem objective 
function respectively; G g  are inequality 
constraints. The decision variable of the leader is x and 
that of the inner problem is y. 

FWhen the objective functions f  and the con-
straints  ,G g  of the upper-level and lower-level prob-
lems are all linear, the resulting problem is called Bilevel 
Linear Programming Problem (BLPP) or Linear Stack- 
elberg Game. 

If F and f are vector value functions  
 1 2 1 1 2 2: and :n n m n n mF R R R f R R R   

     

, then one 
speak of bilevel multi-objective programming problems 
(BMPP). The formulation of a bilevel multi-objective 
programming problem (BMPP) can be given as follows:  

 
 

      
 

1

2

1

1

min , , , , ,

0

min , , , , ,.
solves

. , 0

m
x X

m
y Y

F x y F x y F x y

G x

f x y f x y f x ys t
y

s t g x y








   


  




 

(BPP)  

 Let us denote by R x , the set of rational responses 
of the follower for each decision x of the leader, it is de-
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   fined as the set of Pareto-optimal points of the following 
problem:  

      21min , , , , ,m
y Y

f x y f x y f x y


   . , 0s t g x y 

  1
, ,m

 

With this notation, we have the following formulation 
of BMPP:  

   

 
 

1min , , ,

0
subject to

x X
F x y F x y

G x

y R x









 F x y

 

Let denote by  the feasible space of BMPP defined 
by: 

     and 1 2, 0n nx y R R G x      y R x

  1
, ,m

 

The optimistic formulation of BMPP is given by:  

   

 
1

,
min , , ,

subject to ,

x y
F x y F x y

x y





F x y



  (BMPP’) 

The following definition holds. 
Definition 3  

,x y 


 is an efficient solution of BMPP’ if and only 

if ,x y   and  ,x y 

 
  

,  

, , , ,

x y

 such that  

   
   

1 2

1 2

, , , , ,

, ,

F x y F x y

F x y F x y   



x y 

  
  

,

, , , ,

x y

 

and 

   

   
1 2

1 2

, , , , ,

, ,

F x y F x y

F x y F x y   



x y 



 

The main goal of this paper is to present an approach 
for generating efficient points of BMPP’.  

Throughout the rest of the paper, the set of efficient 
point of a multi-objective optimization problem defined 
by a vector value function h on a feasible set U with re-
spect to a cone K will be noted: , ,E h U 

 1

1
\ 0m

mK R

K . If one 
speaks of efficient point without making a reference to a 
cone, it is will be with respect to Definition 2. We con-
sider also the following notations: ,  1

 2 \ 0m
mK R

22 , 1mX R Y R, ,  2m


      0 and1 2, /n nZ x y R G x R  y R x   
and S denotes the whole set of efficient solutions of prob-
lem BMPP’. 

3. Generating Efficient Points for BMPP’ 

Let us consider the following multi-objective program-
ming problem, constructed from the data of (BMPP’): 

   
 

1
,

min , , , ,

. ,

x y
f x y f x y

s t x y Z







Let 2

2 13 \ 0 0m
m nK R   and  be as defined 

above. 
 Theorem 1: 

3K

Proof: It is a slight modified version of Theorem 4.1 
given in [7].                                 □  

, ,E e Z    

Solving (BMPP’) is then equivalent to solve the prob-
lem: 

     
 

  2
, ,mf x y x

 (MPP2) 

 
2

3

1min , , , , ,

. , , ,

m
x X

K

F x y F x y F x y

s t x y E f Z




 


      (1) 

This leads naturally to the following corollary: 

Corollary 1   3 1
, ,, , K KE f ZS E F   . 

 Finding 
3K, ,E f Z   is not an easy task for at least 

two reasons: First, it is difficult to generate the whole  

 efficient set 
3

, , KE f Z  because it can be infinite and  

secondo, in the literature there does not exist approaches 
developed for finding efficient points with respect to the 
specific cone    2

1
\ 0 0m

nK R 


23 m . Methods are usu-
ally for cones defined in the form \ 0 ,nR n Nn . 

 2 1
4 2 1\m nR m n

K  . The following result holds. Let 

 Theorem 2  4 3
, , , ,K KE f Z E f Z  

 

 

Proof: 

 Let 
4

, ,, KE fX x Zy    then there does not 

exist   ,X x y   such that  

     2 1
2 1\m nf X f X R m n

     (1). Since  

     2 2 1

2 1 2 1\ 0 0 \m m n
m nR R m n

     (1)  there does 

not exist  ,  x yX     such that  

      2

2 1
\ 0 0m

m nf X f X R    . Consequently,  

  
3

, ,, KE fX x Zy   . Therefore, one can conclude 

that   4 3
, , , ,K KE f Z E f Z  

T

.  

heorem 2 suggests capturing a subset of  
 3

, , KE f Z  by solving the following problem: 

      
   

1

4

1min , , , , ,

. , , ,

m
x X

K

F x y F x y F x y

s t x y E f Z




 


  (BMPP”) 

This formulation and Corollary 1 lead obviously to the 
following result: 

  Corollary 2 , ,, ,ZE fF E S  

 

4 1K K

Even if the cone used in this last formulation has the 
desired representation 

. 

 \ 0 ,nR n Nn , optimizing 
multi-objective functions over an efficient set could not 
be an easy task. We introduce a new problem easier to 
solve and whose resolution could permit to capture a 
subset of efficient solutions of (BMPP”). 

Let consider the following multi-objective program-
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ming problem:  

   
 

1min , , ,

. ,
x X

  1
, ,mF x y F x y

s t x y Z






F x y
  (MPP1) 

Theorem 3  

   
  

4 1

4 1

, ,

, ,

K K

K K

E F Z 

 

, ,

, ,

E Z

E F

f

ZfE


 

Proof: 

Let      4 1
, ,K KE Ff Z , , ,x y E Z   , then  

   4
,x y  , , KE Zf     1

, , , Kx y E F Z  and . Let us 

suppose that     4 1
, ,K KZ  


, ,x y E f . Then there  

exist ,x y   that dominates  ,x y  with respect to the 
problem MPP1 and the cone K1, which means  
   

1
, ,KF x y 

 
F x y . This implies that:  

 ,
4

, KE f Z  , x y   such that  , ,F x y F x y  

 ,

  

and  ,F x y F   x y . Since  4
, , KZ Z 

 ,
E f


, it 

implies that x y Z 


   such that  
  , ,F x y   F x y  and    ,,F x y   F x y


. Conse-

quently . Contradiction with the     1
, , , Kx y E F Z 

 fact that   K KZ 4 1
, ,E F  □, , ,E f Z  x y .      

The following result is deducted from Theorem 3 and 
Corollary 2: 

Corollary 3    , , , ,E f Z E F Z S  
4 1K K

This last result stipulates that in order to find efficient 
points of BMPP′, one can just solve problem MPP1 (with 
respect to 

1

. 

K ) and problem MPP2 (with respect to 

4K ) and retain all efficient points that are in the both 
solutions sets. 

4. On the Implementation of an Algorithm 

In order to implement the above results, one must be sure 
that the algorithm will generate at least one efficient so-
lution to BMPP′. This condition is fulfilled if and only if 
   , , , ,E f Z E F Z 

4 1K K   . A necessary condition 
is that each of the two sets,  4K  and  , ,E f Z 
 1K  must be different from empty set. The 

following result gives sufficient conditions for it. 
, ,E F Z 



Theorem 4 If the following three conditions hold:  
1) Z is nonempty and compact set; 
2) 11, ,i m  


, F  is lower semicontinuous; j

3) 21, ,j m  

1mR

1mR

, fj is lower semicontinuous. 
Proof: 
If 2) holds, then F is  -semicontinuous (i.e. the 

pre-image of the translated negative octant is always 
closed). Since from 1) Z is nonempty and compact, F(Z) 
is -semicompact and nonempty. Based on this result, 

Theorem 2.8 of [13] permits then to say that the set of 
Non-dominated points is non-empty. Which permits to 
conclude that the set of Pareto-points is nonempty i.e. 
 1

, , KE f Z  . A similar proof permits to conclude   

also that 4
, , KE f Z  .                    □   

1 2n nZ R

The following theorem gives a sufficient condition for 
the implementation of an algorithm based on our last 
result (Corolarry3). 

Theorem 5 If the following two conditions hold: 


  is nonempty and compact set. 1) 
   1, , 1 , 1, , 2 , 0i m j m 2) 0 0       such that 

 0iF  and 0jf  are lower semicontinuous functions; 
 0iF  and 0jf  are injective functions; 
 0 0i jF f ; 

Then    4 1
, , , ,K KE f Z E F Z   

  min ,

. 

Proof: 
Let us suppose that 1) and 2) hold. Consider the fol-

lowing optimization problem: 0jf z z Z  (pb1). 
Since fj0 is a lower semicontinuous function and Z is a 
nonempty compact set, pb1 has at least one optimal solu-
tion, z0 (in fact z0 is unique).  

We claim that    4 10 , , , ,K Kz E f Z E F Z   . 

1) Let us first show that  40 , , Kz E f Z  . Suppose  

that 40 , , Kz E f Z  0,z Z z z  , then there exists   

 0     such that z f z f  and f 0z f z  . This im- 
plies that   0 0 0j jf z f z 

 
. Due to the fact that z0 is an 

optimal solution of (pb1), we have then  0 0 0j jf z f z 
0

. 
Since fj0 is an injective function, this implies that z′ = z . 
Contradiction. Consequently  0 , ,z E f Z 

0 0i j

4K

2) Since 
. 

 and 0F af  , z0 is also an optimal 
solution of    min ,0iF z z Z

 1
, , Kz E F Z 
. With a similar proof as 

in 1), one obtains that . 0

Combining 1) and 2) leads to  
   4 10 , , , ,K Kz E f Z E F Z   . Hence,  

   4 1
, , , ,K KE ef Z E F Z                    □  

If the preceding conditions are fulfilled, then one can 
think of the implementation of an algorithm to generate 
efficient points of BMPP based on Corollary 3. At least 
two ideas can be used. The first could be to generate the 
whole set of efficient points of MLPP1 and then iterate 
on the set in order to retain the ones that are also 
Pareto-optimal for the second problem (MLPP2). But it 
would be a difficult task to generate the whole efficient 
set of MLPP1 [14-16]. 

The second idea could be to generate progressively (as 
we go along) efficient points for MPP1 and test simulta-
neously their efficiency for MLPP2 before moving to 
another efficient point of MPP1. This seems to be more 
practical. An algorithm based on the last idea can be 
formulated as follows: 
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Algorithm 1 /*Computational steps of the algo-
rithm*/ 

1) Read problem data and construct problem MPP1
and MPP2. 

2) Generate an efficient solution (lets z) of problem
MPP1, go to step 4. 

3) Generate a new efficient solution z of problem
MPP1. 

4) If z is efficient solution of MPP2 then z is solution 
of MBPP; .  :S S z 

5) If the number of points in S is sufficient or all the
efficient points of MPP1 are tested then stop Otherwise 
go to step 3. 

 
We present in the following section how it can be ef-

fectively implemented for generating efficient solutions 
for linear bilevel multi-objective programming problems. 

5. Generating Efficient Points in Bilevel 
Multi-Objective Linear Programming 
Problems 

Problem and Notations 

We consider the following problem: 

     

   

11

2

1

1 1

1

2 3 2

min , , , , ,

. solves min , ,

.

n

n

m
x R

y R

F x y C x y C x y

A x b



  1
, , ,ms t y f x y c x y

s t A x A x b











 
 

  



c x y

 1
, ,m

 

(BLMPP) 

The two multi-objective problems used in our preced-
ing algorithm are: 

   
1

1

1 1

2 3 2

min , , ,

.

0, 0

nx R
F x y C x y

A x b

s t A x A x b

x y





  
  

 C x y

 (LMPP1) 

And 

    1
,

1 1

2 3 2

min , , ,

.

0, 0

x y
  1

, , ,mf x y c x y

A x b

s t A x A x b

x y




  
  

 c x y x

2ny R

 (LMPP2) 

Given  and 1nx R 
1 2 n nz R 

1, n

, it will be convenient to 
introduce the vector   whose first n1 compo-
nent are 1 2, ,x x 

, y
x

1 2 2n

 and last n2 components are  
, ,y y  . 

We call C (resp c) the matrix such that  

      1 2 1, , , respmF z C z C z C z Cz f z cz  

, , , ,z z z

. 

In order to be more concise, the notations and results that 
follow now are with respect to LMPP1, but all are also 
valid for (LMPP2). 

After adding p + q non negative variable  

1 2 2p q p q p q      the data of (LMPP1) can be 
represented by the following tableau: 

 

  ZN ZB 

(T): D C 0 

 b A I 

 

1

2 3

0 A
where A

A A

 
  
 

1

2

b
b

b

 
  
 

 and . 

The algorithm will start with an initial efficient ex-
treme point and will iterate through different efficient 
extreme points of LMPP1. At any iteration, for every 
unexplored efficient extreme point z of LMPP1, the effi-
ciency with respect to LMPP2 is tested. 

Points that are Pareto-optimal for both the two prob-
lems will be then retained. The entire scheme is repeated, 
until all the efficient extreme solutions of LMPP1 are 
tested. 

Since efficient extreme points form a connected graph 
and that Z is regular, LMPP1 has a finite number of ex-
treme efficient points, and so the algorithm is bound to 
terminate in a finite number of steps. 

At each iteration of the algorithm, the current efficient 
(extreme) point z* will be always associated with a tab-
leau T (as presented above). NT will denote the nonbasic 
set of the current efficient point z* associated to a tableau 
T. S1 will represent the set of Pareto-optimal points of 
problem LMPP1 that the efficiency with respect to 
LMPP2 has to be tested. S2 will represent the set of 
points that have been discovered to be Pareto-optimal to 
both the two problems. 

The result below [16-18] is the scheme that will be 
used to check if a feasible solution is a Pareto-optimal 
solution. 

Lemma 1 A point z0 in Z is Pareto-optimal for prob-
lem (LMPP1) if and only if the solution  ,z s

0
, 0

max e .t

z Z s

 of the 
following linear program yields a maximum value zero: 

s s t Cz Is Cz
 

   

If the maximum value is not zero, then z is Parto-op- 
timal (with respect to (LMPP1)). 

The following result [16] can be used to determine in-
cident efficient edges. 

Lemma 2 The edge incident to the current efficient 
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extreme point obtained by increasing the nonbasic vari-
able N

jz

  

0N
j

has a solution

wth 

 is efficient if an only if the system 

 , 0

N t

N

Cv w C e

v w wi

  
         (2) 

provided the pivot in the N
jz  column has a pivot row 

with bi > 0. If the pivot row has bi = 0 and aij < 0 for 
some j, then the edge obtained by pivoting by the mini-
mum ratio rule in the N

jz

N tv Iw C e 

 column is efficient if and only 
if (2) holds. 

Based on this lemma, Song [18] claims that this test 
for each edge can be implemented by solving the fol-
lowing linear program: 

, 0
.max

N

N t
j

v w
s tw C


 

If the optimal value is zero, then the corresponding 
edge is efficient. 

It is the scheme that will be used by our algorithm for 
finding efficient edges. Based on these results, the algo-
rithm can be reformulated as follows. 
 

Algorithm 2 /*Computational steps of the algo-
rithm*/ 

1) Read data of problem BLMPP and construct prob-
lems LMPP1 and LMPP2. 

2) Find an arbitrary feasible element z0  Z. 
3) With z0, construct and solve the following problem 

(in order to find an initial efficient point to LMPP1) 

0 , 0, z Z s max e .t s s t Cz Is Cz        (test0)

Let  ,z s

 1 :S z

 the optimal solution of (test0). If the op-
timum value of (test0) is 0, then z0 is efficient,  

. Otherwise, z is efficient, 0  :S z
S 

 : \S S z

, , 0z z Z s  

1

4) If 1 , stop. Otherwise, take an element z* 
from S1 and . 

. 

1 1

5) Test if z* is efficient for LMPP2 by solving the
following problem: 

max e .t s s t cz Is ce       (test1)

Let    , , ,z s x y s

 2S S z 

 the optimal solution of (test1). 
If the optimal value of (test1) is 0 then z* is efficient to
LMPP2 and hence is a solution of (BLMPP′):  

.  2 :
If the number of efficient point is sufficient, then

stop. 
6) Find efficient edges (with respect to LMPP1) inci-

dent to z*, by solving for each j  NT the following
problem: 

.max N t Nw C v Is t w   , , 0t N
j jC e v w        (3)

Let denote by JT NT  the set of j such that the 

optimal value of PBj is zero. (Let us recall that the edge 
obtained by increasing the nonbasic variable N

jz  in T 
is efficient if and only if j JT .) 

For each j JT , generate efficient points incident to 
z* by making a pivot operation on the column j + 1 of 
tableau T. Let denote by ST the set of efficient points 
incident to the current efficient point z* that have not 
already been tested. 1: 1S S ST . Go to step 4. 

6. Illustrative Example 

Let us consider finding an efficient solution to the fol-
lowing problem: 

 1 3 1 3 1 2

1 2 2 1 2

1 3 1 2 3
3

1 2 3 3

min 2 2

1, 2, 0, 0

1
min , 2 2

2solves

,

4, 0

,x x x x x x

x x x x x

x x x x x
x

x x x x

    

  


       
 

   





 
 (BLMPP) 

At Step 1: The following two problems are con-
structed: 

 1 2 1 3 1 3

1 2 2

1 2 3

1 2 3

min 2 , 2 ,

1, 2

subject to 4

0, 0, 0

x x x x x x

x x x

x x x

x x x

    

  

  
   



     (LMPP1) 

And 

1 3 1 2 3 1 2

1 2 2

1 2 3

1 2 3

1
min , 2 2 , ,

2

1, 2

subject to 4

0, 0, 0


x x x x x x x

x x x

x x x

x x x

    
 

  

  
   



 0,0,0z Z 

1 2 3

1 2 1

1 3 2

1 3 3

1 2 2

1 2 3

1 2 3 1 2 3

max

2 0

2 0

0
subject to

1, 2

4

0, 0, 0, 0, 0, 0

s s s

x x s

x x s

x x s

x x x

x x x

x x x s s s

 

   
   
   
   

   


   

  

  (LMPP2) 

At step 2: We start with . 0

At step 3: The following problem is constructed in 
order to find an initial efficient extreme point (with re-
spect to LMPP1): 

   

(test0) 

The initial simplex tableau of the problem is:  
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0 0 0 0 0 0 0 −1 −1 −1

0 −1 −2 0 0 0 0 1 0 0 

0 −1 0 2 0 0 0 0 1 0 

0 1 0 −1 0 0 0 0 0 1 

1 1 1 0 1 0 0 0 0 0 

2 0 1 0 0 1 0 0 0 0 

4 1 −1 1 0 0 1 0 0 0 

 
The optimal simplex tableau of the problem is: 
 
2 1 0 1 2 0 0 0 0 0 

2 1 0 0 2 0 0 1 0 0 

0 −1 0 2 0 0 0 0 1 0 

0 1 0 −1 0 0 0 0 0 1 

1 1 1 0 1 0 0 0 0 0 

1 −1 0 0 −1 1 0 0 0 0 

5 2 0 1 1 0 1 0 0 0 

 
The solution of the problem is  

   0,1,z s     , 0 , 2 0,0,



 and the optimal value of the 
problem is 2. Since the value is different from 0, 

0  is not an efficient point (to LMPP1). We 
deduct from this optimal tableau that 

0,0,0z 
 0,1,0z   is an 

efficient extreme point (to LMPP1) and the correspond-
ing efficient tableau is given by (T1): 
 

2 1 0 0 2 0 0 

0 −1 0 2 0 0 0 

0 1 0 −1 0 0 0 

1 1 1 0 1 0 0 

1 −1 0 0 −1 1 0 

5 2 0 1 1 0 1 

 
  1 0,1,0

1S 
SoS . 

At step 4: Since , we take   0,1,0
1



 and re-
move it from  (so S ). 1S  

At Step 5: We must test if 0,1,0  is efficient to 
MLPP2 by solving the following problem: 

1 2 3 4

1 3 1

1 2 3 2

1 3 2 4

1 2 2

1 2 3

1 2 3 1

max

1
0

2
2 2 1

0, 1subject to
1, 2

4

0, 0, 0, 0, 0,

s s s s

x x s

x x x s

x s x s

x x x

x x x

x x x s s

  

   


 

    

 
    
   


  

 2 3 40, 0s s 

 (test1) 

The optimal simplex tableau of this problem is: 
 

2 2.5 2 3 0 0 0 0 0 0 0 

0 −0.5 0 1 0 0 0 1 0 0 0 

1 2 1 2 0 0 0 0 1 0 0 

0 1 0 0 0 0 0 0 0 1 0 

1 0 1 0 0 0 0 0 0 0 1 

2 0 1 0 0 1 0 0 0 0 0 

4 1 −1 1 0 0 1 0 0 0 0 

 
Since the optimal value is 2, so different from zero, 
 0  is not efficient to LMMP2. We continue to 

step 6. 
1,0,1z 

At step 6: We use T1 to find incident edge to 
 0 . Here the set of non-basis variables is given 

by 
1,0,1z 

 1,3,4NT 

1 2 3 1

1 3

2 3 14

– 1

2 2
max subject to

2 1

, 0

N

N

N
j

N

N

v v v w

v w
w

v v w

v w

    

  

   







1 . We solve for different j in NT1 the 
problem (PBj) as presented in the algorithm. For j = 1, 
PB1 is: 

    (PB1) 

The optimal value is 0. With the same manner, for j = 
3, the optimal value of PB3 is 2; for j = 4, the optimal 
value of PB4 is 0. So  1

At step 7: Only j = 1 led to a new efficient extreme 
point. The new efficient point obtained is 

1,4JT 



. We go to step 7. 

1,0,0  with 
the corresponding tableau given by (T2): 
 

1 0 −1 0 1 0 0 

1 0 1 2 1 0 0 

−1 0 −1 −1 −1 0 0 

1 1 1 0 1 0 0 

2 0 1 0 0 1 0 

3 0 −2 1 −1 0 1 

 
The set of nonbasic variables is given by  

 2 2,3,4NT    1,0,0ST . One has then 1  and hence 
  1 1,0,0S 

1S
. We go again to step 4. 

At step 4: Since   , we take  1,0,0
S

 and re-
move it from S1 (so 1   ). We go to step 5. 

At step 5: We must test if  1,0,0  is efficient to 
MLPP2 by solving the following problem:  
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 1 2 3 4

1 3 1

1 2 3 2

1 3 2 4

1 2 2

1 2 3

1 2 3 1

max

1 1

2 2

2 2 2

1, 2subject to

1, 2

4

0, 0, 0, 0, 0,

s s s s

x x s

x x x s

x s x s

x x x

x x x

x x x s s

  

    


   
    
   

   

    

 2 3 40, 0s s 

(test1) 

The optimal value of this problem is 0, so  1,0,0

  1,0,0

 1,0,0z 

 is 
efficient to LMPP2 and hence is an efficient solution to 
our problem: . We continue to step 6. 2

At step 6: We find efficient extreme points incident to 
our current efficient point  (Using T2 and 
NT2) by solving for each j in NT2 the problem (PBj). For 
j = 2, one obtains 2 as optimal value of PB2; for j = 3 the 
optimal value of PB3 is 0; for j = 4, the optimal value of 
PB4 is 2. So 

S

 2 3JT  . We go to step 7. 
At step 7: j = 3 leads to a new efficient extreme point 

 with the corresponding tableau T3:  1,0,3
 

1 0 −1 0 1 0 0 

−5 0 5 0 3 0 −2 

2 0 −3 0 −2 0 1 

1 1 1 0 1 0 0 

2 0 1 0 0 1 0 

3 0 −2 1 −1 0 1 

 
The set of nonbasic variables is given by  

. One has then 3 2,4,6NT    2  and hence 1,0,3


ST
 1 1,0,3S . We go again to step 4. 

At step 4: Since , we take 1S   1,0,3
S  

 and re-
move it from S1 (so ). We go to step 5. 1

At step 5: We must test if  1,0,3  is efficient to 
MLPP2 by solving the following problem: 

1 2 3 4

1 3 1

1 2 3 2

1 3 2 4

1 2 2

1 2 3

1 2 3 1

max

1 5

2 2

2 2 8

1, 0subject to

1, 2

4

0, 0, 0, 0, 0,

s s s s

x x s

x x x s

x s x s

x x x

x x x

x x x s s

  

   


   
    
   

   

   



The optimal value of this problem is 11.5, so 1,0,3



 
is not efficient for LMPP2 and hence is not a solution to 
our problem. We continue at step 6. 

At step 6: We find efficient extreme points incident to 
the current efficient point 1,0,3z   by solving for 
each j in NT3 the problem  j . For j = 2, the optimal 
value of the problem PB2 is 2. For j = 4 and j = 6, the 
optimal values of the obtained problems are 0 and so 

PB

 3

At step 7: One finds that it is only j = 4 that leads to a 
new efficient extreme point 

4,6JT 



. We go to step 7. 

0,0,4 with the corre-
sponding tableau T4: 
 

0 0 −1 −2 0 0 0 

−8 −3 2 0 0 0 −2 

4 2 −1 0 0 0 1 

1 1 1 0 1 0 0 

2 0 1 0 0 1 0 

4 1 −1 1 0 0 1 

 
The set of nonbasic variables is given by  

 4 1,2,6NT    0,0, 4ST . Thus 4  and hence  
 1 0,0, 4S 

1S
. We go again to step 4. 

At step 4: Since    0,0,4
S

, we take  and re-
move it from S1 (so 

2 3 40, 0s s  
 (test1) 

1  
 0,0,4

). We go to step 5. 
At step 5: We must test if  is efficient to 

MLPP2 by solving the following problem: 

1 2 3 4

1 3 1

1 2 3 2

1 3 2 4

1 2 2

1 2 3

1 2 3 1 2 3 4

max

1
4

2

2 2 8

0, 0subject to

1, 2

4

0, 0, 0, 0, 0, 0, 0

s s s s

x x s

x x x s

x s x s

x x x

x x x

x x x s s s s

  

   


   
    
   

   

      



 (test1) 

The optimal value of this problem is 12, so 0,0,4



 
is not efficient for LMPP2 and hence is not a solution to 
our problem. We continue at step 6. 

At step 6: We find efficient extreme points incident to 
the current efficient point 0,0,4Z  



 by solving for 
each j in NT4 the problem (PBj). For all j in NT4, 0 is the 
optimal value of PBj. So 4

At step 7: One finds that only j = 2 leads to a new ef-
ficient extreme point 

1,2,6JT  . We go to step 7. 

 0,1,5  with the corresponding 
tableau T5: 
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2 1 0 0 2 0 0 

−10 −5 0 −2 0 0 −2 

5 3 0 0 1 0 1 

1 1 1 0 1 0 0 

1 −1 0 0 −1 1 0 

5 2 0 1 1 0 1 

 
The set of nonbasic variables is given by  

 5NT 1,4,6  . So 5  and hence  ST
  

0,1,5
1 


0,1,5

S
S . We go again to step 4. 

At step 4: Since 1 , we take   0,1,5
S  

and remove 
it from S1 (so ). We go to step 5. 1

At step 5: We test if  0,1,5  is efficient to MLPP2 
by solving the following problem: 

1 2 3 4

1 3 1

1 2 3 2

1 3 2 4

1 2 2

1 2 3

1 2 3 1

max

1
5

2
2 2 11

0, 1subject to
1, 2

4

0, 0, 0, 0, 0,

s s s s

x x s

x x x s

x s x s

x x x

x x x

x x x s s

  

   


 

    
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 (test1) 

The optimal value of this problem is 17.  0,1,5S



o  is 
not efficient for LMPP2 and hence is not solution to our 
problem. We continue at step 6. 

At step 6: We find efficient extreme points incident to 
the current efficient point 0,1,5z 



 by solving (PBj) 
for each j in NT5. 

For j = 1, 1.5 is the optimal value of PB1; for j = 4 the 
optimal value of PB4 is 2; for j = 6, the optimal value of 
PB6 is 0. So 5

At step 7: j = 6 leads to an efficient extreme point al-
ready tested (that is 

6JT 



. We go to step 7. 

0,1,0

  1,0,0 

). We go to step 4. 
At step 4: S1 is empty and the algorithm stops. 
Since 2 , we deduce that S 1,0,0  is an 

efficient solution to the bilevel linear multi-objective 
programming problem considered. 

7. Conclusion 

We have presented in this paper the optimistic formula-
tion of a bilevel multi-objective programming problem. 
We have derived two multi-objective programming prob- 
lems such that any point that is efficient for both the two 
problems is an efficient solution of the BMPP. An algo-
rithm to generate efficient solutions for BMPP has been 
developed and applied to the resolution of the linear case 
of BMPP. We have also provided a necessary and a suf-

ficient condition for which the proposed algorithm is 
applicable. Further studies for finding less restrictive 
conditions is going on. The performance of the algorithm 
proposed could be significantly improved on larger prob- 
lems if a better way to generate efficient points for multi- 
objective programming problems were used. We hope 
that this study will contribute in spurring more interest 
bilevel multi-objective optimization from other research-
ers and practitioners in the field of Mathematical Pro-
gramming. 
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