
GENERATING EXPERIMENTAL DATA FOR COMPUTATIONAL
TESTING WITH MACHINE SCHEDULING APPLICATIONS

NICHOLAS G. HALL
Fisher College of Business, Department of Management Sciences,

The Ohio State University, Columbus, Ohio 43210-1399, hall.33@osu.edu

MARC E. POSNER
Department of Industrial and Systems Engineering,

The Ohio State University, Columbus, Ohio 43210-1271, posner.1@osu.edu

(Received February 1997; revisions received October 1998, April 2000; accepted June 2000)

The operations research literature provides little guidance about how data should be generated for the computational testing of algorithms
or heuristic procedures. We discuss several widely used data generation schemes, and demonstrate that they may introduce biases into
computational results. Moreover, such schemes are often not representative of the way data arises in practical situations. We address these
deficiencies by describing several principles for data generation and several properties that are desirable in a generation scheme. This
enables us to provide specific proposals for the generation of a variety of machine scheduling problems. We present a generation scheme
for precedence constraints that achieves a target density which is uniform in the precedence constraint graph. We also present a generation
scheme that explicitly considers the correlation of routings in a job shop. We identify several related issues that may influence the design
of a data generation scheme. Finally, two case studies illustrate, for specific scheduling problems, how our proposals can be implemented
to design a data generation scheme.

The operations research literature includes many contri-
butions that address applications. Much of this work

involves the development of solution procedures for newly
defined problems or improved procedures for known prob-
lems. These procedures may be algorithms that identify
optimal solutions, or heuristics that seek approximate solu-
tions. In either case, it is valuable and customary to include
computational evaluations of the proposed procedures. The
purposes of these evaluations include:
1. Demonstrating the potential of a new procedure in

specific situations,
2. Demonstrating that a procedure is practical,
3. Identifying conditions under which a procedure per-

forms well or poorly, and
4. Comparing competing procedures.
Recently, widespread concern has arisen that many pub-

lished computational experiments are inadequate. Conse-
quently, editors and researchers familiar with computational
testing recommend that authors adhere to more rigorous
and consistent guidelines when reporting computational
experiments (Crowder et al. 1978, Florian et al. 1979,
Jackson et al. 1991, and Lee et al. 1993). Researchers also
suggest methodologies for designing computational exper-
iments. Greenberg (1990) discusses general approaches to
computational testing and offers suggestions about how
much testing should be performed. Several authors dis-
cuss what should be measured to determine the perfor-
mance of a solution procedure. These include Crowder and

Saunders (1980), Hoffman and Jackson (1982), Greenberg
(1990), and Barr et al. (1995). Ahuja et al. (1993) describe
a method to determine the approximate running time of a
procedure.
Hooker (1994) makes a persuasive case for more rig-

orous computational evaluation of algorithms. He suggests
that problems be generated in such a way as to demonstrate
how algorithmic performance depends on problem charac-
teristics. Hooker (1995) discusses how this approach can
alleviate some of the difficulties that arise from a tradi-
tional “competitive testing” approach. Both of these papers
concentrate on high-level experimental design.
Barr et al. (1995) suggest that algorithms and heuris-

tics should be tested against the best competitive solu-
tion procedures. However, this approach may tend to focus
attention on data sets where it is easiest to demonstrate
improvement. Typically, these are sets for which previ-
ous procedures have performed badly. This tendency may
even influence the design of new procedures. A variety of
problem factors, algorithmic factors, and test environment
factors in experimental design are discussed. McGeoch
(1996) points out that research often centers around
intractable problems, where it is difficult to interpret the
quality of solution. Generating instances where the solu-
tion is known by construction, but concealed from the solu-
tion procedure being tested, may generate unrepresentative
instances.

Subject classifications: Simulation, random variable generation: methods for generating random data. Production/scheduling: experimental data for testing algorithms and
heuristics.

Area of review: Optimization.

Operations Research © 2001 INFORMS
Vol. 49, No. 7, November–December 2001, pp. 854–865 854

0030-364X/01/4907-0854 $05.00
1526-5463 electronic ISSN

Hall and Posner / 855

The above papers provide an excellent discussion of gen-
eral issues. However, detailed recommendations for data
generation are not given. Usually, the primary goal of a
computational experiment is to evaluate procedures. For a
procedure that finds an optimal solution, we usually want
to evaluate the computational effort needed to do so. For
a heuristic procedure, we often want to evaluate how close
the solution value is to the optimal value. The same is true
for a procedure that finds an infeasible bound.
One method for evaluating a solution procedure is math-

ematical analysis. The order of computational effort of an
optimal procedure describes how solution time grows with
the size of the problem instance. However, this measure
describes only the worst-case running time, and not the typ-
ical performance. For example, the simplex method for lin-
ear programming has exponential worst-case running time
(Klee and Minty 1972). However, its average running time
is polynomial. Also, potentially large constant factors are
ignored. Hence, it is not clear whether a problem instance
of a particular size is computationally tractable.
Another analytical approach to computational evalua-

tion of heuristics involves deriving bounds on the solution
value. However, worst-case performance bounds are rarely
attained in practice (Fisher 1980). Probabilistic approaches
can be used to describe average case performance. How-
ever, these results usually require restrictive assumptions
about the way in which the data is generated. An example
is the frequent use of independent marginal uniform distri-
butions. Thus, the results derived are often not representa-
tive of average performance on other randomly generated
or real-world problems.
A second method for computational evaluation involves

experiments on real-world or library test problems. Real-
world problems can provide an accurate assessment of the
eventual practical usefulness of a procedure. Library test
problems are useful because the properties of the prob-
lems and the performance of other procedures are usually
known. However, it is frequently difficult to obtain a suffi-
cient number and variety of either type of problem to assess
the performance of a solution procedure (McGeoch 1996).
Also, McGeoch notes that data sets may quickly become
obsolete. Further, comparisons using library problems may
promote methodologies that work well on that particular set
of instances. This may favor procedures that work poorly
for general problems and disfavor other procedures that
have superior performance (Hooker 1995). As we later dis-
cuss, there is frequently a need to have sets of problems
with specific attributes that are based on specific principles.
These types of problems are usually absent from library
data sets.
In view of the limitations of the above two methods,

most research studies use randomly generated problem
instances for the testing of solution procedures. By com-
puter simulation, many large and varied data sets can be
generated quickly and easily. However, there are no sys-
tematic guidelines to generate these problems or to conduct
these evaluations. For example, competing procedures are

often tested by different authors using different problem
generation methods on the same problem class. This leads
to a lack of comparability of the results obtained. More-
over, some widely used problem generation approaches are
inherently biased. For example, they may produce prob-
lem instances with particular characteristics, such as having
very few active constraints or being easy to solve.
While many of our suggestions are applicable to most

classes of deterministic optimization problems, we address
these concerns in the context of machine scheduling prob-
lems and offer suggestions for improvement. We develop
specific proposals for the generation of several types
of scheduling data. Because a generation scheme should
depend on the problem being considered and the solution
procedures being tested, no single scheme should be used
for all situations. Consequently, we identify the relevant
issues in test problem generation that arise when study-
ing particular solution procedures for particular classes of
scheduling problems. Our proposals are illustrated by the
development of detailed test problem generation schemes
for two scheduling problems.
This paper is organized as follows: §1 describes several

principles of data generation that are independent of the
specifics of the experiment, and some desirable properties
of a generation scheme. Our notation is presented in §2.
In §3, we describe and critique existing schemes for gen-
erating data for machine scheduling problems. Frameworks
for generating various types of scheduling data are given
in §4. Other issues that are relevant to data generation are
discussed in §5. §6 contains two case studies that illus-
trate how to design a data generation scheme for specific
scheduling problems. §7 contains a conclusion and some
suggestions for future research.

1. PRINCIPLES AND PROPERTIES
OF DATA GENERATION

A data generation principle is an axiom or perspective
from which to approach the design of a generation scheme.
The principles we describe are general in that they do not
depend on the goals or characteristics of a particular exper-
iment. Some principles to consider when generating test
problems are:
1. Purpose: Generate data to satisfy the purposes of the

experiment.
2. Comparability: Make computational tests comparable.
3. Unbiasedness: Avoid introducing unintended biases

into the data.
4. Reproducibility: Make the generation scheme

reproducible.
Some purposes for experimentation are given in the

introduction. Currently, most experimental studies do not
explicitly consider the purpose of the experiment. There is
an infinite variety of possible ways to generate data. Con-
sequently, it is impossible to test even a small represen-
tative sample of these. Choices should be made based on
the purposes of testing and not on previous approaches. A

856 / Hall and Posner

wide variety of data sets is needed if the goal is to demon-
strate the potential of a procedure. However, much more
restricted sets should be used if the objective is to show
practicality in specific situations.
While Principle 2 is usually taken for granted, there are

numerous studies in the literature where different experi-
mental tests in a paper use data sets with different charac-
teristics. Consequently, comparisons between the outcomes
of the tests are not valid.
Regarding Principle 3, we have observed two major

sources of unintended biases in data generation procedures.
The first is when a generation scheme tries to construct fea-
sible solutions. The process of trying to ensure feasibility
can distort the data in peculiar ways. The second is when
correlation is built into the generation process.
Principle 4 has been widely acknowledged as impor-

tant. However, the degree of reproducibility falls on a
continuum. By creating schemes that can generate a wide
variety of data, our methodology provides ways to improve
reproducibility.
When constructing a data generation scheme, we should

consider the features of the problem and the features of
the experiment. The features of the problem are known
problem information. These features include application
type, computational complexity, job arrival process, due
date setting process, and feasibility considerations. The fea-
tures of the experiment are decisions that are made about
the experiment. They include purposes, publishing intent,
implementation decisions, and study size.
The principles and the features of the problem and exper-

iment are inputs to creating the characteristics of the data
called properties of the experiment. However, depending
upon the features of the problem and the experiment, only
a subset of the properties may be applicable. A schematic
representation of the various components that go into a data
generation scheme appears in Figure 1. Properties that are
important for the computational evaluation of a solution
procedure include:
1. Variety: Creates a wide range of problem instances.
2. Practical relevance: Generates data that models real-

world scenarios.
3. Scale invariance: When the scale of the input data

changes, other features do not.
4. Size invariance: When the input size changes, other

features do not.

Figure 1. Relationships between concepts in a genera-
tion scheme.

5. Regularity: Identical types of input are treated in a
similar manner.
6. Describability: Easy to describe.
7. Efficiency: Easy and efficient to implement, use, and

replicate.
8. Parsimony: Only parameters that may affect the

analysis are varied.
Table 1 shows which principles typically lead to which

properties. An “X” denotes that a specific principle induces
a specific property if the features of the problem and
experiment make it applicable.
If the goal is to test the usefulness of a given procedure,

then the test data should have variety (Property 1). It is
important to test a wide range of problems to discover the
strengths and weaknesses of the procedure. For example,
consider the problem of minimizing makespan on a sin-
gle machine in the presence of sequence-dependent setup
times. The differences between the values of relaxations of
various subproblems are larger when there are large differ-
ences in the setup times. If a branch-and-bound approach is
used, then the pruning of the tree becomes more efficient.
This makes the instance easier to solve. Thus, in accordance
with Principle 1, there should be instances with both large
and small differences in setup times. Similarly, for com-
parison, there should be some data sets with large differ-
ences and other data sets with small differences. As a sec-
ond example, Fleischer and Jacobson (1999) provide com-
putational evidence that higher entropy measures are asso-
ciated with superior finite-time performance of a simulated
annealing algorithm.
When several procedures are being compared, testing

a wide variety of problems is also desirable to satisfy
Principle 2. Any given procedure performs well on some
data sets and poorly on others. When an experiment con-
cludes that Procedure A is superior to Procedure B, what
is really meant is that Procedure A performs better than
B on average over the data sets generated. Consequently,
as opposed to including only random data sets, an exper-
iment should usually include data sets for which the pro-
cedure being tested is likely to perform well and also data
sets for which it is likely to perform poorly. For example,
as discussed by Potts and Van Wassenhove (1988), there
are two competitive procedures for the problem of mini-
mizing the weighted number of late jobs scheduled on a
single machine. The first is a dynamic programming algo-
rithm that requires worst-case time of O�n2c�, where c is
a parameter measuring average processing time. The sec-
ond is branch-and-bound, which requires a decision tree of
size O�2n� in the worst case. These two procedures are not
comparable over all data sets, because the parameters of
the problem instance affect their worst-case running times
in different ways. If we increase the average processing
time, the effect on the dynamic programming algorithm
is proportional, while the effect on the branch-and-bound
procedure is negligible. Alternatively, if we increase the
number of jobs from n to n+ 1, then the running time of
the dynamic programming algorithm increases by a factor

Hall and Posner / 857

Table 1. Relationships between principles and properties

Principle

Property Purpose Comparability Unbiasedness Reproducibility

Variety X X
Practical Relevance X
Scale Invariance X X
Size Invariance X X
Regularity X
Describability X
Efficiency X
Parsimony X

of ��n+ 1�/n	2 in the worst case. However, in a similar
situation, the running time of the branch-and-bound algo-
rithm may double in the worst case. If a purpose of the
experiment is to select the best procedure for real-world
problems, then we can compare the two methods over these
types of instances. No experiment can determine which
method is superior overall, since there are an infinite num-
ber of data sets where each performs better. However, one
useful experiment is to determine for which sets each pro-
cedure performs better. Then, we can increase the expected
processing time to find the point after which the branch-
and-bound procedure dominates, and we can increase n
to find the point after which the dynamic programming
procedure dominates.
Providing a variety of data sets for a particular procedure

is easier to achieve when some intuition is available about
performance. For example, if a method includes a domi-
nance test for certain variables, then generating data sets
that fail these tests creates harder problems, while data sets
which satisfy many of the dominance criteria are easier.
If we want results on random problems to predict perfor-

mance on real-world problems, then the generation scheme
should have practical relevance (Property 2). Consequently,
we should consider how data arises in real-world settings.
Some examples in machine scheduling include: weights
that depend on job class, job processing time positively cor-
related with weight, costs that are grouped by crew senior-
ity in a crew scheduling problem, externally arriving jobs
that motivate exponentially distributed interarrival times,
interarrival times of internally arriving jobs that have less
variance, burstiness of job arrivals, deadlines specified by
customer requirements, deadlines determined by the pro-
ducer based upon processing time, due dates based on an
inventory turnover target or on the current jobs in the shop,
and due dates specified before job arrival. Similar lists can
be developed for other applications.
Usually, the data should be generated so that its fea-

tures, other than data scale and problem size, do not change
with the data scale or problem size, respectively (Proper-
ties 3 and 4). In accordance with Principle 2, this enables
comparison between experiments with different numbers
of variables and different scales. In machine scheduling,
for example, as the number of jobs increases, the expected
value of total slack (defined in §2) increases, even when the

tightness of the constraints remains constant. This makes
expected value of total slack less suitable as a problem fea-
ture. There are exceptions to Property 3 for certain types
of procedures. For example, some dynamic programming
algorithms have solution times that depend on the scale of
the data. In such situations, it is important to vary the data
so that the scale changes.
How a generation scheme should model the growth of

problem difficulty as problem size increases is an important
issue. If a problem is known to be NP-hard, then there does
not exist a polynomial time algorithm for that problem,
unless P = NP (Garey and Johnson 1979). However, this
classification often results from the construction of worst-
case instances of the problem which are not representative
of average case instances (Lu and Posner 1993). Conse-
quently, the average computation time may be a polynomial
function of the input size. A similar result has been found
empirically for the traveling salesman problem (Lawler
et al. 1985, Ch. 10).
A related question is “What constitutes an average

case instance?” Although worst-case performance is better
defined, average-case performance is more relevant in many
computational experiments. For many procedures, it is pos-
sible to provide both a data generation scheme representa-
tive of worst-case computational effort and an alternative
scheme with a slower growth of effort. The first approach is
more applicable for computational experiments on extreme
performance, while the latter scheme is more applicable for
measuring typical performance. Which approach should be
used in a particular case depends on the features of the
experiment.
In a generation method, certain items should not be given

systematically special treatment unless this is required to
test a particular hypothesis (Property 5). For example, in a
scheduling problem we would not usually want the last due
date to depend upon other problem data while other due
dates do not. Generating data in this manner can introduce
unintended biases, which violates Principle 3.
In accordance with Principle 4, for the purposes of

dissemination and documentation, the generation method
should be easy to describe and implement (Properties 6
and 7). Regarding parsimony (Property 8), the generation
procedure should only create changes in the data that may
have an influence on the solution procedures being tested.

858 / Hall and Posner

For example, the performance of a basic enumeration algo-
rithm such as branch-and-bound is unaffected by changes
in costs if dominance rules are not used. Therefore, incor-
porating changes in costs into the data generation scheme
provides no useful information.
It may happen that a conflict exists between satisfying

the various properties discussed above. In this case, the
purposes of the experiment should resolve the conflict.

2. NOTATION

We need some notation to describe machine scheduling
problems. Let N = �1 � � � n� be the set of jobs. For job
j ∈N , pj is the processing time, rj is the release date, wj is
the weight (or value), dj is the due date, and d̄j is the dead-
line. A finish date, fj , denotes either dj or d̄j . For multiple
machine problems, M = �1 � � � m� is the set of machines
and pij is the processing time of job j ∈ N on machine
i ∈M . We define the total slack to be

∑
j∈N �dj − rj −pj�.

For precedence constraints, the set of constraints can be
represented by an acyclic graph in which each node corre-
sponds to a job. A directed arc from node i to node j means
that job i precedes job j, i.e., job j cannot begin processing
until job i has completed. We assume that this acyclic graph
includes all transitive arcs. For example, if the precedence
arcs include �i j� and �j k�, then the transitive arc �i k� is
also present. Observe that job i is required to precede job j
if and only if there exists an arc from node i to node j in the
precedence constraint graph. If there is a complete ordering
of the jobs, then there are 1+· · ·+ �n−1�= �n�n−1�/2	
arcs in the precedence constraint graph. We define the den-
sity of the precedence constraint graph to be (total number
of arcs)/�n�n−1�/2	. When we want to model only imme-
diate predecessor and successor relationships, the graph
that represents these relationships is called an immediate
precedence graph.

3. A CRITIQUE OF EXISTING
GENERATION SCHEMES

We consider several widely used data generation schemes
and identify their advantages and disadvantages.

3.1. Release Dates

For problems with release dates, most researchers use a
similar scheme (see, for example, Chandra 1979, Dessouky
and Deogun 1981, Hariri and Potts 1983, and Posner 1986):

pi ∼ U�a1 b1	

ri ∼ U�a2 b2	

where U denotes the uniform integer distribution. The value
of a1 is usually selected to be one, and a2 is usually
selected to be zero. However, this not always the case. Also,
a range of values for b2 is considered, and this range fre-
quently but not always depends on n.

When this scheme is used, a2 should be set to zero. The
reason is that, if the minimum release date is greater than
zero, then a translation of the time axis has zero as the
minimum release date. To include other minimum release
dates disregards parsimony (Property 8), and adds no new
information to the experiment. Similarly, a1 should usually
be set to one.
If b2 does not depend on n or

∑
pj , then the compara-

bility of results for different-size problems is questionable.
As n grows, the release dates become closer to each other
and become earlier relative to the total processing time.
This means that jobs with larger release dates do not have
active release date restrictions. This scheme does not have
regularity (Property 5).
In the generation scheme of Hariri and Potts (1983),

pi ∼ U�1100	 and ri ∼ U�050�5nR	, where R ∈
�0�20�40�60�81�01�25, 1�51�7523�. For the pur-
pose of comparing the effects of release date tightness to
total processing time, we support the use of the expected
value of the processing time of a job, which is 50.5 in this
case. With this approach, we can change the distribution of
the processing times, while retaining the comparability of
the tightness over various experiments.
The Hariri and Potts (1983) scheme described above has

several of the properties described in §1. These include
scale invariance (Property 3), size invariance (Property 4),
describability (Property 6), and efficiency (Property 7). One
drawback to this scheme is that the interrelease date times
are always approximately, but never exactly, exponentially
distributed. Therefore, this scheme does not have vari-
ety (Property 1). A researcher may want to compare the
effects of different arrival distribution patterns, which is not
possible using the method of Hariri and Potts (1983).

3.2. Finish Dates

Generating finish dates is more complicated than gener-
ating release dates. This is because there are two fac-
tors, mean and variance, that contribute to the positioning
of due dates and deadlines. Most data generation meth-
ods generate the processing times, pi, independently from
a uniform integer distribution, U�ab�, where 0 < a < b.
The due dates are generated from a uniform integer distri-
bution, U��h�p1 � � � pn�!h�p1 � � � pn ��, where � and
! come from a set of small values and h is a func-
tional. Some authors use h�p1 � � � pn�=

∑
pi, while oth-

ers use the expected value of total processing time. As
an example, Potts and Van Wassenhove (1983) use � ∈
�−�2−�1 � � � �9� and ! ∈ ��7 �8 � � � 1�8�, where � < !
for a particular experiment. The actual choices for � and !
are based on the selection of a mean and a range for the due
dates. According to much of the published research, both
the mean and the range are important in determining the
computation time of typical branch-and-bound procedures
(Potts and Van Wassenhove 1983).
Among the advantages of this scheme are that it is simple

and efficient. Also, because a uniform integer distribution is

Hall and Posner / 859

used for the due dates, the inter-duedate times are approxi-
mately exponentially distributed. Moreover, this procedure
can be modified to ensure that a feasible schedule always
exists for deadline problems.
One difficulty with using the actual values is that every

finish date is dependent on all of the processing times. This
implies that, if the jobs are indexed in earliest finish date
order, the finish date of the first job is dependent on the
processing time of the nth job. This seems unlikely to occur
in practice. Therefore, the generation scheme does not have
practical relevance (Property 2). Furthermore, it violates
Principle 3 by introducing unintended biases.
A further problem occurs with the objective of maxi-

mizing the weighted number of on-time jobs. When data
is generated according to the proposed method, the num-
ber of due date constraints that are active for the same
subset of jobs is usually small (Potts and Van Wassenhove
1988). Most of the subproblems defined by bottleneck due
dates are approximately knapsack problems, and are easy
to solve computationally. As a result, this scheme does not
have variety (Property 1).
Finally, for deadline problems, the scheme may not have

regularity (Property 5). An example occurs with the use
of the Potts and Van Wassenhove scheme described above.
When h�p1 � � � pn� =

∑
pi and � is close to 1, the slack

associated with the early jobs is much greater than that
associated with the late jobs.

3.3. Precedence Constraints

A convenient technique for generating precedence con-
straints, which we call GGEN, is described by Potts (1985)
and van de Velde (1995). First, a parameter D, where
0 < D < 1, is specified. For each pair of nodes i and j in
the graph, where 1 � i < j � n, a random number #ij is
generated from the uniform distribution over the interval
[0, 1]. If #ij < D, then arc �i j� is included in the graph.
The requirement that i < j ensures that the graph is acyclic.
If needed, any transitive arcs can then be added.
A difficulty with GGEN is that it is hard to control the

number of precedence constraints that are implied by tran-
sitivity. Suppose, for example, that np jobs precede job i
and ns jobs are successors of job j. Then, adding arc �i j�
to the graph may include another npns arcs that are implied
by transitivity. Thus, the graph may become dense in erratic
and unpredictable ways as more arcs are generated. This
may make it difficult to achieve a given target density. For
example, suppose we have two chains �1 � � � �n/2	� and
��n/2	+1 � � � n�, giving a density for the implied prece-
dence constraint graph of �1+· · ·+ ��n/2	−1�+1+· · ·+
�n−�n/2	− 1�	/�n�n− 1�/2� ≈ 50%. If we now add the
single arc ��n/2	 �n/2	+ 1�, then all jobs form a chain,
and the density becomes 100%.
A second difficulty with GGEN is that the probability

of existence is not the same for all arcs in the precedence
graph. Moreover, the precedence constraint graph has a
density that is not uniform across the nodes. If j > i, l > k,

and j− i > l−k, then arc �i j� has a greater probability of
existing than arc �k l�. As an example, consider a problem
with three jobs (and thus three nodes). If arcs (1, 2) and (2,
3) each exist with probability D= 0�5, then the probability
that there exists a path from node 1 to node 3 in the prece-
dence constraint graph is 0�5+ �1−0�5�0�52 = 0�625. The
expected degree of nodes 1 and 3 is 0�5+ 0�625 = 1�125,
and of node 2 is 0�5+ 0�5 = 1�0. The expected density of
the graph is 0�5417>D.
A third difficulty with GGEN is that for a given value

of D, as the number of nodes increases, the density of
the precedence constraint graph increases. For example, a
graph with five nodes and D = 0�5 has an expected den-
sity of more than 0.61. Thus, the value of D used in
the immediate precedence graph is not a good predictor
of the density of the precedence constraint graph, nor of
the number of feasible solutions. Further, as the number
of nodes increases, the difference in the probabilities that
arc �i i+ 1� and arc �1 n� exist increases, and the maxi-
mum difference in the expected degree of the nodes also
increases. As a result, GGEN does not have size invariance
and regularity (Properties 4 and 5).
Demeulemeester et al. (1993) suggest methods for gen-

erating random activity networks. However, because they
construct activity networks, their methods ensure that there
is a path from source to sink and explicitly consider
the density of the immediate precedence graph. For most
machine scheduling problems with precedence constraints,
a path from the first job to the last is not a requirement.
Also, as noted above, the density of the precedence con-
straint graph is usually much more relevant than that of the
immediate precedence graph.

3.4. Machine Routings and Speeds

For job shop problems, there are important issues associ-
ated with the routing of a job through the machines. In most
existing schemes, each machine that is not yet a part of the
routing has an equal probability of being selected as the
next machine. Storer et al. (1992) consider a more general
generation procedure. They decompose the set of machines
into two groups, and then generate random routings for
each group. This generation method increases the likeli-
hood of bottlenecks throughout the shop. They observe that
problem difficulty increases when using two group routings
instead of the standard one group routings. Both one-and
two-group routing instances are generated in the problem
test bank of Demirkol et al. (1998). Anecdotal evidence
suggests that the computationally hardest job shop prob-
lems contain embedded flow shops, which create schedul-
ing bottlenecks. While the work of Storer et al. (1992) is a
step towards exploring these beliefs, more robust generation
procedures are needed.
With respect to generation of machine speeds for uni-

form parallel processors, there are not many studies. The
standard approach is to generate speeds from a uniform dis-
tribution (see Ow 1985, for example). While this scheme

860 / Hall and Posner

may be applicable in some situations, this generates prob-
lems where most of the machines have approximately
the same speeds. For example, suppose that we gener-
ate nine machine speeds with values 1715 � � � 1. Then,
machine 1 is seventeen times faster than machine 9. How-
ever, machine 1 is less than twice as fast as machines 2, 3,
4 and 5. Consequently, in this scheme, most machines have
approximately the same speed. Depending on the features
of the experiment, this may introduce an unintended bias
into the results.

4. DATA GENERATION FRAMEWORKS

In this section, we make specific proposals for the design
of data generation schemes for various scheduling prob-
lems. As part of our procedures, we incorporate the abil-
ity to generate information for individual jobs. There are
numerous instances in manufacturing processes where prior
job information influences the release dates of subsequent
jobs. JIT systems provide an example (Weiss and Gershon
1993). The ability to generate job information on an indi-
vidual basis results in a more robust generation scheme.
Unfortunately, as discussed in §3, most existing schemes
do not permit this possibility.
When generating a set of data there are two types of

possible dependencies. Relationships within a given type
of data are called intradependencies. An example is when
the deadline of the next job depends on the deadline of
the previous job. Interdependencies occur when there are
relationships between different types of data. An example
is generating data in which jobs with large processing times
have large weights. We discuss these relationships in §5.
Suppose there are no intradependencies or interdepen-

dencies. Then, for a particular type of data, the data genera-
tion process is comparatively simple. First, select an appro-
priate distribution. Then, sample from this distribution to
determine the values of the data. Depending on the exper-
iment, such types of data can include job weights and pro-
cessing times. Also, setup times usually have no intrade-
pendencies or interdependencies and can be generated by
this procedure.
The use of the uniform distribution is standard for these

types of data. While a researcher may want to consider a
distribution with a long tail such as the exponential dis-
tribution, we recommend the use of the uniform distribu-
tion for most situations. For particular applications, some
authors use a truncated normal distribution instead of a uni-
form distribution (see, for instance, Srinivasan 1971, Baker
and Martin 1974, and Ow and Morton 1989). Other studies
show that a beta distribution might sometimes be appropri-
ate. For example, Clark (1962) suggests that the beta dis-
tribution is a natural choice for generating data for large
problems and is also easy to use. Farnum and Stanton
(1987) state that, given a finite interval, the beta distribu-
tion provides a rich family of distribution functions and
is useful when little is known about the actual distribu-
tion. Recent experimental evidence suggests that a lognor-
mal distribution might be appropriate for some types of
problems (Pinedo 1995).

When there are intradependencies, the generation process
can be much more complex. When generating such data,
we recommend the use of Principles 2 and 3 as guides. We
now discuss several types of data that often have intrade-
pendencies. In §4.l, we discuss the generation of release
dates. We consider problems with finish dates in §4.2 and
with precedence constraints in §4.3. §4.4 discusses machine
routings and machine speeds in multiple machine problems.

4.1. Release Dates

We propose a generation method for release dates that pro-
vides flexibility in selecting the interrelease date times. Our
proposal is to let

r1 = 0 and ri = gi�pi ri−i�+Xi i = 2 � � � n

where Xi is a random variable generated from some proba-
bility distribution and gi�pi ri−1�, i = 1 � � � n, is a bivari-
ate function of the processing time of the job and the
prior release date. Observe that if gi�pi ri−1� = ri−1, and
Xi comes from an exponential distribution, then we can
approximate the generation scheme used by Hariri and
Potts (1983). In order to create burstiness of the job arrivals,
we can let gi�pi ri−1� be a multimodal function. The pos-
sibility of using different distributions adds valuable flexi-
bility to the experimental design. The proposed method has
Properties 1 and 3 through 8. The requirements of practi-
cal relevance (Property 2) depend upon the features of the
problem and the features of the experiment. Nevertheless,
our method has enough flexibility to meet many typical
requirements.

4.2. Finish Dates

We propose a generation method for finish dates which
incorporates many of the ideas that are presented in §1.
This method can be used to generate data similar to that
of Potts and Van Wassenhove (1983), but also provides a
much richer set of test problems. Let

f0 = K and fi = hi�p1 � � � pn fi−1�+Xi i = 1 � � � n

where K � 0 and Xi is a random variable generated
from some probability distribution. When finish dates do
not depend upon processing times, a reasonable choice
is to let hi�p1 � � � pn fi−1� = fi−1. An example of this
type of situation is in a make-to-stock environment. In
this environment, the finish date depends only on the
prior finish date and the expected processing time, where
the expected processing time can be incorporated in the
distribution of the Xis. An alternative choice is to let
hi�p1 � � � pn fi−1�= iE�pi	. This is appropriate when fin-
ish dates depend upon processing times of previous and
current jobs, but the exact values of those processing times
are not known. Therefore, their expected value is used as
a proxy measure. Setting hi�p1 � � � pn fi−1�=

∑i
j=1 pj is

useful when there is dependence on the known processing

Hall and Posner / 861

times of previous and current jobs, as in a typical make-to-
order environment.
Each of these choices for h satisfies the properties in

§1. In particular, we can increase the number of jobs with-
out changing the characteristics of the data (Property 4).
We also note that the data interdependencies in our scheme
are more reasonable than in the schemes used by most
researchers. Specifically, if the jobs are indexed in earliest
finish date order, then fi does not depend on pj for any
j > i. Also, our proposed method provides the ability to
change the slack of job j in a way that is uniform across
all jobs.

4.3. Precedence Constraints

We present an approach to solve the problems of excessive
and nonuniform graph density discussed in §3.3. We rec-
ommend adjusting the probability of generating a given arc
so that in the precedence constraint graph, each arc has the
same probability of existing, and each node has the same
expected degree. To do this, let Pij = Pr�arc�i j� exists in
the immediate precedence graph}, and let D = target den-
sity of the precedence constraint graph = Pr�arc�i j� exists
in the precedence constraint graph}, for 1� i < j � n. Then,

D = Pr�arc�i j� exists in the immediate precedence graph�

+Pr�arc�i j� doesn’t exist, but there is some other
path between i and j�

= Pij + �1−Pij�
[
Pr�arc�i i+1�� ·Pr�arc�i+1 j��

+Pr�¬arc�i i+1�� ·Pr�arc�i i+2�� ·Pr�arc�i+2 j��

+Pr�¬arc�i i+1�� ·Pr�¬arc�i i+2��

·Pr�arc�i i+3�� ·Pr�arc�i+3 j��

+· · · · ·+Pr�¬arc�i i+1�� · · ·Pr�¬arc�i j−2��

·Pr�arc�i j−1�� ·Pr�arc�j−1 j��
]

= Pij +
(
1−Pij

)
�DD+ �1−D�DD + �1−D�2DD

+· · ·+ �1−D�j−i−2DD	

= Pij + �1−Pij�D
(
1− �1−D�j−i−1

)
�

Therefore,

Pij =
D�1−D�j−i−1

1−D
(
1− �1−D�j−i−1

) � (1)

Equation (1) can be used to determine the appropri-
ate probability of generating an arc �i j� to achieve the
desired density, D. These values can be calculated once,
independently of n, and then used when needed. Table 2
shows the values of Pij , computed to four decimal places
for D ∈ �0�10�2 � � � 0�9� and j− i = 1 � � � 40. It can be
seen that as j− i increases, the value of Pij decreases more

rapidly for higher values of D. This illustrates the intuition
that the existence of an arc �i i+ k� is more likely to be
implied by transitivity in higher density graphs. Note that
if each arc �i j� is generated with probability Pij accord-
ing to (l), then the expected degree of each node in the
precedence constraint graph is �n−1�D. Thus, the expected
density is uniform across all the nodes.
To reduce the computational effort required to construct

the graph, we recommend that all arcs which leave node i
be generated before any of those which leave node i−1, for
i = n−1 � � � 1. Also, for the arcs which leave node i, the
entering nodes should be considered in index order. Arcs
that are part of the transitive closure can be determined by
identifying the arcs that originate from the termination of
a new arc. For example, suppose arcs �n− 3 n− 2� and
�n−3 n� exist. If we next generate arc �n−4 n−3�, then
this automatically implies the existence of arcs �n−4 n−
2� and �n−4 n�. The end points of these implied arcs are
exactly the nodes that are successors of node n−3.
In some industrial applications, jobs belong to product

families, and there may be precedence constraints between
the families. For example, in the chemical, paint, and fer-
tilizer industries, restrictions on processing sequences may
be used to minimize chemical contamination between job
families. Thus, a set of jobs that are all from the same fam-
ily may have few precedence constraints, while a set of
jobs taken from different families may have many. In order
to model this situation, we need to generate a precedence
constraint graph which contains areas with different densi-
ties. To vary the density, we can change the value of Pij as
needed. An example is Pij = �i+ j�D/2n.

4.4. Machine Routings and Speeds

We present an approach for generating a routing of a job
through the machines in a job shop. In the simplest case,
the routings of the jobs are independent of each other.
However, to model embedded flow shops, we need positive
correlation between the routings of the jobs.
We recommend an approach based on the use of a set of

transition probability matrices. In each matrix, the entry in
row i and column j represents the probability that an oper-
ation on machine j follows one on machine i. The proba-
bilities in each row to one. After each one-step (i.e., one-
operation) routing is generated, we can adjust the matrix.
Suppose, for example, that jobs are not permitted to revisit
machines. Then, after a job visits a machine, the appropri-
ate entry in the matrix can be assigned a value of zero and
the remaining entries in the row can be normalized so that
they again sum to one. If the job is allowed to reenter the
machine but with a lower probability, similar changes can
be made. Also, we can adjust the matrix after a specified
number of one-stage routings so that several jobs converge
on the same machine, thereby creating a bottleneck.
The probabilities in the matrix can be based on actual

transition frequencies within the job shop. Alternatively,
randomly generated transition probabilities can be used.

862 / Hall and Posner

Table 2. Values of Pij which ensure a given expected density

Expected Density

j−1 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

1 .1000 .2000 .3000 .4000 .5000 .6000 .7000 .8000 .9000
2 .0909 .1667 .2308 .2857 .3333 .3750 .4118 .4444 .4737
3 .0826 .1379 .1736 .1935 .2000 .1935 .1736 .1379 .0826
4 .0749 .1135 .1282 .1259 .1111 .0876 .0593 .0310 .0089
5 .0679 .0929 .0933 .0795 .0588 .0370 .0185 .0064 .0009
6 .0616 .0757 .0672 .0493 .0303 .0151 .0056 .0013 .0001
7 .0558 .0615 .0480 .0302 .0154 .0061 .0017 .0003 .0000
8 .0505 .0498 .0341 .0183 .0078 .0025 .0005 .0001 .0000
9 .0456 .0403 .0241 .0111 .0039 .0010 .0002 .0000 .0000
10 .0413 .0325 .0170 .0067 .0019 .0004 .0000 .0000 .0000
11 .0373 .0261 .0120 .0040 .0010 .0002 .0000 .0000 .0000
12 .0337 .0210 .0084 .0024 .0005 .0001 .0000 .0000 .0000
13 .0304 .0169 .0059 .0014 .0002 .0000 .0000 .0000 .0000
14 .0275 .0136 .0041 .0009 .0001 .0000 .0000 .0000 .0000
15 .0248 .0109 .0029 .0005 .0001 .0000 .0000 .0000 .0000
16 .0224 .0087 .0020 .0003 .0000 .0000 .0000 .0000 .0000
17 .0202 .0070 .0014 .0002 .0000 .0000 .0000 .0000 .0000
18 .0182 .0056 .0010 .0001 .0000 .0000 .0000 .0000 .0000
19 .0164 .0045 .0007 .0001 .0000 .0000 .0000 .0000 .0000
20 .0148 .0036 .0005 .0000 .0000 .0000 .0000 .0000 .0000
21 .0133 .0029 .0003 .0000 .0000 .0000 .0000 .0000 .0000
22 .0120 .0023 .0002 .0000 .0000 .0000 .0000 .0000 .0000
23 .0108 .0018 .0002 .0000 .0000 .0000 .0000 .0000 .0000
24 .0098 .0015 .0001 .0000 .0000 .0000 .0000 .0000 .0000
25 .0088 .0012 .0001 .0000 .0000 .0000 .0000 .0000 .0000
26 .0079 .0009 .0001 .0000 .0000 .0000 .0000 .0000 .0000
27 .0071 .0008 .0000 .0000 .0000 .0000 .0000 .0000 .0000
28 .0064 .0006 .0000 .0000 .0000 .0000 .0000 .0000 .0000
29 .0058 .0005 .0000 .0000 .0000 .0000 .0000 .0000 .0000
30 .0052 .0004 .0000 .0000 .0000 .0000 .0000 .0000 .0000
31 .0047 .0003 .0000 .0000 .0000 .0000 .0000 .0000 .0000
32 .0042 .0002 .0000 .0000 .0000 .0000 .0000 .0000 .0000
33 .0038 .0002 .0000 .0000 .0000 .0000 .0000 .0000 .0000
34 .0034 .0002 .0000 .0000 .0000 .0000 .0000 .0000 .0000
35 .0031 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
36 .0028 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
37 .0025 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
38 .0022 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
39 .0020 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
40 .0018 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

Groups of jobs can have their own sets of matrices. This
creates job groups with similar characteristics. All existing
methods for generating machine routings are included in
our method.
For generating machine speeds, we recommend a genera-

tion process that creates a uniform selection of proportional
speeds. That is, speeds should be generated from a loga-
rithmic distribution. In this case, the expected ratio of the
speeds of a pair of adjacent machines ordered by speed is
constant across all such pairs. This creates instances where
the machine speeds are more evenly varied than in the
method of Ow (1985).

5. OTHER ISSUES

In some applications, a problem arises with respect to
feasibility of the data. Usually, a set of feasible prob-
lem instances is needed for testing. There are two basic

approaches to generating this set. One approach is to
enforce feasibility during the data generation process. For
example, one common scheme for generating deadline
problems is first to generate all the processing times. Then
the deadlines are generated so that a feasible schedule
exists. That is, a given deadline di is generated from
U�

∑i
j=1 pj

∑n
j=1 pj	. In this example, the last deadline has

no degrees of freedom, which is not in accordance with
regularity (Property 5).
A second approach is to generate data without regard

for feasibility and then discard instances that have no fea-
sible schedule. For example, in a single machine schedul-
ing problem without release dates, sequencing the jobs
in deadline order produces a feasible schedule whenever
one exists (Jackson 1955). Consequently, feasibility can be
checked in polynomial time. Unfortunately, if release dates
are included, then checking for feasibility is usually an NP-

Hall and Posner / 863

hard problem (Lenstra et al. 1977). In this case, checking
for feasibility requires almost as much effort as finding
an optimal schedule, a distinct drawback to the approach.
However, it is frequently of interest to determine how long
it takes for an optimization procedure to discover that there
is no solution. Also, having information about the propor-
tion of solutions that are infeasible provides insight into the
data sets used for testing. When possible, the data should
not be distorted to ensure feasibility. It is important to
keep the test data as free as possible from spurious depen-
dencies and aberrations (Principle 3). Thus, we support
the methodology of Potts and Van Wassenhove (1983), in
which infeasible solutions are recorded and then discarded.
When there are interdependencies between types of data,

steps must be taken to represent these relationships prop-
erly. The two major issues that should be addressed are
maintaining comparability (Principle 2) and unbiasedness
(Principle 3). As opposed to creating relationships and then
observing the actual correlation, we recommend that spe-
cific expected correlations be created (Moore and Reilly
1993). The former approach can lead to unanticipated high
degrees of correlation in a generation scheme (see Potts
and Van Wassenhove 1988, John 1989, and Hariri and Potts
1991). However, inducing a specific level of expected cor-
relation permits more accurate study of the effects of corre-
lation on the performance of solution procedures, and also
helps to prevent biased data sets.

6. CASE STUDIES

We now illustrate our recommendations for the design of
a data generation scheme for scheduling problems. In §6.1
and 6.2, we consider two problems with a variety of fea-
tures, discuss some relevant factors, suggest specific gen-
eration schemes, and offer some supporting comments.
Section 6.3 summarizes our conclusions from these case
studies.

6.1. Minimizing Maximum Tardiness with
Release Dates

Features of the Problem.
Application: Online assignment of aircraft to gates after

a service disruption.
Objective: Minimize maximum tardiness, motivated by

customer service requirements.
Constraints: Release dates are determined by airplane

arrivals.
Complexity: Unary NP-hard.
Procedure being tested: Branch and bound, using job

dominance rules to prune the tree.
Job arrival process: Random arrivals from an exter-

nal source, release dates are known before due dates are
determined.
Processing times: Normally distributed (truncated below

a known lower bound on aircraft service time), values are
not known before due dates are decided.

Feasibility: Not an issue, because there are no deadline
constraints.

Features of the Experiment.
Evaluate performance of the procedure over a large vari-

ety of problem instances that simulate the real problem.
Implement the procedure if successful, and publish the

results.

Proposed Generation Scheme.
r0 = 0 and ri = ri−1 +Xi, where Xi ∼ exp�)� for i =

1 � � � n.
pi ∼ N�*+� for i= 1 � � � n, truncated below a known

lower bound.
di = ri+kE�pi	 for i = 1 � � � n, where k � 1.

Comments. Given the need to evaluate performance,
Principle 1 suggests the need for variety and practical rel-
evance. Principle 3 implies the need for scale and size
invariance, and regularity. Since one purpose is to publish
and implement the results, Principle 4 implies the need
for describability and efficiency. Allowing)*+ , and k
to vary creates a wide variety of problem instances while
maintaining parsimony. Because all inputs of the same type
are treated similarly, the proposed scheme has regularity.
The above generation scheme satisfies all of the properties
presented in §1.
Both the release dates and due dates are generated

according to the methods described in §4. For this applica-
tion, the release date of a job is independent of the process-
ing time. Because the actual processing time is not known,
each due date is calculated from the expected processing
time. To determine algorithmic performance for different
size problems, n should be varied.

6.2. Minimizing Weighted Completion
Time with Deadlines

Features of the Problem.
Application: Make-to-order supplier of parts to an auto

manufacturer.
Objective: Total weighted completion time, motivated by

the desire to reduce inventory costs.
Constraints: Deadlines, motivated by customer

requirements.
Complexity: Unary NP-hard.
Procedures being tested: Several heuristics. A lower

bound is used to determine the accuracy of each heuristic
for large-size problems.
Job arrival process: Batch arrivals from an upstream

internal process.
Processing times: Beta distributed, known before dead-

lines are decided.
Weights: The labor component is highly correlated

to processing time. The raw material component is not
correlated.
Precedence constraints: The assembly process has gen-

eral job precedence constraints.

864 / Hall and Posner

Feasibility: Need to identify feasible schedules. Include
results when the heuristic cannot find a feasible schedule
although one exists, and when no feasible schedule exists.

Features of the Experiment.
Evaluate performance of several heuristics over a set of

problem instances that simulate the real-world problem.
Identify and implement the best heuristic. Publishability

is not a requirement.

Proposed Generation Scheme.
pi ∼ !�a1 b1	 for i = 1 � � � n.
d̄0 =K and d̄i = d̄i−1+Xi, where Xi = k ·exp�E�pi	� for

i = 1 � � � n.
wi = pi+Yi, where Yi ∼U�a2 b2	 for i= 1 � � � n is the

raw material component.
Precedence constraints: the values of Pij are generated

as discussed in §4.3.

Comments. Given the need to evaluate real-world per-
formance, Principle 1 suggests the need for practical rele-
vance. Since several heuristics are being compared, Princi-
ple 2 implies the need for size invariance and scale invari-
ance. Principle 3 suggests the need for regularity. Because
publishing the results is not planned, describability is not
required. Further, since only a small variety of tests will
be performed, Principle 4 does not require efficiency. How-
ever, it is still sensible to satisfy parsimony. The data has
scale invariance and size invariance. It also has regularity,
which is important because of the comparisons being made
between different procedures.
Because inventory cost is related to the value of an item,

which in turn is a function of processing time, the process-
ing time information is used to generate weights. The pro-
posed generation scheme does not guarantee the existence
of a feasible schedule. For large size problems, it is not pos-
sible to determine in a reasonable time whether a feasible
schedule exists. Consequently, the information about the
heuristic’s ability to find feasible solutions must be inferred
from smaller size problems. Variations in al b1 a2 b2K,
and k may have a significant effect on the heuristic’s per-
formance. Similarly, the target density of the precedence
graph, D, affects the number of feasible solutions, which
in turn may affect heuristic performance.

6.3. Summary

The two case studies above illustrate the complexity of
designing a data generation scheme. As mentioned in
the introductory section, a single data generation scheme
cannot be used in all circumstances. Many variations are
necessary, depending upon the problem, the solution proce-
dures being tested, and the purposes of the test. However,
the principles, features, and properties that we consider in
each experiment are similar.

7. CONCLUDING REMARKS

We demonstrate that some frequently used schemes for the
generation of data for machine scheduling problems are
biased, inflexible, unrealistic, and hard to justify. By con-
sidering a set of principles and properties, we develop
general frameworks for data generation. These frameworks
offer greater flexibility than previous schemes, and also
provide the ability to avoid previous biases. For exam-
ple, we present a scheme for generating precedence con-
straint graphs with a target density that is uniform. Our
frameworks use various components depending upon the
specifics of each situation. We indicate some of the issues
that should be considered in designing those components.
Our work should help future researchers to develop gener-
ation schemes that can be better justified from basic prin-
ciples and properties, that contain fewer inherent biases,
and that are more consistent and comparable with schemes
developed by other researchers.
The format we present in §6 for generating data sets can

be used in a variety of situations. As suggested by Hammer
and Shanno (1999), it may be possible to elicit information
on confidential data sets by using this format to obtain the
specifications of the generation process.
Problems for future study include the development of

more detailed guidelines for many specific situations that
arise in generating data. An example for scheduling prob-
lems might be the generation of deadlines that are agreeable
with other parameters. Also, given a choice of procedures,
it is useful to determine which is most effective for a given
data set. The development of indicators that relate to this
choice is a new area of research (see Yang 1998, for exam-
ple). However, this research is essential for the development
of more effective computational testing. We hope that our
work stimulates further research in these directions.

ACKNOWLEDGMENTS

This research is supported in part by the National Science
Foundation under grant numbers DMI-9821033 and DMI-
9908437, and in part by the Summer Fellowship Program,
Fisher College of Business, The Ohio State University.

REFERENCES

Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Network
Flows: Theory, Algorithms and Applications. Prentice-Hall,
Englewood Cliffs, NJ.

Baker, K. R., J. B. Martin. 1974. An experimental comparision of
solution algorithms for the single-machine tardiness problem.
Naval Logis. Res. Quart. 21 187–199.

Barr, R. S., B. L. Golden, J. P. Kelly, M. G. C. Resende,
W. R. Stewart, Jr. 1995. Designing and reporting on compu-
tational experiments with heuristic methods. J. Heuristics 1
9–32.

Chandra, R. 1979. On n/1/�F dynamic deterministic problems.
Naval Res. Logist. Quart. 26 537–544.

Clark, C. E. 1962. The PERT model for the distribution of an
activity time. Oper. Res. 10 405–406.

Hall and Posner / 865

Crowder, H. P., R. S. Dembo, J. M. Mulvey. 1978. Reporting com-
putational experiments in mathematical programming. Math.
Programming 15 316–329.
, P. B. Saunders. 1980. Results of a survey on MP perfor-
mance indicators. COAL Newsletter(Jan) 2–6.

Demeulemeester, E., B. Dodin, W. Herroelen. 1993. A random
activity network generator. Oper. Res. 41 972–980.

Demirkol, E., S. Mehta, R. Uzsoy. 1998. Benchmarks for shop
scheduling problems. Eur. J. Oper. Res. 109 137–141.

Dessouky, M. I., J. S. Deogun. 1981. Sequencing jobs with
unequal ready times to minimize mean flow time. SIAM J.
Comput. 10 192–202.

Farnum, N. R., L. W. Stanton. 1987. Some results concerning the
estimation of beta distribution parameters in PERT. J. Oper.
Res. Soc. 38 287–290.

Fisher, M. L. 1980. Worst case analysis of heuristic algorithms.
Management Sci. 26 1–17.

Fleischer, M., S. H. Jacobson. 1999. Information theory and
the finite-time behavior of the simulated annealing algo-
rithm: Experimental results. INFORMS J. Comput. 11
35–43.

Florian, M., B. Fox, H. Crowder, R. Dembo, J. Mulvey. 1979.
Reporting computational experience in Operations Research.
Oper. Res. 27 vii–x.

Garey, M. R., D. S. Johnson. 1979. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. Freeman,
San Francisco, CA.

Greenberg, H. J. 1990. Computational testing: Why, how and how
much. ORSA J. Comput. 2 94–97.

Hammer, P. L., D. F. Shanno. 1999. Private communication.
Hariri, A. M., C. N. Potts. 1983. An algorithm for single machine

sequencing with release dates to minimize total weighted
completion time. Discrete Appl. Math. 5 99–109.
, . 1991. Heuristics for scheduling unrelated parallel
machines. Comput. and Oper. Res. 18 323–331.

Hoffman, K. L., R. H. F. Jackson. 1982. In pursuit of a method-
ology for testing mathematical programming software. Proc.
Conf. Evaluating Math. Programming Techniques Boulder,
CO. 177–199.

Hooker, J. N. 1994. Needed: An empirical science of algorithms.
Oper. Res. 42 201–212.
. 1995. Testing heuristics: We have it all wrong. J. Heuristics
1 33–42.

Jackson, J. R. 1955. Scheduling a production line to min-
imize maximum tardiness. Research Report 43 Manage-
ment Science Research Project, University of California,
Los Angeles, CA.

Jackson, R. H. F., P. T. Boggs, S. G. Nash, S. Powell. 1991.
Guidelines for reporting results of computational experi-
ments: Report of the ad hoc committee. Math. Programming
49 413–425.

John, T. C. 1989. Tradeoff solutions in single machine production
scheduling for minimizing flow time and maximum penalty.
Comput. and Oper. Res. 16 471–479.

Klee, V., G. J. Minty. 1972. How good is the simplex algorithm?
O. Shisha, ed., Inequalities III, Academic Press, New York,
159–175.

Lawler, E. L., J. K. Lenstra, A. H. G. Rinnoy Kan, D. B. Shmoys,
eds. 1985. The Traveling Salesman Problem: A Guided Tour
of Combinatorial Optimization. Wiley, New York.

Lee, C-Y., J. Bard, M. Pinedo, W. E. Wilhelm. 1993. Guidelines
for reporting computational results in IIE Transactions. IIE
Trans. 25 121–123.

Lenstra, J. K., A. H. G. Rinnooy Kan, P. Brucker. 1977. Complex-
ity of machine scheduling problems. Ann. Discrete Math. 1
343–362.

Lu, L., M. E. Posner. 1993. An NP-hard open shop scheduling
problem with polynomial average time complexity. Math.
Oper. Res. 18 12–38.

McGeoch, C. C. 1996. Toward an experimental method for algo-
rithm simulation. INFORMS J. Comput. 8 1–15.

Moore, B. A., C. H. Reilly. 1993. Randomly generating syn-
thetic optimization problems with explicitly induced corre-
lation. OSU/ISE Working paper 1993-002, The Ohio State
University, Columbus, OH.

Ow, P. S. 1985. Focused scheduling in proportionate flowshops.
Management Sci. 31 852–869.
, T. E. Morton. 1989. The single machine early/tardy prob-
lem. Management Sci. 35 177–191.

Pinedo, M. 1995. Scheduling: Theory, Algorithms, and Systems.
Prentice-Hall, Englewood Cliffs, NJ.

Posner, M. E. 1986. A sequencing problem with release dates and
clustered jobs. Management Sci. 32 731–738.

Potts, C. N. 1985. A Lagrangean based branch and bound
algorithm for single machine sequencing with precedence
constraints to minimize total weighted completion time.
Management Sci. 31 1300–1311.
, L. N. Van Wassenhove. 1983. An algorithm for
single machine sequencing with deadlines to minimize
total weighted completion time. Eur. J. Oper. Res. 12
379–387.
, . 1988. Algorithms for scheduling a single machine
to minimize the weighted number of late jobs. Management
Sci. 34 843–858.

Srinivasan, V. 1971. A hybrid algorithm for the one machine
sequencing problem to minimize total tardiness. Naval Res.
Logist. Quart. 18 301–313.

Storer, R. H., S. D. Wu, R. Vaccari. 1992. New search spaces for
sequencing problems with application to job shop schedul-
ing. Management Sci. 38 1495–1509.

van de Velde, S. L. 1995. Dual decomposition of a single-machine
scheduling problem. Math. Programming 69 413–428.

Weiss, H. J., M. E. Gershon. 1993. Production and Operations
Management, 2nd ed. Allyn and Bacon, Needham Heights,
MA.

Yang, J. 1998. Scheduling with batch objectives. Doctoral disser-
tation, Industrial and Systems Engineering, The Ohio State
University, Columbus, OH.

