
14 January/February 2013 Published by the IEEE Computer Society 0272-1716/13/$31.00 © 2013 IEEE

Feature Article

Generating Freestyle Group

Formations in Agent-Based Crowd

Simulations
Qin Gu and Zhigang Deng * University of Houston

In most crowd simulation systems, each agent

intelligently moves toward its destination

through navigational pathfinding algorithms

and avoids collisions with other agents and ob-

stacles through local behavior control models.

However, research has paid little attention to

simulating the collective behav-

iors of the entire crowd or a cer-

tain subgroup of the crowd. In

many scenarios, these collective

behaviors play a significant role

in exhibiting the crowd’s mass

attributes. From the perspective

of visual simulation, a group’s

collective behaviors are usually

demonstrated as their general

formations. For instance, when

a computer game simulates a

large-scale battle, the two army’s

formations directly reflect their

controllers’ strategic commands.

When simulating a crowd,

one intuitive way to form a tar-

get formation is to provide each

agent’s desired position at a par-

ticular moment1 and generate transitions between

that position and the destination. However, users

must manually specify many spatial, temporal,

and correspondence constraints, which is time-

consuming and nontrivial, particularly when the

crowd includes many agents that change location

frequently. Similarly, when a group of people per-

forms a collective action simultaneously in the

real world, it’s generally impossible for their com-

mander or team leaders to convey detailed move-

ment information such as every group member’s

position at every time instance.

We propose an interactive, scalable framework

to simulate freestyle group formation through in-

tuitive user interfaces (see Figure 1). Specifically,

each agent in a group first evaluates its optimal

destination in a user-specified target formation

constrained by formation patterns. Then, the frame-

work employs formation coordinates, a relative-agent-

position representation, to evaluate the final agent

distribution in the target formation and the cor-

respondence between the initial and target states.

During the runtime transition from the initial

formation to the target formation, each agent will

move along a path guaranteed to avoid local col-

lisions, follow user-sketched transition paths, and

reach the target formation position.

This research provides two main contributions.

The first is automated generation of freestyle group

formations. Using a set of free-form user inputs,

our approach automatically evaluates the corre-

sponding target agent distribution with relatively

few parameter tunings. The formation coordinates

enable our approach to robustly handle any varia-

tion of formation shape, orientation, and scale.

The second contribution is agent motion trajec-

tory control at both the local and global levels.

This is especially useful when users try to simu-

late strategic scenarios such as “a military squad

is forming a circle formation while bypassing any

enemies or static obstacles.”

An interactive, scalable

framework generates

freestyle group formations

and transitions via natural

and flexible sketching

interaction. It computes a

plausible agent distribution

in the target formation and

agent correspondences

between keyframes. Two-level

formation trajectory control

lets users intuitively guide

agents’ transition paths from

the initial formation to the

target formation.

 IEEE Computer Graphics and Applications 15

Target Formation Specification and
Generation
Our group formation specification and evaluation

efficiently convert an intuitive user input or de-

scription of a group formation into a numerical

representation of agent distribution. A group for-

mation’s realism derives from the common obser-

vation that a group member in a real-world crowd

is less likely to move across the formation to reach

a far-off position if a much closer one is reachable.

This is because humans tend to save energy un-

less special constraints exist, which is beyond this

article’s scope.

Formation Shape Representation
Interfaces for generating group formations should

be intuitive enough for users to easily depict any

formation without significant parameter tuning or

prior mathematical knowledge. Meanwhile, they

should be accurate enough for the crowd simula-

tion algorithm to understand the users’ purpose.

In reality, a group formation’s most salient visual

feature is generally its contour shape, such as a

square or circle. However, directly specifying and

quantifying a geometric shape is nontrivial for

most users.

To simplify this task, we propose a unified for-

mation shape representation called a formation

template—an oversampled point space (relative to

the number of agents) with a roughly even dis-

tribution. Our approach converts the initial user

input to the formation template; in this way, vari-

ous types of user input can share the rest of the

simulation pipeline. Our framework currently can

automatically convert three common types of user

input: brush painting, texture maps, and boundary

sketches.

Brush painting. Two-dimensional image-processing

tools such as Adobe Photoshop commonly use

brush-painting input. Branislav Ulicny and his col-

leagues proposed an efficient brush tool to author

desired crowd specifications.2 To generate a unified

representation, we employ a 2D painting’s pixel

intensities as a convenient reference to evaluate

its target agent distribution. In the discrete simu-

lated crowd, we sample a position as a template

point only if its pixel intensity matches the brush’s

color within a certain threshold. Brush painting

(see Figure 2a) works well for specifying simple

formation shapes, which often require only a few

painting components (for example, brush sizes).

Texture maps. For complicated formations, brush

painting might be inaccurate and time-consuming.

Instead, we can treat the target shape as a 2D

Global planning and decision-making

Global trajectory control Global group collision avoidance

Local trajectory control Local agent collision avoidance

Formation vectors Agent speed, orientation

Trajectory
sketch

Formation
sketch Agent animations

Group speed, orientation

Figure 1. Embedding group formation control into a complete crowd simulation system. Orange indicates

the components of a traditional crowd simulation system; blue and purple indicate user interactions and

formation control, respectively, in our framework.

16 January/February 2013

Feature Article

texture ground and directly retrieve the shape in-

formation by matching the points in the texture

coordinates with those in the crowd simulation

world coordinates.

Boundary sketches. The previous two types of user

input provide fast solutions for sampling relatively

simple or predefined formation shapes. However,

in many scenarios, users might want to specify

complicated formations on the fly. Brush painting

can’t specify subtle formation details such as

sharp angles or continuous changes of the stroke

size. Texture maps require the target formation to

be well defined in advance and cannot be changed

on the fly. Furthermore, both input types depend

on color intensity information during sampling.

If the environment has similar color information

on the virtual ground, the sampling results would

be inaccurate.

To complement those two input types, we de-

veloped a freehand-sketching interface using two

types of boundary curves—inclusive curves and ex-

clusive curves. With them, users can specify arbi-

trary target formations such as the examples in

Figures 2b and 3.

The initial user sketches are freehand curves

or line stripes that might contain irregular point

(shape vertex) distributions. To generate a visu-

ally balanced target formation template, we first

evenly resample (that is, reevaluate) the points

on the boundaries. We then fill the area between

the inclusive and exclusive boundaries through an

extended scanline flood-fill algorithm (see Figure

4), employing the same sampling unit used for

boundaries. We adapted our filling algorithm to a

discrete grid space so that its computation is faster

than the traditional pixel-by-pixel sampling that

most image-processing tools use.

Figure 4 is an extension of the traditional flood-

fill algorithm in a continuous (pixel by pixel)

space, such as the bucket-fill tool used in 2D

painting programs. When checking the connected

neighbors of each sampling point in the template,

we use the PointInBoundary() function to

(a)

(b) User inputs Formation templates Results

Simulation

Figure 2. Generating unified formation templates with (a) brush painting and (b) boundary sketches. A

formation template is an oversampled point space (relative to the number of agents) with a roughly even

distribution.

Figure 3. Generating freestyle group formations through inclusive curves (the blue boundaries) and exclusive curves (the red

boundaries). The final formation has holes, which would otherwise be tricky to generate.

 IEEE Computer Graphics and Applications 17

check whether a point is inside the polygon formed

by the boundary points. We could evaluate the

point in several ways. We choose the angle sum

solution because it is robust in 3D space. Further-

more, to avoid sampling points too close to the

boundaries, PointInBoundary()checks four

points with constant offsets (top, bottom, left,

and right) to the current checkpoint.

This algorithm’s most critical parameter is the

sampling unit used for the boundaries and inside

areas. An overly large sampling unit can reduce the

computational load but might produce an unbal-

anced agent distribution in the target formation

(see Figure 5a). On the other hand, an overly small

sampling unit might break the balance between

boundary and nonboundary agents (see Figure 5b).

This is because the algorithm evaluates the bound-

ary agents before the nonboundary agents (we

discuss this in more detail later). A high density

of boundary agents could lead to too few agents

inside the formation shape.

To relieve users from repeatedly trying different

sampling rates, we introduce an automatic algo-

rithm to identify a balanced, optimal sampling

unit (see Figure 5c). This algorithm is based on

the observation that for any 2D polygon, if the

number of vertices is large enough, the desired ra-

tio between the boundary length and the area’s

Input: bPoints, boundary points.

Input: unitX, a sampling unit to traverse the template.

Input: unitY, a sampling unit to traverse the template.

Output: fPoints, outputted filled points inside the boundaries.

 1: q = new empty queue;

 2: q.push(startingPoint);

 3: while q is not empty do

 4: checkPoint = q.front();

 5: left = checkPoint - unitX;

 6: while PointInBoundary(left) && left has not been checked do

 7: fPoints.push(left);

 8: top = left + unitY;

 9: if PointInBoundary(top) && top has not been checked then

10: q.push(top);

11: end if

12: bottom = left - unitY;

13: if PointInBoundary(bottom) && bottom has not been checked then

14: q.push(bottom);

15: end if

16: left = checkPoint - unitX;

17: end while

18: perform the same steps for all right neighbors of the checkpoint ...

19: queue.pop(checkPoint);

20: end while

21: return fPoints;

Figure 4. A discrete flood-fill algorithm. We adapted this algorithm to a discrete grid space so that its

computation is faster than the traditional pixel-by-pixel sampling that most image-processing tools use.

(a) (b) (c)

Figure 5. Sampling-unit optimization. (a) An overly large sampling unit gives the template fewer points than agents. (b) An

overly small sampling unit clusters too many agents on the boundaries. (c) Our adaptive sampling algorithm evaluates the unit

for an optimal configuration.

18 January/February 2013

Feature Article

square root is approximately a constant. However,

most numerical solutions for computing the area

of an irregular (convex or concave) polygon, such

as triangulation methods, aren’t efficient enough.

To compute the optimal sampling unit, we start

with a relatively small unit such as 100, as opposed

to the world grid unit of 1,000. Then, we evaluate

r, the ratio between the boundary and nonbound-

ary agents, by counting the boundary points and

inside points. Once we estimate r, the optimal

sampling unit for generating the formation tem-

plate is the ratio between the total boundary curve

length and the number of boundary agents b. To

obtain b, we solve

b2 + r2 × b – r2 × n = 0,

where n is the total number of group agents.

Formation Coordinates
After creating the formation template, we must

evaluate the best candidate position for each agent.

However, it’s nontrivial to find any deterministic

relationship between the world coordinates of the

original agent positions and the template point

positions. This complexity is due to the target for-

mations’ large variety of shapes, positions, orien-

tations, and scales. So, we need a comprehensive

yet compact representation to correlate the origi-

nal and target formations. Formation coordinates

fulfill this function, translating the world coordi-

nates to a scalable formation representation.

To eliminate the effect of entire group

movements during formation generation, we first

evaluate the weighted group center position of all

the agents, pc, using

p
m

pc i i
i

m
=

=
∑

1
1
ω ,

where m is the number of agents, ωi is the ith

agent’s weight, and pi is the ith agent’s world

position.

Then, we compute two relative features and

one absolute feature from each agent and each

candidate point in the template (see Figure 6). First,

we compute the agent’s direction to the formation

center: nx, ny. Both nx and ny range from 0 to 1. Any

agent in a formation needs to know its relative

direction with respect to the current group center,

instead of the relative direction to the origin of

the world coordinate system. We compute this by

normalizing the direction vector from the group

center to the evaluating point.

Second, we compute the agent’s relative distance

to the formation center: dist, which is between 0 and

1. Again, this feature must be relative to ensure the

formation coordinate’s scalability. We normalize

the absolute distance between the current point to

the group center by the formation shape’s radius

(that is, the distance from the evaluating point

to a boundary point). However, this radius might

vary significantly for different boundary points.

Also, recomputing the exact radius for every

point is impractical. Instead, we use only certain

representative formation radii, and we choose the

closest radius when performing normalization. In

our experiments, evenly splitting the formation

shape to eight sectors by four vectors provided

visually acceptable results and performance.

Finally, we compute the absolute formation

orientation: θx, θy. The previous two relative features

enclose each agent’s general position with respect

to the group center, assuming the whole group

always keeps its orientation. For example, an

agent in a group formation’s southwest region will

normally always be in that region. However, this

isn’t always valid when the whole group changes

its orientation. For example, if the entire group’s

orientation changes to 180 degrees according

to the world horizontal axis, the same agent’s

absolute direction will also rotate. So, from the

world coordinate system’s perspective, that agent

is now in the group formation’s northeast area

(see Figure 6).

(a)

A
A

A
A

B
B

B B

(b) (c) (d) (e)

Figure 6. Evaluating the positions of agents A and B in the target formation. (a) Interactive user input and specifications. (b)

Converting all the points in the formation template to formation coordinates. (c) Computing the formation coordinates for A

and B in the initial agent distribution. (d) Finding the corresponding template points for A and B with the most similar formation

coordinates. (e) Performing point-based relaxation to generate the final distribution in the target formation.

 IEEE Computer Graphics and Applications 19

Therefore, the formation coordinate includes θx,

θy. By default, this feature will be the same for all

the agents in one group to keep the agent distribu-

tion consistent. If we need to simulate inconsistent

crowd scenarios such as a turbulence transition

(for example, when agents can’t maintain their

adjacency condition), we can intentionally set this

feature to random values for different agents.

Given a point or agent A or B in the world space

(see Figure 6), we can finally formulate the for-

mation coordinate as a 5D feature vector (nx, ny,

dist, θx, θy). Unlike the global formation orienta-

tion, the formation coordinate doesn’t include the

whole group’s global movement because the global

movement doesn’t affect the group formation’s

shape and local distribution. We’ll directly apply

the formation coordinate to every agent during the

higher-level simulation (we discuss this in more

detail later).

Estimating the Target Distribution
We estimate the agent distribution in the target

formation to find the correspondence between any

agent in the initial formation and its appropriate

candidate position in the formation template. Us-

ing formation coordinates, we design a correspon-

dence construction algorithm based on two key

heuristics (assumptions).

First, in the target formation, boundary agents

should closely fit the boundary curves to clearly

exhibit the user-specified formation shape. This is

particularly important to user perception because,

as we mentioned before, the contour shape is the

most salient feature distinguishing one formation

from another in crowd simulations.

Second, each nonboundary agent should keep

its adjacency condition as much as possible. So,

our algorithm first finds correspondences for the

boundary agents and then finds correspondences

for the nonboundary agents.

Finding correspondences for the boundary agents.

To guarantee the exact formation shape, every

boundary point in the formation template requires

exactly one corresponding agent to fit in. So,

this must be the first step of correspondence-

finding. After converting the positions of all the

agents in the initial distribution into formation

coordinates, we subtract the formation orientation

(θx, θy) from each agent’s relative direction (nx, ny)

to yield the relative agent direction. We store this

direction along with the relative agent distance in

a KD-tree data structure. For each point on the

target formation template boundaries, we similarly

convert its world coordinate to its formation

coordinate. We can efficiently compute the agent

corresponding to each boundary point by finding

the nearest neighbor in the KD-tree (for example,

agent B in Figure 6).

Finding correspondences for the nonboundary agents.

Because the formation template is an oversampled

candidate or point space, we shouldn’t expect

strict one-to-one correspondences between the

inner template points and the remaining agents.

Instead of finding the corresponding agent for

each inner template point, we inversely identify

the corresponding template point for each non-

boundary agent that wasn’t selected in the previ-

ous step. Similarly, we use each agent’s formation

coordinate to find the closest inner template point.

We further transform that point to its world co-

ordinate representation—that is, the agent’s target

position (see agent A in Figure 6).

Formation Relaxation and Customization
As we described earlier, the resultant nonboundary

agent distribution might not be naturally distrib-

uted because the number of inner template points

might be significantly larger than the number of

nonboundary agents. In addition, the inner tem-

plate points are orthogonally sampled, which looks

less natural to humans.

To improve the naturalness of the resultant agent

distribution or formation, we apply point-based re-

laxation optimization to the generated initial agent

distribution (see Figure 7). This process uses the

boundary points as relaxation constraints. In our

experiments, a small number of iterations (for ex-

ample, 3 to 5) usually produced acceptable results.

To perform the relaxation, Figure 7 uses a Gauss-

ian function as the kernel of radial basis func-

tions. If we used a KD-tree to store the agents’

positions, the updateDistribution() function

would require re-creation operations, costing Θ(n

log n). Performance generally is critical for agent-

based crowd simulations because the system must

update every agent individually at each time step.

Our implementation reduces n log n to n by reg-

istering agents into a regular grid system at each

Performance generally is critical for

agent-based crowd simulations because

the system must update every agent

individually at each time step.

20 January/February 2013

Feature Article

update. The closestPoints() function simply

collects the agents registered in surrounding grids

with Θ(1) cost.

The weight parameter, w, determines the relax-

ation effectiveness on each agent. By default, we

apply a uniform weight to all the agents, which

means every agent has the same pushing or pull-

ing effect on its neighbors. This results in an even

agent distribution in the target formation. How-

ever, some applications might prefer an unbal-

anced agent distribution to achieve certain special

effects such as local clustering. So, users can lower

the relaxation weights for those agents at the clus-

tering center so that they’ll have a smaller pushing

effect on their neighbors.

Agent Motion Trajectory Control
Our two-level agent motion trajectory control com-

prises local formation transition control and global

formation trajectory control. The first level enables

all the agents to reach their proper target positions

with different moving styles while forming the tar-

get formation. The other level guides the agent group

as a whole to follow arbitrary user-sketched paths.

Local Formation Transition Control
Local formation transition is the transition from

one formation to another without considering the

whole group’s general locomotion. Many factors

can affect it. The most intuitive way to control

this transition would be to simply compute a lin-

ear interpolation from an agent’s initial position

to its estimated target position. However, this pro-

cess can’t reflect user control or realistic collision

avoidance among agents. So, we further consider

two factors that influence agent movements: local

force-based3,4 collision avoidance and sketch-based

local trajectory control.

We employ force-based collision avoidance be-

cause it can handle very-high-density crowds. Each

agent is pushed away by the tangential forces from

its neighbor agents and environmental obstacles

in the area of interest (that is, the human visible

range). For extremely high-density crowds, the tan-

gential forces alone might appear insufficient to

drive agents apart. If the simulation system detects

a collision between two agents, it applies extra re-

pulsion force to immediately stop the agents to pre-

vent unrealistic penetrations.

Without user interactions, each agent would go

straight to the target position with minor transi-

tion adjustments on the way to avoid local colli-

sions with other agents. However, many scenarios

expect agents to follow a more sophisticated path

during the local formation transition, such as a

splitting and merging transition. Similarly to the

formation specification interface, our local forma-

tion transition control lets users draw freehand

curves to specify one or multiple moving paths as

general guides (see Figure 8).

Unlike many previous approaches, we construct

a second virtual local grid field (instead of regu-

lar world grids) to evaluate a flow vector to guide

transitions. This is because the formation transi-

Input: bPoints, constraint boundary points.

Input: iPoints, points to be relaxed.

Input: η, relaxation iterations.

Input: β, Gaussian constant parameter (β > 0).

Input: speed, moving rate of relaxation in each iteration.

Input: w, relaxation weight.

Output: rPoints, outputted relaxed points inside the boundaries.

 1: rPoints = iPoints;

 2: for each η do

 3: allPoints = rPoints + bPoints;

 4: updateDistribution(allPoints);

 5: for each rPoint in rPoints do

 6: neighbors = closestPoints(rPoint);

 7: for each neighbor in neighbors do

 8: d = distance(rPoint, neighbor);

 9: v = v + d × exp(–β × d2);
10: end for

11: rPoint = rPoint + v/numOfNeighbors × speed × w;

12: end for

13: end for

14: return rPoints;

Figure 7. Point-based formation relaxation. In our experiments, a small number of iterations (for example, 3 to

5) usually produced acceptable results.

 IEEE Computer Graphics and Applications 21

tions are local behaviors despite group positions.

So, even if users draw curves farther from the ab-

solute group location, our algorithm will still con-

sider these actions as local guidance to each agent.

In other words, our algorithm will internally snap

the center of user curves to the center of the vir-

tual grid field overlapping with the transition area

(see Figure 8).

All the virtual grids around the curves are filled

with a flow vector. We set the flow vector’s direc-

tion to the tangential vector of the closest point on

the trajectory curve, and the flow vector’s magni-

tude is inversely proportional to the distance be-

tween the grid and that point. If multiple curves

exist, we blend the grid’s final flow vector from all

the influencing trajectory points with an experi-

mental threshold, D, as the upper-limit distance

for qualified influencing trajectories.

Finally, we compute each agent’s local velocity:

V w V w f w sf i

i

n

j

j

local = + +

=

−

=

∑ ∑1 2 3

1

1

1

9

.

The first term is the velocity driven purely by target

formation. The second term is the summed velocity

driven by the combination of tangential forces

from the agent’s neighboring group members and

obstacles.4 The third term is the summed velocity

driven by averaging flow vectors in the current

and eight adjacent virtual grids (that is, s j j
{ }

=1

9
)

derived from user sketches. The weights balance

the expected speed of formation generation (w1),

the expected accuracy of collision avoidance (w2),

and the expected influence of user interference

(w3). Our experiments provided visually plausible

results with w1 = 0.2, w2 = 0.5, and w3 = 0.3.

Global Formation Trajectory Control
So far, we’ve assumed that all the agents in a group

move and change formations relative to a fixed

group center. However, many crowd simulation

scenarios expect a group of agents to form a

certain formation while moving as a whole to

other locations. Furthermore, users can guide this

global movement.

To achieve such effects, we introduce three

factors to the group level:

V w V w V w Vglobal gn gc gs= + +4 5 6 .

Vgn is the global navigation vector heading to the

target formation’s location. Vgc is the velocity driven

by global collision avoidance between different

groups. Vgs is the user-guided velocity computed

from our sketching interface (see Figure 9). Our

simulations used w4 = 0.4, w5 = 0.4, and w6 = 0.2.

Instead of using virtual grids, this form of

control directly applies the user sketches of global

group trajectories on the regular world grids to

compute flow vectors. This is intuitive because

the global trajectories are sensitive to the current

group location. If a drawing curve is too far from

the current group position, it won’t affect the

group’s trajectory.

Although this global curve is more visually intui-

tive, it might introduce an undesired situation. If a

user sketch starts close to the initial group location

but heads away from the target formation location

along the sketched path, the group will most likely

stick at the end of the sketched curve. This is be-

cause the magnitude of Vgs is inversely proportional

to the distance between the current group location

and the closest point on the sketched curve.

To tackle this issue, we introduce a valve

parameter α to Vgs:

V s j
j

gs = × < <

=

∑α α
1

9

0 1, .

When a group moves toward the end of a sketched

curve, the valve value will keep decreasing so that

Vgn will gradually dominate the group’s path to

guarantee the group reaches the target position.

At the group level, each group in the scene is

considered a single entity. Any rule- or force-based

model can serve as the collision controller, just as

in a single-agent simulation.

Finally, we combine the obtained global velocity

with the local velocity to deliver the final agent

velocity.

Figure 8. Local formation transition control. Users can specify relative local transition trajectories (the green arrows) anywhere in

the scenario. Our approach can automatically snap the user specifications to align the actual formation location overlapping with

the group center (see the red arrows).

22 January/February 2013

Feature Article

Figure 9 compares simulations with and without

global formation trajectory control. The initial and

target formations are the same in both simulations.

Our trajectory control lets us fully control the

intermediate transitions without changing the

final formation state.

Our trajectory control has two main advantages:

 ■ Splitting it into the local and global levels gives

users flexible, intuitive control over the transi-

tion paths.

 ■ Maintaining the group’s collective feature dur-

ing the formation transition allows all the group

members to share the same global navigator.

Although our approach computes collision avoid-

ance twice for each agent and each group, the

number of groups in a simulation is typically much

smaller than the number of the agents. So, the ad-

ditional global collision avoidance won’t notice-

ably affect the overall runtime performance.

Performance and Results
We demonstrated several applications using our

approach. A force-based HiDAC (High-Density Au-

tonomous Crowds) simulation model4 handled lo-

cal and global collision avoidance. We used a regular

PC with a 3.0-GHz CPU, 4 Gbytes of memory, and

an Nvidia GFX 260 GPU. Using 3D human models

(700 to 800 polygons) driven by high-quality mo-

tion capture primitives with 30 joints (62 degrees

of freedom), we simulated a crowd of up to 500

agents at 30 fps.

To determine the computational overhead, we

compared the average frame rates with and with-

out our approach. Table 1 shows that our approach

adds negligible overhead to the original crowd

simulation system. For animation results, see the

video at www.youtube.com/uhcgim.

Local Formation Control
In these experiments, agents were driven by only

their local formation velocities and local colli-

sion avoidance. When each simulation started, we

computed the group center of the initial agent po-

sitions and fixed the target group formation center

at the same position.

These experiments used three sets of examples.

Figure 10 shows a group of 100 autonomous agents

forming the letter A, as specified by our brush-

painting interface. In a separate experiment, our

texture map interface used a real picture of the

Table 1. Runtime performance for a HiDAC (High-Density Autonomous Crowds) simulation model with and

without our approach.

Crowd size

(no. of agents)

Random crowd

(fps) HiDAC (fps)

HiDAC with our

approach (fps) Overhead (%)

100 202.3 162.0 158.9 2.2

200 156.2 113.1 109.2 3.3

300 96.8 54.1 51.2 4.3

400 52.3 35.4 32.0 5.9

500 38.5 29.4 27.1 7.1

(a)

(b)

Figure 9. A group of agents reaching a target formation (a) without and (b) with explicit transition control. Without explicit

control, each agent takes the optimal path to reach its target position. With explicit control, the user-sketched curves guide the

whole group to take a specific route while also changing the formation.

 IEEE Computer Graphics and Applications 23

2008 Beijing Olympic logo as the input. Our sys-

tem automatically generated an accurate forma-

tion that exactly fits the shape in the picture.

Finally, using our boundary-sketching interface,

we could procedurally create arbitrary forma-

tions with or without holes (see Figure 3). The

resultant formations closely matched the input-

ted boundaries, which we could update during

the simulation. However, because our approach

doesn’t currently support control of the agents’

speed, empty areas in the crowd could occur dur-

ing the formation transition.

Global Formation Control
In these experiments, we assumed the entire crowd

was a single group and combined local and global

formation control. First, we let the group move and

interact with simple environments while forming

and maintaining a specified formation. This type

of group formation and interaction often occurs

in military operations on flat terrain. We used our

approach to generate key formations at different

waypoints; the widely used A* pathfinding algo-

rithm served as the global navigator.

Figure 11 shows a group of 150 agents head-

ing to several navigational waypoints, sequen-

tially driven by the global navigation vector while

changing its formation according to user specifica-

tions. The group bypassed building obstacles (see

Figure 11b) or followed a sketched control curve

(a)

(b)

(c)

Figure 11. A square formation transforms to a triangle formation, using (a) unconstrained formation transitions, (b) formation

transitions with obstacle constraints, and (c) formation transitions with trajectory controls. Our two-level formation control

effectively preserved the group’s collective behavior as it navigated through waypoints and encountered obstacles.

(b)(a) (c) (d)

Figure 10. Using the brush-painting interface. (a) The user input. (b) The initial state. (c) The simulation. (d) The results. The

group comprised 100 autonomous agents.

24 January/February 2013

Feature Article

As the first step of any crowd simulation, researchers

have explored navigational pathfinding algorithms

to handle complex dynamic environments. On the other

hand, increasingly more researchers are focusing on

middle-level perception models to simulate local dynam-

ics. Among those models, force-based models1 and their

extensions2 apply repulsion and tangential social forces to

drive interaction between individual agents or subgroups.

Following Craig Reynolds’ seminal research,3 researchers

have also extensively studied rule-based simulation (for

example, adding multilevel group rules and cognitive

planning4) to achieve highly realistic human behavior. For

a comprehensive review of crowd simulation techniques,

see Crowd Simulation.5

Group formation and transition are vital characteristics

of many crowds. Chris Wojtan and his colleagues used stan-

dard adjoint calculations with gradient-based optimization

to control a flocking simulation while offering certain con-

trollability (that is, keyframing control).6 However, keyfram-

ing control in a large-scale, dynamic crowd simulation isn’t

always efficient. Renato Silveira and his colleagues intro-

duced a group map structure to generate boundary group

formations through user sketching, but without considering

agent distribution.7

Taesoo Kwon and his colleagues’ approach edited

group motion as a whole while maintaining neighborhood

formation and agents’ moving trajectories in the origi-

nal group motion data as much as possible.8 The edit-

ing operations, such as pinning or dragging individuals,

employed a graph structure in which vertices represented

agents’ positions at specific frames and edges encoded

neighborhood formations and moving trajectories. This

approach focused on minimizing the distortion of relative

arrangements among adjacent agents. In contrast, our

approach (see the main article) focuses on a more mac-

roscopic perspective of keeping or changing the crowd

formation’s overall shape.

Shigeo Takahashi and his colleagues combined heuristic

rules with explicit hard constraints to produce and control

sophisticated group formations.9 However, users had to

manually specify exact agent distributions, which was time-

consuming and labor intensive if the crowd contained many

agents. Unlike their approach, ours needs only a few types

of user input to specify high-level formations and automati-

cally generates an appropriate agent distribution.

Sachin Patil and his colleagues proposed a comprehen-

sive framework to guide moving agents with navigation

fields.10 Their approach showed convincing simulation

results with flexible inputs of either user sketches or 2D

video. The major distinction between their approach and

ours is that we focus more on collective formation control

than on guiding each agent individually.

Our preliminary research involved an intuitive sketch-

ing interface to generate arbitrary group formations in a

crowd.11 There are two main differences between that

research and the research we report in the main article.

First, our previous research only sketched boundary curves

to specify formations, whereas this new research supports

three types of user input (brush painting, texture maps, and

boundary sketches). Flexible combination of these inputs

can produce a richer variety of freestyle group formations.

Second, in our previous research, all the agents found

their unconstrained optimal paths, so no user control ex-

isted. In contrast, our new research provides users with

two-level agent motion transition control to intuitively

guide simulations. First, local formation transition control

treats the entire group as a local distribution with a static

formation center. Users can specify different transition

preferences for individual agents when the agents head to

their target positions. Second, global formation trajectory

control lets users specify arbitrary moving paths as high-

level guidance constraints when navigating the group to

its target position.

References

 1. D. Helbing and P. Molnar, “Social Force Model for Pedes-

trian Dynamics,” Physical Rev. E, vol. 51, no. 5, 1995, pp.

4282–4286.

 2. N. Pelechano, J.M. Allbeck, and N.I. Badler, “Controlling

Individual Agents in High-Density Crowd Simulation,” Proc.

2007 ACM Siggraph/Eurographics Symp. Computer Animation

(SCA 07), Eurographics Assoc., 2007, pp. 99–108.

 3. C.W. Reynolds, “Flocks, Herds, and Schools: A Distributed

Behavioral Model,” Proc. Siggraph, ACM, 1987, pp. 25–34.

 4. Q. Yu and D. Terzopoulos, “A Decision Network Framework

for the Behavioral Animation of Virtual Humans,” Proc. 2007

ACM Siggraph/Eurographics Symp. Computer Animation (SCA

07), Eurographics Assoc., 2007, pp. 119–128.

 5. D. Thalmann and S.R. Musse, Crowd Simulation, Springer, 2007.

 6. C. Wojtan, P.J. Mucha, and G. Turk, “Keyframe Control of

Complex Particle Systems Using the Adjoint Method,” Proc.

2006 ACM Siggraph/Eurographics Symp. Computer Animation

(SCA 06), Eurographics Assoc., 2006, pp. 15–23.

 7. R. Silveira, E. Prestes, and L.P. Nedel, “Managing Coherent

Groups,” Computer Animation and Virtual Worlds, vol. 19,

nos. 3–4, 2008, pp. 295–305.

 8. T. Kwon et al., “Group Motion Editing,” ACM Trans. Graph-

ics, vol. 27, no. 3, 2008, article 80.

 9. S. Takahashi et al., “Spectral-Based Group Formation Control,”

Computer Graphics Forum, vol. 28, no. 2, 2009, pp. 639–648.

 10. S. Patil et al., “Directing Crowd Simulations Using Naviga-

tion Fields,” IEEE Trans. Visualization and Computer Graphics,

vol. 17, no. 2, 2011, pp. 244–254.

 11. Q. Gu and Z. Deng, “Formation Sketching: An Approach to

Stylize Groups in Crowd Simulation,” Proc. Graphics Interface

2011 (GI 11), Canadian Human-Computer Communications

Soc., 2011, pp. 1–8.

Related Work in Crowd Simulation and Group Formations

 IEEE Computer Graphics and Applications 25

(see Figure 11c) while gradually changing its for-

mation. Agents farther from the obstacles or curve

points automatically chose a longer path with a

larger orbiting radius to save space for the agents

that were closer to the obstacles.

Our results demonstrate our approach’s flex-

ibility and effectiveness. Most agent-based

crowd simulation approaches focus on each

agent’s individual behaviors on the basis of its lo-

cal information such as adjacent neighbors in the

crowd. However, many real-world crowd scenarios

such as battles and football games must consider

each group’s global information and interactions

between groups. Also, unlike Shigeo Takahashi and

his colleagues’ research,1 which focused on generat-

ing the transition between keyframes through vari-

ous hard constraints, our approach automatically

generates scalable, adaptive group formations. (For

more on Takahashi and his colleagues’ research

and other related research, see the sidebar.) So,

with our approach, users need only specify sev-

eral intuitive high-level features such as forma-

tion sketches and trajectory sketches to generate

large-scale interacting crowds with freestyle group

formations.

In the actual implementation, a trade-off exists

between movement smoothness and formation

accuracy. For instance, when an agent evaluates

its appropriate velocity heading to the target posi-

tion, other agents might already have taken that

position. This situation will result in the agent’s

unsmooth movement; the agent might continu-

ally try to reach the exact position in the target

formation by going back and forth in a small area.

In this situation, we let the agent probe the next

available position by searching for the second-

closest neighbor in the KD-tree.

We found that two-level collision avoidance

can better keep the formations while avoiding ob-

stacles. The intergroup dynamics tend to guide all

the agents, from a group perspective, to avoid an

obstacle as a whole if possible (see Figure 11c), in-

stead of easily scattering the agents owing to local

collision avoidance (see Figure 11a).

The current global trajectory control treats a

group as a single entity by assuming that the group

formations’ shape is generally isotropic, such as

a square or circle. So, global collision avoidance

ignores the shape effect for anisotropic group for-

mations. Thus, a group’s agents still depend highly

on local collision avoidance. We plan to work on

this issue in the future.

Finally, our approach currently doesn’t let users

put timing constraints on formation transitions.

Our next step will be to introduce this feature—for

example, by incorporating agent velocity control to

dynamically adjust agents’ speed.

Acknowledgments
US National Science Foundation award IIS-0914965,

Texas Norman Hackerman Advanced Research Pro-

gram project 003652-0058-2007, and research gifts

from Google and Nokia partly supported this research.

Any opinions, findings, and conclusions or recommen-

dations expressed in this article are the authors’ and

don’t necessarily reflect the agencies’ views.

References
 1. S. Takahashi et al., “Spectral-Based Group Forma-

tion Control,” Computer Graphics Forum, vol. 28, no.

2, 2009, pp. 639–648.

 2. B. Ulicny, P.d.H. Ciechomski, and D. Thalmann,

“Crowdbrush: Interactive Authoring of Real-Time

Crowd Scenes,” Proc. 2004 ACM Siggraph/Eurographics

Symp. Computer Animation (SCA 04), Eurographics

Assoc., 2004, pp. 243–252.

 3. D. Helbing and P. Molnar, “Social Force Model for

Pedestrian Dynamics,” Physical Rev. E, vol. 51, no. 5,

1995, pp. 4282–4286.

 4. N. Pelechano, J.M. Allbeck, and N.I. Badler, “Con-

trolling Individual Agents in High-Density Crowd

Simulation,” Proc. 2007 ACM Siggraph/Eurographics

Symp. Computer Animation (SCA 07), Eurographics

Assoc., 2007, pp. 99–108.

Qin Gu is a PhD candidate in the University of Houston’s

Department of Computer Science. His research interests

include computer graphics and character and crowd ani-

mation. Gu received an MS in computer science from the

University of Houston. Contact him at ericgu@cs.uh.edu.

Zhigang Deng is an associate professor of computer science

at the University of Houston. His research interests include

computer graphics, computer animation, and human-computer

interaction. Deng received a PhD in computer science from the

University of Southern California. He’s a member of IEEE and

ACM. Contact him at zdeng@cs.uh.edu or zdeng4@uh.edu.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

