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Formations in Agent-Based Crowd 

Simulations
Qin Gu and Zhigang Deng * University of Houston

In most crowd simulation systems, each agent 

intelligently moves toward its destination 

through navigational pathfinding algorithms 

and avoids collisions with other agents and ob-

stacles through local behavior control models. 

However, research has paid little attention to 

simulating the collective behav-

iors of the entire crowd or a cer-

tain subgroup of the crowd. In 

many scenarios, these collective 

behaviors play a significant role 

in exhibiting the crowd’s mass 

attributes. From the perspective 

of visual simulation, a group’s 

collective behaviors are usually 

demonstrated as their general 

formations. For instance, when 

a computer game simulates a 

large-scale battle, the two army’s 

formations directly reflect their 

controllers’ strategic commands.

When simulating a crowd, 

one intuitive way to form a tar-

get formation is to provide each 

agent’s desired position at a par-

ticular moment1 and generate transitions between 

that position and the destination. However, users 

must manually specify many spatial, temporal, 

and correspondence constraints, which is time-

consuming and nontrivial, particularly when the 

crowd includes many agents that change location 

frequently. Similarly, when a group of people per-

forms a collective action simultaneously in the 

real world, it’s generally impossible for their com-

mander or team leaders to convey detailed move-

ment information such as every group member’s 

position at every time instance.

We propose an interactive, scalable framework 

to simulate freestyle group formation through in-

tuitive user interfaces (see Figure 1). Specifically, 

each agent in a group first evaluates its optimal 

destination in a user-specified target formation 

constrained by formation patterns. Then, the frame-

work employs formation coordinates, a relative-agent-

position representation, to evaluate the final agent 

distribution in the target formation and the cor-

respondence between the initial and target states. 

During the runtime transition from the initial 

formation to the target formation, each agent will 

move along a path guaranteed to avoid local col-

lisions, follow user-sketched transition paths, and 

reach the target formation position.

This research provides two main contributions. 

The first is automated generation of freestyle group 

formations. Using a set of free-form user inputs, 

our approach automatically evaluates the corre-

sponding target agent distribution with relatively 

few parameter tunings. The formation coordinates 

enable our approach to robustly handle any varia-

tion of formation shape, orientation, and scale.

The second contribution is agent motion trajec-

tory control at both the local and global levels. 

This is especially useful when users try to simu-

late strategic scenarios such as “a military squad 

is forming a circle formation while bypassing any 

enemies or static obstacles.”

An interactive, scalable 

framework generates 

freestyle group formations 

and transitions via natural 

and flexible sketching 

interaction. It computes a 

plausible agent distribution 

in the target formation and 

agent correspondences 

between keyframes. Two-level 

formation trajectory control 

lets users intuitively guide 

agents’ transition paths from 

the initial formation to the 

target formation.
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Target Formation Specification and 
Generation
Our group formation specification and evaluation 

efficiently convert an intuitive user input or de-

scription of a group formation into a numerical 

representation of agent distribution. A group for-

mation’s realism derives from the common obser-

vation that a group member in a real-world crowd 

is less likely to move across the formation to reach 

a far-off position if a much closer one is reachable. 

This is because humans tend to save energy un-

less special constraints exist, which is beyond this 

article’s scope.

Formation Shape Representation
Interfaces for generating group formations should 

be intuitive enough for users to easily depict any 

formation without significant parameter tuning or 

prior mathematical knowledge. Meanwhile, they 

should be accurate enough for the crowd simula-

tion algorithm to understand the users’ purpose. 

In reality, a group formation’s most salient visual 

feature is generally its contour shape, such as a 

square or circle. However, directly specifying and 

quantifying a geometric shape is nontrivial for 

most users.

To simplify this task, we propose a unified for-

mation shape representation called a formation 

template—an oversampled point space (relative to 

the number of agents) with a roughly even dis-

tribution. Our approach converts the initial user 

input to the formation template; in this way, vari-

ous types of user input can share the rest of the 

simulation pipeline. Our framework currently can 

automatically convert three common types of user 

input: brush painting, texture maps, and boundary 

sketches.

Brush painting. Two-dimensional image-processing 

tools such as Adobe Photoshop commonly use 

brush-painting input. Branislav Ulicny and his col-

leagues proposed an efficient brush tool to author 

desired crowd specifications.2 To generate a unified 

representation, we employ a 2D painting’s pixel 

intensities as a convenient reference to evaluate 

its target agent distribution. In the discrete simu-

lated crowd, we sample a position as a template 

point only if its pixel intensity matches the brush’s 

color within a certain threshold. Brush painting 

(see Figure 2a) works well for specifying simple 

formation shapes, which often require only a few 

painting components (for example, brush sizes).

Texture maps. For complicated formations, brush 

painting might be inaccurate and time-consuming. 

Instead, we can treat the target shape as a 2D 

Global planning and decision-making

Global trajectory control Global group collision avoidance

Local trajectory control Local agent collision avoidance 

Formation vectors Agent speed, orientation

Trajectory
sketch

Formation
sketch Agent animations

Group speed, orientation

Figure 1. Embedding group formation control into a complete crowd simulation system. Orange indicates 

the components of a traditional crowd simulation system; blue and purple indicate user interactions and 

formation control, respectively, in our framework.
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texture ground and directly retrieve the shape in-

formation by matching the points in the texture 

coordinates with those in the crowd simulation 

world coordinates.

Boundary sketches. The previous two types of user 

input provide fast solutions for sampling relatively 

simple or predefined formation shapes. However, 

in many scenarios, users might want to specify 

complicated formations on the fly. Brush painting 

can’t specify subtle formation details such as 

sharp angles or continuous changes of the stroke 

size. Texture maps require the target formation to 

be well defined in advance and cannot be changed 

on the fly. Furthermore, both input types depend 

on color intensity information during sampling. 

If the environment has similar color information 

on the virtual ground, the sampling results would 

be inaccurate.

To complement those two input types, we de-

veloped a freehand-sketching interface using two 

types of boundary curves—inclusive curves and ex-

clusive curves. With them, users can specify arbi-

trary target formations such as the examples in 

Figures 2b and 3.

The initial user sketches are freehand curves 

or line stripes that might contain irregular point 

(shape vertex) distributions. To generate a visu-

ally balanced target formation template, we first 

evenly resample (that is, reevaluate) the points 

on the boundaries. We then fill the area between 

the inclusive and exclusive boundaries through an 

extended scanline flood-fill algorithm (see Figure 

4), employing the same sampling unit used for 

boundaries. We adapted our filling algorithm to a 

discrete grid space so that its computation is faster 

than the traditional pixel-by-pixel sampling that 

most image-processing tools use.

Figure 4 is an extension of the traditional flood-

fill algorithm in a continuous (pixel by pixel) 

space, such as the bucket-fill tool used in 2D 

painting programs. When checking the connected 

neighbors of each sampling point in the template, 

we use the PointInBoundary() function to 

(a)

(b) User inputs Formation templates Results

Simulation

Figure 2. Generating unified formation templates with (a) brush painting and (b) boundary sketches. A 

formation template is an oversampled point space (relative to the number of agents) with a roughly even 

distribution.

Figure 3. Generating freestyle group formations through inclusive curves (the blue boundaries) and exclusive curves (the red 

boundaries). The final formation has holes, which would otherwise be tricky to generate.
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check whether a point is inside the polygon formed 

by the boundary points. We could evaluate the 

point in several ways. We choose the angle sum 

solution because it is robust in 3D space. Further-

more, to avoid sampling points too close to the 

boundaries, PointInBoundary()checks four 

points with constant offsets (top, bottom, left, 

and right) to the current checkpoint.

This algorithm’s most critical parameter is the 

sampling unit used for the boundaries and inside 

areas. An overly large sampling unit can reduce the 

computational load but might produce an unbal-

anced agent distribution in the target formation 

(see Figure 5a). On the other hand, an overly small 

sampling unit might break the balance between 

boundary and nonboundary agents (see Figure 5b). 

This is because the algorithm evaluates the bound-

ary agents before the nonboundary agents (we 

discuss this in more detail later). A high density 

of boundary agents could lead to too few agents 

inside the formation shape.

To relieve users from repeatedly trying different 

sampling rates, we introduce an automatic algo-

rithm to identify a balanced, optimal sampling 

unit (see Figure 5c). This algorithm is based on 

the observation that for any 2D polygon, if the 

number of vertices is large enough, the desired ra-

tio between the boundary length and the area’s 

Input: bPoints, boundary points.

Input: unitX, a sampling unit to traverse the template.

Input: unitY, a sampling unit to traverse the template.

Output: fPoints, outputted filled points inside the boundaries.

 1: q = new empty queue;

 2: q.push(startingPoint);

 3: while q is not empty do

 4:   checkPoint = q.front();

 5:   left = checkPoint - unitX;

 6:   while PointInBoundary(left) && left has not been checked do

 7:     fPoints.push(left);

 8:     top = left + unitY;

 9:     if PointInBoundary(top) && top has not been checked then

10:       q.push(top);

11:     end if

12:     bottom = left - unitY;

13:     if PointInBoundary(bottom) && bottom has not been checked then

14:       q.push(bottom);

15:     end if

16:     left = checkPoint - unitX;

17:   end while

18:   perform the same steps for all right neighbors of the checkpoint ...

19:   queue.pop(checkPoint);

20: end while

21: return fPoints;

Figure 4. A discrete flood-fill algorithm. We adapted this algorithm to a discrete grid space so that its 

computation is faster than the traditional pixel-by-pixel sampling that most image-processing tools use.

(a) (b) (c)

Figure 5. Sampling-unit optimization. (a) An overly large sampling unit gives the template fewer points than agents. (b) An 

overly small sampling unit clusters too many agents on the boundaries. (c) Our adaptive sampling algorithm evaluates the unit 

for an optimal configuration.
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square root is approximately a constant. However, 

most numerical solutions for computing the area 

of an irregular (convex or concave) polygon, such 

as triangulation methods, aren’t efficient enough.

To compute the optimal sampling unit, we start 

with a relatively small unit such as 100, as opposed 

to the world grid unit of 1,000. Then, we evaluate 

r, the ratio between the boundary and nonbound-

ary agents, by counting the boundary points and 

inside points. Once we estimate r, the optimal 

sampling unit for generating the formation tem-

plate is the ratio between the total boundary curve 

length and the number of boundary agents b. To 

obtain b, we solve

b2 + r2 × b – r2 × n = 0,

where n is the total number of group agents.

Formation Coordinates
After creating the formation template, we must 

evaluate the best candidate position for each agent. 

However, it’s nontrivial to find any deterministic 

relationship between the world coordinates of the 

original agent positions and the template point 

positions. This complexity is due to the target for-

mations’ large variety of shapes, positions, orien-

tations, and scales. So, we need a comprehensive 

yet compact representation to correlate the origi-

nal and target formations. Formation coordinates 

fulfill this function, translating the world coordi-

nates to a scalable formation representation.

To eliminate the effect of entire group 

movements during formation generation, we first 

evaluate the weighted group center position of all 

the agents, pc, using

p
m

pc i i
i

m
=

=
∑

1
1
ω ,

where m is the number of agents, ωi is the ith 

agent’s weight, and pi is the ith agent’s world 

position.

Then, we compute two relative features and 

one absolute feature from each agent and each 

candidate point in the template (see Figure 6). First, 

we compute the agent’s direction to the formation 

center: nx, ny. Both nx and ny range from 0 to 1. Any 

agent in a formation needs to know its relative 

direction with respect to the current group center, 

instead of the relative direction to the origin of 

the world coordinate system. We compute this by 

normalizing the direction vector from the group 

center to the evaluating point.

Second, we compute the agent’s relative distance 

to the formation center: dist, which is between 0 and 

1. Again, this feature must be relative to ensure the 

formation coordinate’s scalability. We normalize 

the absolute distance between the current point to 

the group center by the formation shape’s radius 

(that is, the distance from the evaluating point 

to a boundary point). However, this radius might 

vary significantly for different boundary points. 

Also, recomputing the exact radius for every 

point is impractical. Instead, we use only certain 

representative formation radii, and we choose the 

closest radius when performing normalization. In 

our experiments, evenly splitting the formation 

shape to eight sectors by four vectors provided 

visually acceptable results and performance.

Finally, we compute the absolute formation 

orientation: θx, θy. The previous two relative features 

enclose each agent’s general position with respect 

to the group center, assuming the whole group 

always keeps its orientation. For example, an 

agent in a group formation’s southwest region will 

normally always be in that region. However, this 

isn’t always valid when the whole group changes 

its orientation. For example, if the entire group’s 

orientation changes to 180 degrees according 

to the world horizontal axis, the same agent’s 

absolute direction will also rotate. So, from the 

world coordinate system’s perspective, that agent 

is now in the group formation’s northeast area 

(see Figure 6).

(a)

A
A

A
A

B
B

B B

(b) (c) (d) (e)

Figure 6. Evaluating the positions of agents A and B in the target formation. (a) Interactive user input and specifications. (b) 

Converting all the points in the formation template to formation coordinates. (c) Computing the formation coordinates for A 

and B in the initial agent distribution. (d) Finding the corresponding template points for A and B with the most similar formation 

coordinates. (e) Performing point-based relaxation to generate the final distribution in the target formation.
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Therefore, the formation coordinate includes θx, 

θy. By default, this feature will be the same for all 

the agents in one group to keep the agent distribu-

tion consistent. If we need to simulate inconsistent 

crowd scenarios such as a turbulence transition 

(for example, when agents can’t maintain their 

adjacency condition), we can intentionally set this 

feature to random values for different agents.

Given a point or agent A or B in the world space 

(see Figure 6), we can finally formulate the for-

mation coordinate as a 5D feature vector (nx, ny, 

dist, θx, θy). Unlike the global formation orienta-

tion, the formation coordinate doesn’t include the 

whole group’s global movement because the global 

movement doesn’t affect the group formation’s 

shape and local distribution. We’ll directly apply 

the formation coordinate to every agent during the 

higher-level simulation (we discuss this in more 

detail later).

Estimating the Target Distribution
We estimate the agent distribution in the target 

formation to find the correspondence between any 

agent in the initial formation and its appropriate 

candidate position in the formation template. Us-

ing formation coordinates, we design a correspon-

dence construction algorithm based on two key 

heuristics (assumptions).

First, in the target formation, boundary agents 

should closely fit the boundary curves to clearly 

exhibit the user-specified formation shape. This is 

particularly important to user perception because, 

as we mentioned before, the contour shape is the 

most salient feature distinguishing one formation 

from another in crowd simulations.

Second, each nonboundary agent should keep 

its adjacency condition as much as possible. So, 

our algorithm first finds correspondences for the 

boundary agents and then finds correspondences 

for the nonboundary agents.

Finding correspondences for the boundary agents. 

To guarantee the exact formation shape, every 

boundary point in the formation template requires 

exactly one corresponding agent to fit in. So, 

this must be the first step of correspondence-

finding. After converting the positions of all the 

agents in the initial distribution into formation 

coordinates, we subtract the formation orientation 

(θx, θy) from each agent’s relative direction (nx, ny) 

to yield the relative agent direction. We store this 

direction along with the relative agent distance in 

a KD-tree data structure. For each point on the 

target formation template boundaries, we similarly 

convert its world coordinate to its formation 

coordinate. We can efficiently compute the agent 

corresponding to each boundary point by finding 

the nearest neighbor in the KD-tree (for example, 

agent B in Figure 6).

Finding correspondences for the nonboundary agents. 

Because the formation template is an oversampled 

candidate or point space, we shouldn’t expect 

strict one-to-one correspondences between the 

inner template points and the remaining agents. 

Instead of finding the corresponding agent for 

each inner template point, we inversely identify 

the corresponding template point for each non-

boundary agent that wasn’t selected in the previ-

ous step. Similarly, we use each agent’s formation 

coordinate to find the closest inner template point. 

We further transform that point to its world co-

ordinate representation—that is, the agent’s target 

position (see agent A in Figure 6).

Formation Relaxation and Customization
As we described earlier, the resultant nonboundary 

agent distribution might not be naturally distrib-

uted because the number of inner template points 

might be significantly larger than the number of 

nonboundary agents. In addition, the inner tem-

plate points are orthogonally sampled, which looks 

less natural to humans.

To improve the naturalness of the resultant agent 

distribution or formation, we apply point-based re-

laxation optimization to the generated initial agent 

distribution (see Figure 7). This process uses the 

boundary points as relaxation constraints. In our 

experiments, a small number of iterations (for ex-

ample, 3 to 5) usually produced acceptable results.

To perform the relaxation, Figure 7 uses a Gauss-

ian function as the kernel of radial basis func-

tions. If we used a KD-tree to store the agents’ 

positions, the updateDistribution() function 

would require re-creation operations, costing Θ(n 

log n). Performance generally is critical for agent-

based crowd simulations because the system must 

update every agent individually at each time step. 

Our implementation reduces n log n to n by reg-

istering agents into a regular grid system at each 

Performance generally is critical for 

agent-based crowd simulations because 

the system must update every agent 

individually at each time step.
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update. The closestPoints() function simply 

collects the agents registered in surrounding grids 

with Θ(1) cost.

The weight parameter, w, determines the relax-

ation effectiveness on each agent. By default, we 

apply a uniform weight to all the agents, which 

means every agent has the same pushing or pull-

ing effect on its neighbors. This results in an even 

agent distribution in the target formation. How-

ever, some applications might prefer an unbal-

anced agent distribution to achieve certain special 

effects such as local clustering. So, users can lower 

the relaxation weights for those agents at the clus-

tering center so that they’ll have a smaller pushing 

effect on their neighbors.

Agent Motion Trajectory Control
Our two-level agent motion trajectory control com-

prises local formation transition control and global 

formation trajectory control. The first level enables 

all the agents to reach their proper target positions 

with different moving styles while forming the tar-

get formation. The other level guides the agent group 

as a whole to follow arbitrary user-sketched paths.

Local Formation Transition Control
Local formation transition is the transition from 

one formation to another without considering the 

whole group’s general locomotion. Many factors 

can affect it. The most intuitive way to control 

this transition would be to simply compute a lin-

ear interpolation from an agent’s initial position 

to its estimated target position. However, this pro-

cess can’t reflect user control or realistic collision 

avoidance among agents. So, we further consider 

two factors that influence agent movements: local 

force-based3,4 collision avoidance and sketch-based 

local trajectory control.

We employ force-based collision avoidance be-

cause it can handle very-high-density crowds. Each 

agent is pushed away by the tangential forces from 

its neighbor agents and environmental obstacles 

in the area of interest (that is, the human visible 

range). For extremely high-density crowds, the tan-

gential forces alone might appear insufficient to 

drive agents apart. If the simulation system detects 

a collision between two agents, it applies extra re-

pulsion force to immediately stop the agents to pre-

vent unrealistic penetrations.

Without user interactions, each agent would go 

straight to the target position with minor transi-

tion adjustments on the way to avoid local colli-

sions with other agents. However, many scenarios 

expect agents to follow a more sophisticated path 

during the local formation transition, such as a 

splitting and merging transition. Similarly to the 

formation specification interface, our local forma-

tion transition control lets users draw freehand 

curves to specify one or multiple moving paths as 

general guides (see Figure 8).

Unlike many previous approaches, we construct 

a second virtual local grid field (instead of regu-

lar world grids) to evaluate a flow vector to guide 

transitions. This is because the formation transi-

Input: bPoints, constraint boundary points.

Input: iPoints, points to be relaxed.

Input: η, relaxation iterations.

Input: β, Gaussian constant parameter (β > 0).

Input: speed, moving rate of relaxation in each iteration.

Input: w, relaxation weight.

Output: rPoints, outputted relaxed points inside the boundaries.

 1: rPoints = iPoints;

 2: for each η do

 3:   allPoints = rPoints + bPoints;

 4:   updateDistribution(allPoints);

 5:   for each rPoint in rPoints do

 6:     neighbors = closestPoints(rPoint);

 7:     for each neighbor in neighbors do

 8:       d = distance(rPoint, neighbor);

 9:       v = v + d × exp(–β × d2);
10:     end for

11:     rPoint = rPoint + v/numOfNeighbors × speed × w;

12:   end for

13: end for

14: return rPoints;

Figure 7. Point-based formation relaxation. In our experiments, a small number of iterations (for example, 3 to 

5) usually produced acceptable results.
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tions are local behaviors despite group positions. 

So, even if users draw curves farther from the ab-

solute group location, our algorithm will still con-

sider these actions as local guidance to each agent. 

In other words, our algorithm will internally snap 

the center of user curves to the center of the vir-

tual grid field overlapping with the transition area 

(see Figure 8).

All the virtual grids around the curves are filled 

with a flow vector. We set the flow vector’s direc-

tion to the tangential vector of the closest point on 

the trajectory curve, and the flow vector’s magni-

tude is inversely proportional to the distance be-

tween the grid and that point. If multiple curves 

exist, we blend the grid’s final flow vector from all 

the influencing trajectory points with an experi-

mental threshold, D, as the upper-limit distance 

for qualified influencing trajectories.

Finally, we compute each agent’s local velocity:

V w V w f w sf i

i

n

j

j

local = + +

=

−

=

∑ ∑1 2 3

1

1

1

9

.

The first term is the velocity driven purely by target 

formation. The second term is the summed velocity 

driven by the combination of tangential forces 

from the agent’s neighboring group members and 

obstacles.4 The third term is the summed velocity 

driven by averaging flow vectors in the current 

and eight adjacent virtual grids (that is, s j j
{ }

=1

9
) 

derived from user sketches. The weights balance 

the expected speed of formation generation (w1), 

the expected accuracy of collision avoidance (w2), 

and the expected influence of user interference 

(w3). Our experiments provided visually plausible 

results with w1 = 0.2, w2 = 0.5, and w3 = 0.3.

Global Formation Trajectory Control
So far, we’ve assumed that all the agents in a group 

move and change formations relative to a fixed 

group center. However, many crowd simulation 

scenarios expect a group of agents to form a 

certain formation while moving as a whole to 

other locations. Furthermore, users can guide this 

global movement.

To achieve such effects, we introduce three 

factors to the group level:

V w V w V w Vglobal gn gc gs= + +4 5 6 .

Vgn is the global navigation vector heading to the 

target formation’s location. Vgc is the velocity driven 

by global collision avoidance between different 

groups. Vgs is the user-guided velocity computed 

from our sketching interface (see Figure 9). Our 

simulations used w4 = 0.4, w5 = 0.4, and w6 = 0.2.

Instead of using virtual grids, this form of 

control directly applies the user sketches of global 

group trajectories on the regular world grids to 

compute flow vectors. This is intuitive because 

the global trajectories are sensitive to the current 

group location. If a drawing curve is too far from 

the current group position, it won’t affect the 

group’s trajectory.

Although this global curve is more visually intui-

tive, it might introduce an undesired situation. If a 

user sketch starts close to the initial group location 

but heads away from the target formation location 

along the sketched path, the group will most likely 

stick at the end of the sketched curve. This is be-

cause the magnitude of Vgs is inversely proportional 

to the distance between the current group location 

and the closest point on the sketched curve.

To tackle this issue, we introduce a valve 

parameter α to Vgs:

V s j
j

gs = × < <

=

∑α α
1

9

0 1, .

When a group moves toward the end of a sketched 

curve, the valve value will keep decreasing so that 

Vgn will gradually dominate the group’s path to 

guarantee the group reaches the target position.

At the group level, each group in the scene is 

considered a single entity. Any rule- or force-based 

model can serve as the collision controller, just as 

in a single-agent simulation.

Finally, we combine the obtained global velocity 

with the local velocity to deliver the final agent 

velocity.

Figure 8. Local formation transition control. Users can specify relative local transition trajectories (the green arrows) anywhere in 

the scenario. Our approach can automatically snap the user specifications to align the actual formation location overlapping with 

the group center (see the red arrows).
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Figure 9 compares simulations with and without 

global formation trajectory control. The initial and 

target formations are the same in both simulations. 

Our trajectory control lets us fully control the 

intermediate transitions without changing the 

final formation state.

Our trajectory control has two main advantages:

 ■ Splitting it into the local and global levels gives 

users flexible, intuitive control over the transi-

tion paths.

 ■ Maintaining the group’s collective feature dur-

ing the formation transition allows all the group 

members to share the same global navigator.

Although our approach computes collision avoid-

ance twice for each agent and each group, the 

number of groups in a simulation is typically much 

smaller than the number of the agents. So, the ad-

ditional global collision avoidance won’t notice-

ably affect the overall runtime performance.

Performance and Results
We demonstrated several applications using our 

approach. A force-based HiDAC (High-Density Au-

tonomous Crowds) simulation model4 handled lo-

cal and global collision avoidance. We used a regular 

PC with a 3.0-GHz CPU, 4 Gbytes of memory, and 

an Nvidia GFX 260 GPU. Using 3D human models 

(700 to 800 polygons) driven by high-quality mo-

tion capture primitives with 30 joints (62 degrees 

of freedom), we simulated a crowd of up to 500 

agents at 30 fps.

To determine the computational overhead, we 

compared the average frame rates with and with-

out our approach. Table 1 shows that our approach 

adds negligible overhead to the original crowd 

simulation system. For animation results, see the 

video at www.youtube.com/uhcgim.

Local Formation Control
In these experiments, agents were driven by only 

their local formation velocities and local colli-

sion avoidance. When each simulation started, we 

computed the group center of the initial agent po-

sitions and fixed the target group formation center 

at the same position.

These experiments used three sets of examples. 

Figure 10 shows a group of 100 autonomous agents 

forming the letter A, as specified by our brush-

painting interface. In a separate experiment, our 

texture map interface used a real picture of the 

Table 1. Runtime performance for a HiDAC (High-Density Autonomous Crowds) simulation model with and 

without our approach.

Crowd size  

(no. of agents)

Random crowd  

(fps) HiDAC (fps)

HiDAC with our 

approach (fps) Overhead (%)

100 202.3 162.0 158.9 2.2

200 156.2 113.1 109.2 3.3

300 96.8 54.1 51.2 4.3

400 52.3 35.4 32.0 5.9

500 38.5 29.4 27.1 7.1

(a)

(b)

Figure 9. A group of agents reaching a target formation (a) without and (b) with explicit transition control. Without explicit 

control, each agent takes the optimal path to reach its target position. With explicit control, the user-sketched curves guide the 

whole group to take a specific route while also changing the formation.
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2008 Beijing Olympic logo as the input. Our sys-

tem automatically generated an accurate forma-

tion that exactly fits the shape in the picture. 

Finally, using our boundary-sketching interface, 

we could procedurally create arbitrary forma-

tions with or without holes (see Figure 3). The 

resultant formations closely matched the input-

ted boundaries, which we could update during 

the simulation. However, because our approach 

doesn’t currently support control of the agents’ 

speed, empty areas in the crowd could occur dur-

ing the formation transition.

Global Formation Control
In these experiments, we assumed the entire crowd 

was a single group and combined local and global 

formation control. First, we let the group move and 

interact with simple environments while forming 

and maintaining a specified formation. This type 

of group formation and interaction often occurs 

in military operations on flat terrain. We used our 

approach to generate key formations at different 

waypoints; the widely used A* pathfinding algo-

rithm served as the global navigator.

Figure 11 shows a group of 150 agents head-

ing to several navigational waypoints, sequen-

tially driven by the global navigation vector while 

changing its formation according to user specifica-

tions. The group bypassed building obstacles (see 

Figure 11b) or followed a sketched control curve 

(a)

(b)

(c)

Figure 11. A square formation transforms to a triangle formation, using (a) unconstrained formation transitions, (b) formation 

transitions with obstacle constraints, and (c) formation transitions with trajectory controls. Our two-level formation control 

effectively preserved the group’s collective behavior as it navigated through waypoints and encountered obstacles.

(b)(a) (c) (d)

Figure 10. Using the brush-painting interface. (a) The user input. (b) The initial state. (c) The simulation. (d) The results. The 

group comprised 100 autonomous agents.
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As the first step of any crowd simulation, researchers 

have explored navigational pathfinding algorithms 

to handle complex dynamic environments. On the other 

hand, increasingly more researchers are focusing on 

middle-level perception models to simulate local dynam-

ics. Among those models, force-based models1 and their 

extensions2 apply repulsion and tangential social forces to 

drive interaction between individual agents or subgroups. 

Following Craig Reynolds’ seminal research,3 researchers 

have also extensively studied rule-based simulation (for 

example, adding multilevel group rules and cognitive 

planning4) to achieve highly realistic human behavior. For 

a comprehensive review of crowd simulation techniques, 

see Crowd Simulation.5

Group formation and transition are vital characteristics 

of many crowds. Chris Wojtan and his colleagues used stan-

dard adjoint calculations with gradient-based optimization 

to control a flocking simulation while offering certain con-

trollability (that is, keyframing control).6 However, keyfram-

ing control in a large-scale, dynamic crowd simulation isn’t 

always efficient. Renato Silveira and his colleagues intro-

duced a group map structure to generate boundary group 

formations through user sketching, but without considering 

agent distribution.7

Taesoo Kwon and his colleagues’ approach edited 

group motion as a whole while maintaining neighborhood 

formation and agents’ moving trajectories in the origi-

nal group motion data as much as possible.8 The edit-

ing operations, such as pinning or dragging individuals, 

employed a graph structure in which vertices represented 

agents’ positions at specific frames and edges encoded 

neighborhood formations and moving trajectories. This 

approach focused on minimizing the distortion of relative 

arrangements among adjacent agents. In contrast, our 

approach (see the main article) focuses on a more mac-

roscopic perspective of keeping or changing the crowd 

formation’s overall shape.

Shigeo Takahashi and his colleagues combined heuristic 

rules with explicit hard constraints to produce and control 

sophisticated group formations.9 However, users had to 

manually specify exact agent distributions, which was time-

consuming and labor intensive if the crowd contained many 

agents. Unlike their approach, ours needs only a few types 

of user input to specify high-level formations and automati-

cally generates an appropriate agent distribution.

Sachin Patil and his colleagues proposed a comprehen-

sive framework to guide moving agents with navigation 

fields.10 Their approach showed convincing simulation 

results with flexible inputs of either user sketches or 2D 

video. The major distinction between their approach and 

ours is that we focus more on collective formation control 

than on guiding each agent individually.

Our preliminary research involved an intuitive sketch-

ing interface to generate arbitrary group formations in a 

crowd.11 There are two main differences between that 

research and the research we report in the main article. 

First, our previous research only sketched boundary curves 

to specify formations, whereas this new research supports 

three types of user input (brush painting, texture maps, and 

boundary sketches). Flexible combination of these inputs 

can produce a richer variety of freestyle group formations.

Second, in our previous research, all the agents found 

their unconstrained optimal paths, so no user control ex-

isted. In contrast, our new research provides users with 

two-level agent motion transition control to intuitively 

guide simulations. First, local formation transition control 

treats the entire group as a local distribution with a static 

formation center. Users can specify different transition 

preferences for individual agents when the agents head to 

their target positions. Second, global formation trajectory 

control lets users specify arbitrary moving paths as high-

level guidance constraints when navigating the group to 

its target position.
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(see Figure 11c) while gradually changing its for-

mation. Agents farther from the obstacles or curve 

points automatically chose a longer path with a 

larger orbiting radius to save space for the agents 

that were closer to the obstacles.

Our results demonstrate our approach’s flex-

ibility and effectiveness. Most agent-based 

crowd simulation approaches focus on each 

agent’s individual behaviors on the basis of its lo-

cal information such as adjacent neighbors in the 

crowd. However, many real-world crowd scenarios 

such as battles and football games must consider 

each group’s global information and interactions 

between groups. Also, unlike Shigeo Takahashi and 

his colleagues’ research,1 which focused on generat-

ing the transition between keyframes through vari-

ous hard constraints, our approach automatically 

generates scalable, adaptive group formations. (For 

more on Takahashi and his colleagues’ research 

and other related research, see the sidebar.) So, 

with our approach, users need only specify sev-

eral intuitive high-level features such as forma-

tion sketches and trajectory sketches to generate 

large-scale interacting crowds with freestyle group 

formations.

In the actual implementation, a trade-off exists 

between movement smoothness and formation 

accuracy. For instance, when an agent evaluates 

its appropriate velocity heading to the target posi-

tion, other agents might already have taken that 

position. This situation will result in the agent’s 

unsmooth movement; the agent might continu-

ally try to reach the exact position in the target 

formation by going back and forth in a small area. 

In this situation, we let the agent probe the next 

available position by searching for the second-

closest neighbor in the KD-tree.

We found that two-level collision avoidance 

can better keep the formations while avoiding ob-

stacles. The intergroup dynamics tend to guide all 

the agents, from a group perspective, to avoid an 

obstacle as a whole if possible (see Figure 11c), in-

stead of easily scattering the agents owing to local 

collision avoidance (see Figure 11a).

The current global trajectory control treats a 

group as a single entity by assuming that the group 

formations’ shape is generally isotropic, such as 

a square or circle. So, global collision avoidance 

ignores the shape effect for anisotropic group for-

mations. Thus, a group’s agents still depend highly 

on local collision avoidance. We plan to work on 

this issue in the future.

Finally, our approach currently doesn’t let users 

put timing constraints on formation transitions. 

Our next step will be to introduce this feature—for 

example, by incorporating agent velocity control to 

dynamically adjust agents’ speed. 
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