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Abstract

A general implicit solution for determining volume-preserving transformations in the n-

dimensional Euclidean space is obtained in terms of a set of 2n generating functions in mixed

coordinates. For n = 2, the proposed representation corresponds to the classical definition

of a potential stream function in a canonical transformation. For n = 3, the given solution

defines a more general class of isochoric transformations, when compared to existing meth-

ods based on multiple potentials. Illustrative examples are discussed both in rectangular

and in cylindrical coordinates for applications in mechanical problems of incompressible con-

tinua. Solving exactly the incompressibility constraint, the proposed representation method

is suitable for determining three-dimensional isochoric perturbations to be used in bifurca-

tion theory. Applications in nonlinear elasticity are envisaged for determining the occurrence

of complex instability patterns for soft elastic materials.

Keywords: Generating function, Canonical transformation, Incompressible material, Bi-

furcation theory, Nonlinear elasticity.
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1 Introduction

Considering a bounded region Ω0 in the n-dimensional Euclidean space, this work is aimed

at defining generating functions for volume-preserving transformations of a set of continuously

differentiable functions uj = uj(U1, U2, ..., Un) : Ω0 → �, with j = 1, 2.., n. Such an isochoric

constraint can be expressed by a non-linear first-order partial differential equation as follows:

J(U1, U2, ...,Un) = det
∂(u1, u2, ...,un)
∂(U1, U2, ...,Un)

= 1 (1)

where J is defined as the Jacobian of the transformation. The cases n = 2, 3 are of particular

interests in continuum mechanics, because the functions Uj ,uj can be treated as the mate-

rial/spatial components of the position vectors U,u = u(U) in the reference/actual configura-

tion, respectively. In such a case, the Jacobian defined in Eq.(1) corresponds to the determinant

of the deformation tensor F = Grad u = ∂u/∂U, so that the functions uj determine the defor-

mation fields for an incompressible material. For n = 2, the solution of Eq.(1) corresponds to

an area-preserving transformation, as reported by Bateman (1918), who ascribed its first for-

mulation to Gauss. Rooney and Carroll (1984) realized that such a solution could be expressed

by an implicit representation through the definition of a stream function. Using this change of

notation, the governing equations have the structure of Hamilton’s canonical equations with one

degree of freedom, therefore such a stream function can be regarded as a generating function

for a canonical transform of planar coordinates. The extension of this solution to n ≥ 3 was

considered by Carroll (2004), who proposed an implicit representation by the means of (n − 1)

potential functions, restricted by a set of (n − 1) admissibility conditions. Another implicit

solution was later proposed by Knops (2005), transforming the problem to a linear first-order

non-homogeneous differential equation by using prescribed cofactors in the expanded expression

for the Jacobian, recovering the Carroll’s expression for n = 3. Although representing complete

solutions of the differential problem given by Eq.(1), both methods are given in implicit form and

their application might be difficult for seeking explicit solutions with given boundary conditions

2



imposed by the mechanical problem under consideration.

This work is organized as follows. In Section 2, the existing description of volume preserving

transformation using coupled potential functions is analyzed, underlying its limitations for con-

tinuum mechanics applications. In Section 3, the definition of generating functions for volume

preserving transformation is given for a general n-dimensional problem. The three-dimensional

case is particularly examined, highlighting possible applications for stability problems in non-

linear elasticity. The results are finally summarized in Section 4.

2 Limitations of existing solutions

In this paragraph, the solution for a generic isochoric deformation presented by Carroll (2004)

is analyzed. Choosing n = 3 for the sake of simplicity, the volume preserving transformation is

given in terms of two potential functions Φ(X, y, z) and ψ(X, Y, z), referring to different mixed

coordinate systems. The general solution takes the following implicit form:

x =
∂Φ(X, y, z)

∂y
(2)

Z =
∂ψ(X,Y, z)

∂Y
(3)

∂Φ(X, y, z)
∂X

=
∂ψ(X, Y, z)

∂z
(4)

In order to understand if the solution given by Eqs.(2-4) is able to represent a generic isochoric

deformation, the multiplicative decomposition F = F1F2F3 is introduced, representing the local

changes of coordinates sketched in Figure 1.

It is straightforward to show that the local deformation gradients between the mixed coor-
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Figure 1: Multiplicative decomposition of the deformation gradient between the reference
(X,Y, Z) and the actual (x, y, z) configurations, considering two intermediate states defined
in mixed coordinates as (X,Y, z) and (X, y, z).

dinate states can be expressed as:

F1 =

⎡
⎢⎢⎢⎢⎣

Φ,yX Φ,yy Φ,yz

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎦ ; F3 =

⎡
⎢⎢⎢⎢⎣

1 0 0

0 1 0

−ψ,Y X

ψ,Y z
−ψ,Y Y

ψ,Y z

1
ψ,Y z

⎤
⎥⎥⎥⎥⎦ ; (5)

where comma denotes partial differentiation, and the admissibility condition ψ,Y z �= 0 is set to

avoid local singularities. Similarly, the tensor F2 can be given with respect to y = y(X, Y, z)

and Y = Y (X, y, z), as follows:

F2 =

⎡
⎢⎢⎢⎢⎣

1 0 0

y,X y,Y y,z

0 0 1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 0

−Y,X

Y,y

1
Y,y

−Y,z

Y,y

0 0 1

⎤
⎥⎥⎥⎥⎦ ; (6)

The incompressibility condition for the overall deformation can be derived using Eqs.(5,6) in
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the following form:

det F =
Φ,yX

ψ,zY · Y,y
=

Φ,yX · y,Y

ψ,zY
= 1 (7)

which is identically satisfied imposing the condition in Eq.(4), together with the implicit repre-

sentation given by Eqs.(2,3).

Using simple differentiation on both sides of Eq.(4) with respect to Z, the following identity also

holds:

Φ,yX
∂y
∂Z

= (ψ,zz − Φ,Xz)
∂z
∂Z

= 0 (8)

which reveals that the volume preserving transformation in the solution given by Carroll (2004)

imposes ∂y/∂Z = 0, being limited to a particular deformation field. Moreover, such an im-

plicit representation is unable to derive explicitly the expression of the transformation of the

y coordinate, limiting its practical utility for finding explicit solutions in continuum mechanics

problems. In the following, the use of generating functions is investigated to define a generic

n-dimensional isochoric transformation.

3 Definition of generating functions for volume-preserving trans-

formations

In classical mechanics, canonical transformations are used in order to preserve area changes in

the displacements fields, based on the definition of generating functions of mixed (one material,

one spatial) coordinates which allow to define implicit relations between coordinates belonging to

the same framework (Sewell and Roulstone, 1993). In the following, the definition of generating

functions is given for generic volume preserving transformations, first for the three-dimensional

case and, secondly, for a general n-dimensional problem.
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3.1 Isochoric displacement fields in rectangular coordinates

The definition of volume-preserving transformations using a three-dimensional generating func-

tion is investigated in the following. Dealing with a generic three-dimensional deformation in

rectangular coordinates, one can try to extend the classical methodology using a mixed coor-

dinate state (X,Y, z), so that a multiplicative decomposition F = FaFb can be imposed, as

depicted in Figure 2.

Figure 2: Multiplicative decomposition of the deformation gradient between the reference
(X,Y, Z) and the actual (x, y, z) configurations, considering an intermediate state (X,Y, z) de-
fined in mixed coordinates.

Assuming the existence of a generating function f(X, Y, z), the following implicit relations

between coordinates are defined as:

x =
∂2f(X,Y, z)

∂Y ∂z
(9)

y =
∂2f(X,Y, z)

∂X∂z
(10)

where the expression of Z = Z(X, Y, z) has to be determined from the incompressibility con-
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straint. According to the implicit representation given by Eqs.(9, 10), the local deformation

tensors can be expressed as follows:

Fa =

⎡
⎢⎢⎢⎢⎣

f,XY z f,Y Y z f,Y zz

f,XXz f,XY z f,Xzz

0 0 1

⎤
⎥⎥⎥⎥⎦ ; Fb =

⎡
⎢⎢⎢⎢⎣

1 0 0

0 1 0

−Z,X

Z,z
−Z,Y

Z,z

1
Z,z

⎤
⎥⎥⎥⎥⎦ (11)

Looking for isochoric solutions of the differential problem, the incompressibility condition detF =

1 is fulfilled by choosing the following implicit representation for the Z coordinate:

Z =
∫ z (

f2
,XY η(X,Y, η) − f,XXη(X,Y, η) · f,Y Y η(X, Y, η)

)
dη + g(X,Y ) (12)

where g is an arbitrary function, and we must set ∂Z/∂z �= 0 in order to avoid local singularities.

Looking for applications in continuum mechanics, an illustrative example is given by using the

following expression for the generating function:

f(X, Y, z) = XYz + ε · h(z) sin(kx X) sin(ky Y) (13)

where h(z) is a generic function of z. Using the implicit coordinate transformations in Eqs.(9,

10, 12) and considering ε as a small parameter, the displacements fields are defined at first order

in ε as follows: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x = X + ε · ky h
′
(z) sin(kxX) cos(kyY)

y = Y + ε · kx h
′
(z) cos(kxX) sin(kyY)

Z = z + ε · 2kykx h(z) cos(kxX) cos(kyY)

(14)

The solution given by Eq.(14) represents a z-dependent sinusoidal perturbation of the (X,Y )-

planes, having modes kx, ky along the axes X and Y , as depicted in Figure 3.

Such a perturbation corresponds to the displacements fields in the elastic solution given by

Ben Amar and Ciarletta (2010) (see Eqs. 41-46 therein). In the Appendix A, this transformation

is applied to derive the equilibrium equation for the surface instability pattern arising in the
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Figure 3: Isochoric deformations of the plane Z = 0 obtained using the generating function
expressed by Eq.(13). The displacements fields are depicted for kx = ky = 5 (left, ε = 0.01) and
for kx = 2, ky = 1 (right, ε = 0.15), setting h(0) = h

′
(0) = 1.

biaxial growth of a surface-attached soft layer, using a variational method in nonlinear elasticity.

The profiles given by Eq.(14) in the (x, z) and (y, z) planes represent generalized curtate cycloids,

whose asymmetry indicates the possibility of cusp formation in the nonlinear regime.

3.2 Isochoric displacement fields in cylindrical coordinates

The three-dimensional description of an isochoric transformation in cylindrical coordinates is

considered for its importance in growth instabilities of tubular tissues in continuum biomechan-

ics. In particular, the aim of this paragraph is to determine a generating function f(R,Z, θ)

for the volume-preserving transformation. By the means of the multiplicative decomposition

through the intermediate mixed coordinate state, the local tensorial components in terms of

r = r(R, Z, θ), z = z(R, Z, θ) and Θ = Θ(R,Z, θ) read:

Fa =

⎡
⎢⎢⎢⎢⎣

r,R r,Z
r,θ

R

z,R z,Z
z,θ

R

0 0 r
R

⎤
⎥⎥⎥⎥⎦ ; Fb =

⎡
⎢⎢⎢⎢⎣

1 0 0

0 1 0

−R
Θ,r

Θ,θ
−R

Θ,z

Θ,θ

1
Θ,θ

⎤
⎥⎥⎥⎥⎦ (15)
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so that the incompressibility constraint can be expressed as follows:

det F =
r r,R z,Z

R Θ,θ
=

(r2/2),R z,Z

R Θ,θ
= 1 (16)

Imposing Θ,θ �= 0 for avoiding local singularities, an implicit isochoric transformation can be

derived from Eq.(16), having the following properties:

r2 = 2
∂2f(R, Z, θ)

∂Z∂θ
(17)

z =
1
R

∂2f(R, Z, θ)
∂R∂θ

(18)

Θ =
1

R2

∫ θ (
f(R,Z, η)2,RZη − f(R, Z, η),RRηf(R, Z, η),ZZη +

f(R, Z, η),Rηf(R, Z, η),ZZη

R

)
dη+g(R, Z)

(19)

where g(R, Z) is a generic function of the material coordinates. Two illustrative examples of

isochoric transformation obtained using Eqs.(17- 19) are presented for possible application in

elastic stability problems. First, a generating function is given with the following expression:

f(R, Z, θ) =
(R2 + a)Zθ

2
+ ε ·

√
R2 + a h(

√
R2 + a) sin(kz Z) sin(kθ θ) (20)

where h(
√

R2 + a) is a generic function of
√

R2 + a and a is a constant. If ε is a small parameter,

such a generating function represents a perturbation on a generic inhomogeneous deformation

state, whose displacements fields are defined at first order in ε as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r =
√

R2 + a + ε · kzkθ h
′
(
√

R2 + a) cos(kzZ) cos(kθθ)

z = Z + ε · kθ

(
h(

√
R2+a)√
R2+a

+ h
′
(
√

R2 + a)
)

cos(kθθ) sin(kzZ)

Θ = θ + ε · 2kZ

(
h(

√
R2+a)√
R2+a

+ h
′
(
√

R2 + a)
)

sin(kθθ) cos(kzZ)

(21)

The isochoric transformation described by Eq.(21) describes a sinusoidal perturbation of an

axisymmetric elastic solution both in the longitudinal and the circumferential directions, having
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modes kz and kθ, respectively. The shape of a perturbed cylindrical surface is shown in Figure 4

(left); the application of such an isochoric transformation is suitable for a morphoelastic analysis

of villi formation in the intestinal mucosa.

A second example is given considering the following expression of the generating function:

Figure 4: Isochoric deformations of the surface R = 1 obtained using the generating functions
expressed by Eq.(20) (left, with kz = 4, kθ = 10, ε = 0.005) and Eq.(20)(right, with kz = 5,
kθ = 1, ε = 0.05). The solutions are calculated setting a = 0 and h(1) = h

′
(1) = 1.

f(R, Z, θ) =
(R2 + a)Zθ

2
+ ε ·

√
R2 + a h(

√
R2 + a) sin(kz Z − kθ θ) (22)

Using Eqs.(17, 18, 19), the implicit transformations of coordinates at first order in ε read:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r =
√

R2 + a + ε · kzkθh(
√

R2 + a) sin(kz Z − kθ θ)

z = Z − ε · kθ

(
h(

√
R2+a)√
R2+a

+ h
′
(
√

R2 + a)
)

cos(kz Z − kθ θ)

Θ = θ + ε · 4kz

(
h(

√
R2+a)√
R2+a

+ h
′
(
√

R2 + a)
)

sin(kθθ/2) sin(kz Z − kθ θ/2)

(23)

It is straightforward to show that Eq.(23) represents an helicoidal perturbation of an axisym-

metric elastic solution characterized by an inhomogeneous deformation state, where kθ defines

the number of perturbed helices having longitudinal wavenumber kz. The helicoidal deforma-

tion described by Eqs.(22, 23) for a cylindrical surface with circular section is shown in Figure
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4 (right). Finally, it is useful to highlight that, while the displacement fields in Eq.(14) can be

rewritten explicitly, the two isochoric transformations in Eqs.(21,23) are intrinsically implicit.

3.3 General solution in the n-dimensional case

The general case of a transformation of n functions ui = ui(U1, ..., Uj , ..., Un) of n variables Uj ,

with i, j = 1, 2, ..., n is considered in the following. Fixing the Jacobian of the transformation

equal to one, the differential problem is given as follows:

J = det

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂u1
∂U1

∂u1
∂U2

... ∂u1
∂Un

∂u2
∂U1

... ... ∂u2
∂Un

...
...

∂un
∂U1

∂un
∂U2

... ∂un
∂Un

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1 (24)

Fixing a mixed coordinate state in the n-dimensional case, we can define a generating func-

tion Γ = Γ(U1, ..., Uj , ..., Un−1, un) giving the following implicit representation of the spatial

coordinates:

uk =
∂(n−1)Γ

∂U1...∂Uj ...∂un
k = 1, ...,n − 1; j = 1, ...,n − 1; j �= k (25)

Using the same methodology of the three-dimensional case, a multiplicative decomposition F =

FaFb can be imposed, which reads:

Fa =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂(n)Γ
∂U1...∂Uj ...∂un

∂(n)Γ
∂2U2...∂Uj ...∂un

... ∂(n)Γ
∂U2...∂Uj ...∂2un

...
...

∂(n)Γ
∂2U1∂U2...∂Un−2∂un

... ∂(n)Γ
∂U1∂U2...∂Un−1∂un

∂(n)Γ
∂U1∂U2...∂Un−2∂2un

0 0 ... 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(26)
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Fb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ... 0

0 1 ... 0
... 1

...

−∂Un/∂U1

∂Un/∂un
−∂Un/∂U2

∂Un/∂un
... 1

∂Un/∂un

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(27)

Recalling Eq.(24), a general solution for the n-dimensional case can be expressed as follows:

Un =
∫ un

detFa(Γ(U1, ...,Uj, ...,Un−1, η))dη + G(U1, ...,Uj, ...,Un−1) (28)

where G is a generic function of the material coordinates. Given the arbitrary choice of the mixed

coordinate state, there exist 2n of such generating functions, expressed as Γ(U1, .., Uj , ..., Un, uk),

and Γ(u1, .., uj , ..., un, Uk) for k = 1, .., n and j �= k), for defining a general isochoric trans-

formations in the n-dimensional case. Taking n=2 in Eqs.(25,28), the solution is given by

u1 = ∂Γ(u2, U1)/∂u2 and U2 = ∂Γ(u2, U1)/∂U1, which is the well-known canonical transform

proposed by Rooney and Carroll (1984). It is worth noticing that, in the particular case of

pseudo-plane deformations, such an implicit solution allows an explicit representation, first given

by Hill and Shield (1986), which extends to nonlinear elasticity a well-known result for viscous

incompressible fluids.

4 Discussion and concluding remarks

In this work, the definition of generating functions for volume preserving transformations is given

for a general n-dimensional problem in the Euclidean space. Compared to existing implicit so-

lutions, it is shown that the proposed representation defines a more general set of isochoric

transformations. In the case n=3, illustrative examples are discussed both in rectangular and

in cylindrical coordinates for applications in mechanical problems of incompressible continua.

Because the proposed representation solves exactly the isochoric constraint, its application in

hyperelasticity does not require the introduction of a Lagrange multiplier ensuring incompress-

ibility. As shown in the Appendix A, a complex boundary value problem in nonlinear elasticity
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can be transformed into a fully variational formulation, having several advantages in dealing with

stability problems, when compared to the classical incremental deformation method (Ciarletta

and Ben Amar, 2011). A main advantage of using generating functions for isochoric perturba-

tions is the possibility to describe an asymmetric pattern in the linear stability analysis. In the

nonlinear regime, the implicit representation therefore allows to take into account the formation

of local singularities in the elastic solution.

Although the applicability of an arbitrary generating function is constrained by explicitly solving

Eq.(28) in closed form, a particular choice of its mathematical expression can be made a priori

in order to fulfil some boundary conditions prescribed by the mechanical problem. Finally, this

feature might be particularly important for stability problems in nonlinear elasticity, allowing

to build three-dimensional isochoric perturbations, as shown in Figure 3 and 4. Future appli-

cations will be focused on the construction of variational formulations in nonlinear elasticity,

with potential applications for the analysis of pattern formation during the growth of soft tissues.

A Analysis of wrinkling formation in biaxial constrained growth

In this work, a method for defining isochoric transformations by the definition of generating func-

tions is proposed. An application is derived in the following to determine the occurrence of a

surface wrinkling on a growing material. A soft layer with thickness H and widths Lx, Ly >> H

is attached on a fixed substrate at z = 0 and confined laterally by rigid walls, undergoing a volume

increase with an isotropic growth rate g. The incompatibility of such a growth with the geomet-

rical constraint induces biaxial residual strains in the plane (x, y), possibly leading to wrinkling

formation. Taking a reference configuration (gX, gY, gZ) in Figure 2, we can introduce a general

form of Eq.(13) to define the following generating function for an isochoric transformation:

f(X, Y, z) = XYz + ε · φ(X,Y, z) (A.1)
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where φ represents a general perturbation of the homogeneous elastic solution (x = X, y = Y, z =

g3Z). Substituting the expression in Eqs.(9,10,12) into the tensorial objects defined in Eq.(11),

the elastic deformation tensor F at the first order in ε reads:

F =
1
g

⎡
⎢⎢⎢⎣

(1 + εφ,XY z) (εφ,Y Y z) g3 (εφ,Y zz)

(εφ,XXz) (1 + εφ,XY z) g3 (εφ,Xzz)

−2εφ,XXY −2εφ,XY Y g3 (1 − 2εφ,XY z)

⎤
⎥⎥⎥⎦ (A.2)

while the incompressibility constraint detF = 1 is identically satisfied at any order in ε. Assuming

a neo-Hookean constitutive behavior for the soft layer, the total strain energy of the body can be

written as follows:

∫
Ωi

Ψ(X, Y, z)dΩi = μ

∫ Lx/2

X=−Lx/2

∫ Ly/2

Y=−Ly/2

∫ H

z=0
g3detFa · (tr(FTF) − 3)dXdYdz (A.3)

where Ωi indicates the body volume in the intermediate configuration, and μ is the elastic shear

modulus. Using Eqs.(11,12,A.1), the expression of the strain energy density Ψ in Eq.(A.3) at

the second order in ε is given by:

Ψ = gμ(2 − 3g2 + g6) − 2εgμ(−4 + 3g2 + g6)φ,XYz + gμε2
[
g6(φ2

,Yzz + φ2
,Xzz) + (12 − 3g2 + 3g6)φ2

,XYz+

+(g6 + 3g2 − 2)φ,XXzφ,Y Y z + 4(φ2
,XXY + φ2

,XY Y − φ,XY Y φ,Xzz − φ,XXY φ,Y zz) + φ2
,Y Y z + φ2

,XXz

]
(A.4)

Performing an arbitrary variation δφ in Eq.(A.4), the volumetric Euler-Lagrange equation at

the second order in ε is obtained in the following form:

g6(φ,XXzzzz +φ,Y Y zzzz)+φ,XXXXzz +φ,Y Y zzzz +4(φ,XXY Y Y Y +φ,XXXXY Y )+ (2+4g6)φ,XXY Y zz = 0

(A.5)

Setting φ(X, Y, z) = h(z) sin(kxX) sin(kyY ) as in Eq.(13), the Euler-Lagrange equation can be

transformed in a forth-order ordinary differential equation on h(z), which reads:

g6(k2
x + k2

y)h
′′′′

(z) − (k4
x + 2(1 + 2g6)k2

xk2
y + k4

y)h
′′
(z) + 4k2

xk2
y(k

2
x + k2

y)h(z) = 0 (A.6)
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where kx = 2πm/Lx, ky = 2πm/Ly, and n,m are integer numbers for satisfying the no-sliding

conditions at the side surfaces. Considering kx = ky = k3 in Eq.(A.6), one obtains the same

equilibrium equation found in Ben Amar and Ciarletta (2010) using the method of incremental

elastic deformations. The differential problem defined in Eq.(A.6) requires four boundary condi-

tions: two are given by the vanishing of the perturbation at the fixed substrate (h(0) = h
′
(0) = 0),

while the remaining two can be obtained variationally for arbitrary variations δφ at the surface

Z = H. The solution of the elastic problem is out of the scopes of this work, and further deriva-

tions are neglected here for the sake of simplicity.
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>A general implicit solution for determining volume-preserving transformations in the n- 
dimensional Euclidean space is obtained.> For n = 2, it corresponds to the classical 
definition of a potential stream function in a canonical transformation. > For n = 3, it 
defines a more general class of isochoric transformations, if compared to existing 
methods based on multiple potentials. > this representation method is suitable for 
determining three-dimensional isochoric perturbations in bifurcation theory. > 
Applications in nonlinear elasticity are envisaged for determining complex instability 
patterns for soft elastic materials. 


