
Generating Genetic Risk Scores from Intermediate Phenotypes 
for Use in Association Studies of Clinically Significant 
Endpoints

B. D. Horne1,2,*, J. L. Anderson1,3, J. F. Carlquist1,3, J. B. Muhlestein1,3, D. G. Renlund1,3, T. 
L. Bair1, R. R. Pearson1, and N. J. Camp2,4

1Cardiovascular Department, LDS Hospital, Intermountain Health Care

2Genetic Epidemiology Division, Department of Medical Informatics, University of Utah

3Cardiology Division, Department of Internal Medicine, University of Utah

4Genetic Research, Intermountain Health Care; Salt Lake City, Utah, USA

Summary

While previous results of genetic association studies for common, complex diseases (eg., coronary 

artery disease, CAD) have been disappointing, examination of multiple related genes within a 

physiologic pathway may provide improved resolution. This paper describes a method of 

calculating a genetic risk score (GRS) for a clinical endpoint by integrating data from many 

candidate genes and multiple intermediate phenotypes (IPs). First, the association of all single 

nucleotide polymorphisms (SNPs) to an IP is determined and regression β-coefficients are used to 

calculate an IP-specific GRS for each individual, repeating this analysis for every IP. Next, the IPs 

are assessed by a second regression as predictors of the clinical endpoint. Each IP’s individual 

GRS is then weighted by the regression β-coefficients from the second step, creating a single, 

composite GRS. As an example, 3,172 patients undergoing coronary angiography were evaluated 

for 3 SNPs from the cholesterol metabolism pathway. Although these data provide only a 

preliminary example, the GRS method detected significant differences in CAD by GRS group, 

whereas separate genotypes did not. These results illustrate the potential of the GRS methodology 

for multigenic risk evaluation and suggest that such approaches deserve further examination in 

common, complex diseases such as CAD.
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Introduction

Molecular genetic data provide the potential for probabilistic disease diagnosis and guidance 

of clinical prevention and treatment for prevalent, complex diseases such as coronary artery 
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disease (CAD). As yet, though, genetic association studies have only provided glimpses of 

potential risk relationships within susceptibility genes in populations of unrelated 

individuals (Lander, 1996; Risch & Merikangas, 1996; Collins et al. 1997). Various 

difficulties have caused the failure of validation studies to replicate an initially positive 

candidate gene study, including poor study design, difficulty in determining/failure to 

evaluate clinical endpoints (eg., CAD, myocardial infarction [MI], mortality), differences 

between study populations, and low statistical power (Anonymous, 1999; Risch, 2000). 

Other potential problems with association studies may include evaluation of a sole candidate 

gene, difficulties in modelling many genes with the exponentially-increasing number of 

possible gene-gene interactions, and failure to consider the effect of multiple genes that are 

pathophysiologically related through common risk-altering intermediate phenotypes (IPs).

While candidate SNPs are frequently shown to predict an IP - often the quantitative trait 

used to discover the gene - it is less common to find a study with a significant finding for a 

clinical endpoint. The most probable effect of any gene on a clinical endpoint is through 

regulation of an IP, or several IPs. For a prevalent, complex disease (eg., CAD) the effect 

size for any one gene on a clinical endpoint may be small due to potentially many other 

genes that may regulate the same IP, and the even larger number of genes influencing 

multiple IPs acting on a clinical endpoint.

For example, higher HDL and lower LDL cholesterol have well-established associations 

with lower CAD risk (Gotto, 2002a; 2002b), but studies of SNPs that predict these IPs have 

failed to demonstrate an association between genotype and CAD risk (Couture et al. 2000; 

Ordovas et al. 2000). This may be due to low statistical power, mischaracterization of 

intragenic variance, and exclusion of other physiologically-related genes (i.e., failure to 

account for underlying pathophysiology). While determination of tagging SNPs may 

increase power and account for intragenic variance in a single gene (Johnson et al. 2001), a 

polygenic model of complex disease may also be important to consider, such as that used by 

Pharoah et al. (2002) for known breast cancer genes with dominant expression. Examination 

of multiple related genes using a modular risk score based on risk-related associations (i.e., 

to the IPs) may increase power and provide a more robust estimation of risk across 

populations.

In this paper we present an approach to polygenic modelling using a genetic risk score 

(GRS) to characterize the genetics of a physiological pathway based on the genes’ shared 

IP(s). The goal of this approach is to increase the consistency of findings by creating a 

robust metric from the combination of statistical, biological, genetic, and clinical 

methodologies. We demonstrate our approach with a preliminary example using SNPs in 

three genes from the cholesterol metabolism pathway to examine risk of CAD diagnosis 

among patients undergoing coronary angiography.

Materials and Methods

Modelling a Physiologic Pathway

Genes selected for a GRS analysis should include those related to each other through a 

shared IP or set of IPs. Ideally, these genes should include both those that up-regulate the 

Horne et al. Page 2

Ann Hum Genet. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pathway or increase the IP, and those that down-regulate the pathway, decrease the IP, or 

compete with the other genes’ products.

If multiple markers (i.e., SNPs) are available in a single gene, or in multiple genes that are 

physically close, the first step in constructing a GRS is to determine whether the SNPs can 

be considered independent, or if they account for the same variation and only a few tagging 

SNPs are required. Such a procedure lends itself well to use of principal component 

analysis, as previously described (Horne & Camp, 2004).

With the independent SNPs selected for a GRS analysis, two analyses are performed. The 

first determines the relative weightings of each independent SNP to each IP considered 

(SNP-analysis). The second determines the relative weight of each IP to the clinical 

endpoint (IP-analysis).

The SNP-analyses involve linear regression with each continuous-valued IP, in turn, as the 

dependent variable and SNP genotypes being the independent variables. In each regression 

all of the SNPs are evaluated simultaneously, together with any environmental factors that 

influence the IP. SNP variables found to significantly predict (p < 0.05) change in IP are 

selected for inclusion in that IP-specific GRS (GRSi for the ith IP) with weight βij, where βij 

is the standardized linear regression β-coefficient for the ith IP and the jth SNP variable (βij 

= 0 for non-significant SNP variables). That is:

where Sj is the jth SNP variable. As in all regression modelling, due to the potential for type 

II error, investigators can consider non-significant SNPs for potential inclusion in an IP 

model if substantial a priori knowledge of the role is acknowledged and the statistical 

significance in the current data is reasonably supportive.

The IP-analysis involves the computation of the relative effects of all of the IPs on the 

clinical endpoint. This analysis is performed in logistic regression (or other appropriate 

method: eg., Cox regression for survival) with the clinical endpoint as the dependent 

variable and the IPs as the simultaneously-evaluated independent variables. The regression 

coefficients (which we will call Bi here for clarity) for the independent IPs are then used to 

weight each GRSi in the overall pathway’s GRS (GRStot), with each Bi scaled by dividing it 

by the modulus of the largest Bi (|Bmax|). In this way, the scale of the GRS remains 

reasonable and the sign of the correlations between each IP and the endpoint is preserved. 

That is:

where Bi is the regression coefficient for the ith IP (Bi = 0 for non-significant IPs). The 

derived GRStot can then be used as an independent variable to investigate a polygenic effect 

in predicting the clinical endpoint. With inclusion of a larger number of SNPs, the GRStot 
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will approach a continuous distribution and can be entered into an analysis as a continuous 

variable, or categorized into quartiles. However, with fewer SNPs evaluated it is likely that 

the score may cluster on a limited scale, and thus the distribution should be inspected for 

reasonable groupings for classification and further study.

Example Data

The example genetic data evaluated herein are limited by the small number of genes that are 

included, use of only one SNP per gene, and for other reasons (see Limitations section), but 

do provide an initial demonstration of the method’s application.

Patients—Patients considered for inclusion in this study were those undergoing coronary 

angiography from 1994 to 2001 who provided written informed consent for participation in 

the cardiac catheterization registry of the Intermountain Heart Collaborative Study. Patient 

consent was obtained prior to catheterization in accordance with the guidelines of the local 

institutional review board.

Patient data were recorded following the Coronary Artery Surgery Study protocol 

(Anonymous, 1984). Coronary stenoses and degree of stenosis were reported by the 

patient’s cardiologist from angiographic evidence. Potential study patients (N = 3,731) either 

had significant CAD (≥1 coronary lesion of ≥70% stenosis; i.e., a clinically flow-limiting 

stenosis) or were disease-free (no coronary lesion of ≥10% stenosis). Intermediate disease 

(10%–69% stenosis) was excluded as indeterminate to provide a clear phenotypic 

distinction.

IP Data—Low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) 

cholesterol, and triglyceride (TG) levels were assayed from fasting blood samples using a 

clinical assay (Vitros System, Johnson & Johnson Clinical Diagnostics) and were available 

for 72% of patients (missing data were missing at random).

Genetic Data—Patients were primarily of British/Northern European descent and drawn 

from a population that is genetically similar to the U.S. Caucasian population (McLellan et 

al. 1984). Genotypes were available for a single SNP in each of three genes, all primary 

components of the reverse cholesterol transport pathway (Attie et al. 2001): the cholesteryl 

ester transfer protein (CETP) gene, the ATP-binding cassette A1 (ABCA1) gene, and hepatic 

lipase (HL) gene. Variation at the different gene loci, particularly associated with the SNPs 

used here, has been shown previously to be associated with HDL (Couture et al. 2000; 

Ordovas et al. 2000; Kuivenhoven et al. 1998; Zambon et al. 2001; Talmud et al. 2002; 

Kakko et al. 2003). Of the potential study patients, genotyping data were available for 3,172 

patients (85%), and for the others the missing data were consistent with the assumption of 

missing at random.

Covariables—Patient demographic (age, sex) and cardiac risk variables were recorded 

electronically at the time of cardiac catheterization. Physician-reported cardiac risk factors 

included: diabetes (untreated fasting glucose ≥126 mg/dl or use of hypoglycemic 

medication), hypertension (untreated systolic blood pressure ≥140 mmHg or diastolic ≥90 

mmHg, or anti-hypertensive use), and hyperlipidemia (untreated total cholesterol≥200 mg/dl 

Horne et al. Page 4

Ann Hum Genet. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



or LDL≥130 mg/dl, or cholesterol-lowering medication use). Self-reported measures were: 

family history of early CAD (first-degree relative suffering cardiovascular death, MI, or 

revascularization prior to 65 years of age) and tobacco use (current smoker or history of ≥10 

pack-years). C-reactive protein (CRP) was measured using a medium-sensitivity assay 

shown to stratify risk in this population similarly well compared to high-sensitivity CRP 

assays (Clarke et al. 2005). Body mass index was measured (patient height divided by the 

square of their mass) but was not included, except as a descriptive, since it was not 

associated with the genotypes, GRStot, or CAD.

Further Statistical Considerations—Comparisons of patient characteristics to GRS 

values were evaluated using the chi-square test, t-test, or analysis of variance, as appropriate. 

Natural log transformation was used (median reported) when normality assumptions were 

violated. Linear regression was used to evaluate the association of SNPs to IPs. Logistic 

regression was used to evaluate whether GRStot significantly predicted the clinical CAD 

endpoint. Note that IPs must be on the same scale in all analyses. Due to the small number 

of genes included in the example data, and the evaluation of only one SNP per gene, an a 

priori decision was made to utilize the largest GRS group as the reference group for 

comparisons, so that the resulting risk estimates would have the least random fluctuation due 

to inadequate sample sizes. In each IP- and SNP-analysis, multivariable adjustments were 

performed for age, gender, hypertension, hyperlipidemia, diabetes, smoking, family history, 

and CRP concentration. In non-GRS analyses, statistical SNP interactions were modelled as 

X1*X2 for the three combinations of homozygous variant genotypes. Statistical 

significances are presented as two-tailed p-values, with nominal significance set at p<0.05 

for all analyses.

Results

SNPs

The genotype data considered here are from one SNP in each of three genes (CETP, ABCA1, 

HL) that are located on different chromosomes. Hence, we have considered all SNP 

variables to be independent.

Coronary Disease

Analyses of lipid measurements demonstrated that TC, LDL, HDL, and TG were each 

associated with CAD risk, both as continuously valued variables (p = 0.039, 0.015, 0.007, 

0.001, respectively) and for the first vs. fourth quartiles (p = 0.022, 0.020, 0.007, 0.032, 

respectively).

Minimal differences in CAD were found for each SNP, with 74%, 76%, and 71% of patients 

having CAD in CETP B1B1, B1B2, and B2B2; 74%, 75%, and 74% in ABCA1 GG, AG, 

and AA; and 74%, 75%, and 72% in HL CC, CT, TT, respectively. These differences were 

not significant, and a model simultaneously entering all SNPs showed no improvement, 

even after adjustment (Table 1). Interactions in this model were also not significant for 

B2B2*AA (p = 0.11), B2B2*TT (p = 0.61), or AA*TT (p = 0.12).
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GRS-analyses

Linear regression results for LDL, HDL, and TG are shown in Table 2. HDL was predicted 

strongly by CETP B2B2 (p < 0.001), and by CETP B1B2 (p = 0.006), ABCA1 AA (p = 

0.014), and HL TT (p = 0.033) after adjustment for covariables (i.e., age, gender, 6 risk 

factors). No genotype was associated with differences in LDL or TG level, and hence all βij 

and Bi for these IPs are zero in Table 2. Thus for these example data, the GRSHDL 

coefficient (B1) is the only component in GRStot (i.e., no GRSLDL or GRSTG component) 

which when divided by its modulus naturally yielded −1. Hence, 

where the indicator variable (I) is 1 if a patient has the subscripted genotype, and 0 if not.

The risk scores calculated for each patient from the above equation resulted in a 

discontinuous distribution of clustered GRStot values with range −2.09 to 0.00. Given the 

non-continuous nature, we assigned patients to 5 groups, with groupings determined from 

clustering of values (within  of the average value). Group 1 had the lowest genetic 

loading and lowest GRStot values and group 5 the highest. We inspected the mean HDL in 

these groups and, as expected, observed a monotonically lower mean HDL level with group 

(Figure 1). The linear trend across HDL was highly significant (p < 0.001).

Baseline characteristics—Table 3 presents the baseline characteristics stratified by 

GRStot group. Characteristics were generally similar across all groups, and similar to 

overall. Some exceptions were noted in groups 1 and 2, although these groups also had the 

smallest sample size and should be interpreted with caution.

Association analyses—Initial analysis of GRStot by chi-square (4 d.f.) showed an 

association (p = 0.019) to CAD, suggesting potential differences between GRS groups. In 

subsequent univariate logistic regression (Table 4), a significantly lower risk (OR = 0.70, CI 

= 0.55–0.88, p = 0.003) was seen for GRS group 3 compared to the largest group (group 4, n 

= 1495). After adjustment (i.e., for age, gender, six risk factors), the results were largely 

unchanged compared to group 4, with a significantly lower risk still existing for group 3 

(OR = 0.73, CI = 0.56–0.96, p = 0.02), and borderline for group 2 (OR = 0.69, CI = 0.47–

1.02, p = 0.06).

Secondary association analysis—While analysis of many groups may provide a 

biologically meaningful picture of clinical endpoint across many genetic loadings, from the 

perspective of clinical utility the data may be better viewed by categorization into a 

dichotomous variable to provide a threshold that is useful for clinical decision-making. Such 

dichotomization was performed by examination of group similarities in covariable levels, 

differences in population sizes, and clinical results (IP results may also be used, although in 

this study no threshold was evident). Three groups composed a low genetic loading set 

(GRS groups 1, 2, and 3) and the other two a high genetic loading set (GRS groups 4 and 5). 

In univariate (Table 4), a significant difference in CAD was found with lower risk for 
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patients with lower genetic loading (OR = 0.77, CI = 0.64–0.93, p = 0.006). After multiple 

regression adjustment, the effect size remained (OR = 0.78, CI = 0.63–0.96, p = 0.02).

Exploratory subanalysis—A post hoc analysis was performed to evaluate the GRS 

score among patients with no history of hyperlipidemia (n = 1,577), who likely never took a 

lipid-lowering medication and thus wherein the unobserved past medication history would 

be less of an unaccountable confounder. This analysis showed (Table 5) that the effect of the 

GRS was more linear than in the overall group (with the exception of group 1). Multivariate 

ORs for groups 1–5 were 1.3, 0.59, 0.81, 1.0, and 1.05, respectively.

Discussion

The Polygenic Risk Scoring Model

For prevalent diseases, such as CAD, genetic risk stratification could have an important 

clinical impact for the general population. GRS methods that can be generalized may 

provide improved primary and secondary risk assessment, the ability to personalize 

preventive care and medical treatments, and the opportunity to exclude low-risk patients 

from screening tests or interventions given an appropriate risk:benefit ratio.

Unfortunately, study of genetic risk among the general population for common, complex 

diseases is not as straight-forward as past evaluations of rare diseases with Mendelian 

characteristics (Risch, 2000). Gene discovery/linkage studies usually focus on high-risk 

pedigrees, not the general population, and usually discover rare mutations present in a very 

limited set of pedigrees, although the mutations that are discovered often account for a 

relatively large proportion of disease in the affected pedigrees (Winkelmann et al. 2000). 

However, linkage studies of loci for quantitative phenotypes (eg., LDL, HDL) often report 

disparate findings despite the best efforts to control extraneous factors (Klos et al. 2001; 

Coon et al. 2001), suggesting that diseases such as CAD may be polygenic. Further, 

association studies for clinical endpoints often fail to replicate initially positive findings 

(Ludwig et al. 1995; Anderson et al. 1998; Keavney et al. 2000), suggesting that genotypes 

individually have small effects, as expected for a polygenic disease. The prediction of IPs 

but not clinical endpoints by individual SNPs in this study provides further evidence of this, 

suggesting that the use of IPs as surrogates for clinical endpoints may not be appropriate in 

genetic association studies of complex diseases.

Since common, chronic diseases are likely polygenic, evaluation of genetic risk will require 

both the evaluation of many candidate genes, and the complete characterization of each 

gene’s intragenic variation, to isolate the best SNP or combination of SNPs to tag the 

disease-causing variant(s) in the gene. While the latter is a major focus of genetics today, 

little effort is focused on genotype combinations from multiple genes. This may be because 

examination of many variants from multiple genes using traditional statistical methodologies 

is well nigh impossible, since the number of possible genetic interactions increases 

exponentially with the number of SNPs considered. However, because of the potential 

increase in consistency and power that can result from combining many small-effect SNPs 

from related genes, analyses using polygenic models represent a potentially important 

advance in genetic risk determination for complex diseases.
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One method to reduce the exponential number of genotype combinations is to examine only 

the important, risk-influencing genotype subcategories. For example, the Multifactor 

Dimensionality Reduction method (Ritchie et al. 2001) examines differences in risk for 

multiple SNPs based on relative numbers of cases and controls, in a contingency table of all 

possible genotype combinations. Other largely untried methods in genetics such as 

classification trees, logic regression, or neural networking analysis may also provide 

improved categorization. However, these methods each require the use of the clinical 

disease endpoint to determine which genotype categories are important in a subset of the 

data, and then reverse the process by using those categories to analyze risk associations with 

the disease endpoint in the remaining data. Training and test set analyses run the risk of 

reduced power because the sample must be split for the analyses. Further, with large 

numbers of SNPs there may be insufficient data to populate the high-dimensional 

contingency tables in the training set, in which case the analysis cannot be performed 

(Multi-Dimensionality Reduction) or over-fitting may occur (other methods).

Stratifying the Genetic Burden of Disease

The current study introduces a polygenic model, defined as a GRS metric, to stratify CAD 

by integrating genetic and biological information into the statistical model. The GRS method 

may better categorize individual clinical risk by examining many SNPs from multiple genes 

in a common pathway and reducing them into a simple, biologically-relevant model. The 

GRS method defines genotype groupings by risk-related IP, and not by clinical endpoint, 

under the concept that gene variants from many genes likely influence an IP, while it is the 

IP that usually influences clinical risk. The GRS method addresses the concept that a more 

integrated approach may be needed to model the effects of SNPs on clinical endpoints than 

is required to observe their effects on IPs.

The example GRS data supported this concept. In those data, the GRS score was highly 

associated with HDL (p < 0.001), but the GRS metric was also able to find an association 

with the clinical endpoint (p = 0.006, p = 0.02 with and without covariate correction, 

respectively). The association with clinical endpoint was not as strong, as would be expected 

if multiple SNPs influence HDL and HDL influences risk, but the GRS method uncovered 

larger relative CAD differences (Table 4) than the individual SNPs (Table 1).

Another strength of the GRS method is that all risk-related IPs within a pathway are 

modeled together, potentially increasing the utility of the GRS over simple measurement of 

a plasma risk marker (eg., LDL, HDL). Further, the GRS model employs a generalized 

genetic risk model with each genotype’s effect weighted by its individual influence on IPs.

Herein we have introduced a basic concept that provides a framework for the GRS, but that 

can be expanded to more complex data issues. In particular, GRS scoring schemes including 

more than one tagging SNP per gene, or haplotypes of these SNPs, to describe intragenic 

risk will need to be considered as such data become available, since in many cases 

utilization of one SNP per gene is inadequate for full characterization of the intragenic 

variation. In that case, intragenic weighting will also likely be required. An additional step 

could also be used to create a separate GRS for each physiological pathway that is modelled 

(eg., blood pressure control, glucose metabolism). It may also be that methods such as 
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neural networks could be used sequentially for IPs and clinical phenotypes to integrate 

biological knowledge into a GRS model in a similar manner as regression was used in this 

study.

Findings for Reverse Cholesterol Transport

This study showed significant risk stratification for three SNPs that, on their own, were not 

significantly predictive of CAD in this population, and that other studies have failed to find 

as significantly predictive of clinical phenotype (Agerholm-Larsen et al. 2000a; 2000b; Ji et 

al. 2002; Andersen et al. 2003). While the three SNPs did not predict LDL or TG levels, and 

thus the general GRS method was not demonstrated for the reverse cholesterol transport 

pathway, GRStot did provide significant risk stratification of the clinical CAD endpoint 

based on the HDL IP.

Interestingly, the GRS risk model was not linear, but appeared J-shaped, with the highest 

GRS group potentially having lower risk. This was not expected, and is likely due to several 

factors: noise in the system due to random fluctuation; the inaccurate modelling of a SNP’s 

mode of inheritance in the IP-specific GRS (recessive/dominant); the absence of an 

important SNP(s) in the analysis; and over-simplification of the interaction between genes 

(epistasis). Theoretically, if all necessary variables (all important SNPs from all related and 

relevant genes) are incorporated into the model and modelled appropriately, then a 

monotonic relationship should occur, with minor variation from a linear pattern occurring 

only due to random fluctuation (note that the anomalies in our example were either non-

significant or borderline significant). A subanalysis of only patients with no history of 

hyperlipidemia, among whom past lipid-lowering medication use is unlikely, suggested a 

more linear risk curve, suggesting that noise due to unaccounted factors may exist in the 

example data. All of these findings provide motivation for additional evaluations of the 

combined genetics of this pathway, including studies of many more genes that predict HDL 

and those that predict LDL and TG.

For the lowest genetic loaders, an unexpected finding related to inflammation was described, 

wherein patients with the highest HDL had a significantly elevated CRP level; this finding is 

supported by experimental evidence (Navab et al. 2001), but requires further study.

Limitations

This study’s use of one SNP for each candidate gene assumes that each SNP is a reasonable 

marker of the intragenic risk locus. The SNPs used in the example data herein probably are 

not the most efficient for tagging each gene’s disease-causing locus (or loci), but previous 

studies’ results for these SNPs and IP suggest that they are reasonable to use (Couture et al. 

2000; Ordovas et al. 2000; Kuivenhoven et al. 1998; Zambon et al. 2001; Talmud et al. 

2002; Kakko et al. 2003). Interactions of SNPs also were not modelled, while if a priori 

specific interactions between SNPs are known or suspected in a system they could be 

incorporated into the GRS.

This study was also limited by its observational nature. Various unobserved or uncontrolled 

biases may be present, including that the population represents higher-risk patients who 
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presented for coronary angiography. However, genetic factors were not considered in patient 

admission decisions, the observed genotypes were randomly assorted among the population, 

and many known risk factors for CAD were controlled for in the study analysis. Also, while 

the comparison group was not a random, population-based selection of apparently healthy 

individuals, non-diseased patients were defined based on the outcome of their disease 

evaluation, and were known to be absolutely free of CAD by the gold-standard test for CAD 

diagnosis. In contrast, population controls are only apparently healthy but likely include 

many individuals with asymptomatic CAD.

In the absence of IP data, a modified version of the GRS procedure can be used, in which 

results from published literature can be used to weight the SNP variables. Due to problems 

with comparability across studies in the literature, a simpler counting procedure could be 

used to weight the SNP variables in each GRSi for the ith IP. However, likely the best 

approach is for researchers to invest in adequate phenotyping of IPs within their study 

resource to compose a meaningful GRS.

Conclusions

The GRS approach described here may provide a biologically informed, statistically robust, 

and clinically relevant method to describe a genetic risk score for meaningful application to 

clinical endpoints (eg., CAD). In the example data, our GRS method was able to detect 

significant differences in CAD, whereas no significant results were found when SNPs were 

considered either separately or simultaneously as independent variables. The results here 

suggest that our multigenic GRS approach holds promise for improved risk stratification and 

deserves further evaluation in other populations, for other pathophysiological pathways, and 

with greater numbers of related candidate genes and more SNPs within those genes.
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Figure 1. 
Mean HDL cholesterol level by GRStot (bars: standard error), demonstrating the trend in 

decreasing values for a higher genetic loading.

Horne et al. Page 13

Ann Hum Genet. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Horne et al. Page 14

Table 1

The association of each genotype with CAD, with all three SNPs entered into the same regression model

Genotype (freq.)

Model: SNPs only Model: SNPs & covariables†

Odds Ratio (CI*) p-value Odds Ratio (CI*) p-value

CETP

 B1B1 (0.33) 1.0 1.0

 B1B2 (0.50) 1.1 (0.96, 1.4) 0.13 1.05 (0.86, 1.3) 0.66

 B2B2 (0.18) 0.86 (0.68, 1.1) 0.19 0.86 (0.67, 1.1) 0.26

ABCA1

 GG (0.53) 1.0 1.0

 AG (0.39) 1.05 (0.89, 1.2) 0.58 1.03 (0.85, 1.2) 0.79

 AA (0.08) 1.0 (0.74, 1.2) 0.99 0.98 (0.70, 1.4) 0.92

HL

 CC (0.58) 1.0 1.0

 CT (0.36) 1.1 (0.89, 1.3) 0.54 1.1 (0.93, 1.4) 0.21

 TT (0.06) 0.90 (0.65, 1.3) 0.54 1.01 (0.70, 1.5) 0.96

*
CI = 95% confidence interval,

†
Adjusted model entering the three SNPs, age, gender, five cardiac risk factors, and C-reactive protein.
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Table 4

GRStot results for CAD prediction (unadjusted)

GRStot: Group OR (CI) p-value

Groupings 1 0.81 (0.50–1.3) 0.41

2 0.75 (0.53–1.05) 0.09

3 0.70 (0.55–0.88) 0.003

4 1.0 (referent) —

5 0.85 (0.70–1.03) 0.10
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Table 5

Post-hoc GRStot subanalysis (unadjusted) for CAD among patients with no history of hyperlipidemia (and 

likely no past use of lipid-lowering medications)

GRStot: Group OR (CI) p-value

Groupings 1 1.06 (0.56–2.0) 0.87

2 0.61 (0.38–0.97) 0.035

3 0.73 (0.54–0.98) 0.039

4 1.0 (referent) —

5 0.93 (0.72–1.2) 0.56
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