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Generating giant and tunable nonlinearity in
a macroscopic mechanical resonator from a single
chemical bond
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Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for

fundamental studies and potential applications. However, it is difficult to generate nonlinearity

due to the fact that macroscopic mechanical systems follow Hooke’s law and respond linearly

to external force, unless strong drive is used. Here we propose and experimentally

realize high cubic nonlinear response in a macroscopic mechanical system by exploring the

anharmonicity in chemical bonding interactions. We demonstrate the high tunability of

nonlinear response by precisely controlling the chemical bonding interaction, and realize, at

the single-bond limit, a cubic elastic constant of 1� 1020Nm� 3. This enables us to observe

the resonator’s vibrational bi-states transitions driven by the weak Brownian thermal noise at

6 K. This method can be flexibly applied to a variety of mechanical systems to improve

nonlinear responses, and can be used, with further improvements, to explore macroscopic

quantum mechanics.
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N
onlinearity in micro- and nano-mechanical systems has
been used to study processes such as fluctuation-enhanced
dynamics1–5, synchronization6,7, mode mixing8, noise

control9,10, signal amplification11,12 and logic devices13–15.
Its dynamics can be modelled by a driven Duffing oscillator
equation as follows:

m€xþ mo0

Q
_xþ kxþ ax3 ¼ Fdrivecos otð Þ: ð1Þ

Here m, o0, Q and k¼mo2
0 are the mass, resonance frequency,

quality factor and linear spring constant, respectively. And ax3 is
the Duffing nonlinearity with a the Duffing constant, that is, the
cubic elastic constant. Under weak drive Fdrive, the nonlinear
response is negligible due to its cubic dependence on the amplitude
x of the resonator, and so the resonator behaves like a
simple harmonic oscillator. This is the well-known Hooke’s law
of elasticity16. On the other hand, nontrivial dynamics of the
resonator emerges when the drive is strong enough. A famous
example is the occurrence of the driven Duffing biastability when
the drive strength reaches a certain threshold Fc (ref. 17), with the
corresponding threshold power Pc.

Since Fc is inversely proportional to
ffiffiffi
a

p
as

Fc �o3
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3= aQ3ð Þ

p
, the larger is a, the weaker driving force is

required for the system to reach nonlinear regime. One benefit
of low driving force is low driving noise, while in those micro-
and nano-mechanical systems reported in the literature, driving
noise is far beyond the system’s intrinsic Brownian thermal
noise even at room temperature1–5,9,11. On the other hand,
Pc �m2o5

0= aQ2ð Þ, so increasing a can lower the threshold
power, which is favourable in some scenarios13–15. In practice,
since the system’s fundamental parameters m, o0 and Q are
limited by various factors, such as working bandwidth, material
or fabrication, a universal way to increase and to tune a
independently is significant.

What is more demanding is from quantum science, where
strong nonlinearity can make quantum effects emerge from a
classical harmonic resonator18. Such quantum nonlinearity is still

elusive in macro-scale mechanical systems due to the naturally
weak nonlinear response. Generally speaking, the emergence of
quantum behaviour requires quantum nonlinear strength g /
ax4zpf to overcome the system’s decoherence19–24, and since
the quantum fluctuation xzpf is usually extremely tiny for a
macro-scale resonator, generating ultra-strong nonlinear
response a is of paramount importance.

In this work we demonstrate a system with a macroscopic
mechanical resonator coupled to a single chemical bond, where
the anharmonicity of the chemical bond deformation potential
induces a giant nonlinear response of the resonator and can
be tuned using external force. When driving to the nonlinear
bi-states regime, stochastic transitions between bi-states are
observed, which are demonstrated to be induced by the intrinsic
Brownian thermal noise of the resonator.

Results
Theoretical model and density functional calculations. Our
system consists of a macroscopic mechanical resonator tightened
to an anchor via a chemical bonding structure shown
schematically in Fig. 1a. Strong nonlinearity is achieved when the
resonator moves along x-direction by deforming the chemical
bond. This is because, although the resonator alone follows
the elasticity theory with linear dynamics, the response of the
chemical bond is highly anharmonic. This is illustrated by
the chemical bond’s energy curve Uchem(x) (Fig. 1b) obtained by
density functional theory calculations (see Methods for details).
For simplicity, x¼ 0 is set at the minimum of Uchem(x) (Fig. 1b).
By applying on the chemical bond an external control force F, the
resonator’s equilibrium position xeq can be tuned, and along with
this the spring constant for sufficient small vibration is modified
by Dk¼ q2Uchem/qx2. As shown in Fig. 1c, when the resonator’s
equilibrium position is far away from the atom contact, the
chemical bonding interaction is weak. By tuning the control force,
that is, shifting the resonator’s equilibrium position towards
x¼ 0, the strength of Dk first reaches a local maximum and then
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Figure 1 | Concept of the system and theoretical results. (a) A macroscopic resonator tightened to an anchor via chemical bonds. The displaced

resonator can compress (top of panel) and stretch (bottom of panel) the chemical bond of gold-atom contact. (b–d) Density functional theory calculation

results of (b) the chemical bonding interaction energy Uchem(x), (c) the modified spring constant Dk¼ q2Uchem/qx2 and (d) the enhanced nonlinearity

coefficient a¼ (1/6)q4Uchem/qx4 as a function of the resonator displacement x. (e,f) Estimated threshold drive force Fc and corresponding threshold power

Pc as a function of the resonator mass, m, with: (i) intrinsic nonlinear response of the resonator (dark blue, dark grey); and (ii) enhanced nonlinear response

of the resonator (light blue, light grey) by chemical bonding interaction, at the point indicated as grey vertical line in b–d, where chemical bonding-induced

linear response Dk¼0 (see Methods for details of the model).
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drops to zero at the point where the chemical bonding attraction
reaches maximum. The Duffing constant from chemical bonding,
that is, a¼ (1/6)q4Uchem/qx4, changes differently (Fig. 1d): its
strength first reaches a local maximum, then drops to zero before
approaching the maximum attraction point, and finally changes
its sign and increases in strength. At the maximum attraction
point, a¼ 2� 1022Nm� 3 is reached, while Dk is zero.

Figure 1e,f shows the threshold driving force Fc and the
corresponding power Pc as a function of the macroscopicity of
the resonator (here characterized by the resonator’s mass) with/
without using the chemical bonding force-induced nonlinearity.
With specific basic mechanical parameters, that is, resonance
frequency o0, quality factor Q and mass m, introducing chemical
bonding force can reduce Fc as well as Pc significantly. The term
proportional to x3 in the expansion of chemical bonding potential
Uchem and higher-order terms beyond the Duffing nonlinearity
are also presented in our system, but are insignificant for bi-states
dynamics studied in current experiments.

Experimental realization of the system. Now we demonstrate
the above idea by using a macroscopic doubly clamped beam
whose fundamental vibrational mode couples to a gold-atom
contact, as shown in Fig. 2a. The atom contact is made by electric
current migrations (see Methods) on a nano-bridge, which
anchors the beam to a stiff electrode (Fig. 2b). The dimensions of
beams is l�w� t¼ 50� 1.5� 0.51 mm. The mass of the beam is
B0.2 ng. The vibrations of the beam deform the gold–gold bonds
of the contact along x direction. The beam has a typical intrinsic
frequency around o0/2p¼ 1.6MHz, with measured quality factor
Q ranging from 1,000 to over 3,000, depending on specific device.
The device is placed in an ultrahigh vacuum chamber and has an
environment temperature of 6K.

We carried out the experiments (see Methods) with several
devices. The measured beam’s resonance frequency and the
corresponding spring constant are plotted as functions of control

force F in Fig. 3a–c for devices A to C correspondingly. Device A
is in non-contact regime while B and C are in contact regime but
with different atom structure in the contact. In typical contact
regime devices, the frequency varies by about 1MHz when the
beam is pulled out to non-contact regime. Figure 3d–f shows
the corresponding electron conductance results measured
simultaneously as those for Fig. 3a–c. In the non-contact regime,
the conductance due to quantum tunnelling shows a strong
dependence on the control force and a value as low as
B300 kO� 1 is reached, which confirms that a short-range
chemical bonding force has been significantly involved25, while in
the contact regime, quantized conductance is observed and
is insensitive to control force. Such a ballistic conductance is
resulted from small number of metallic bonds26.

From the dependence of the spring constant k on the applied
static force F, we can obtain the Duffing constant as

a Fð Þ ¼ 1

6x2
@2k
@F2

k2 þ @k
@F

� �2

k

 !
; ð2Þ

where x is the shape factor with value the order of 1 and depends
on the definition of the mode shape normalization of the device
(Supplementary Note 1). To reliably obtain the Duffing constant
from the data with noise, we have smoothed the a using a
running average of five data points. Figure 3g–i plots the
measured Duffing constant a as a function of control force F.
In the single-bond case, the maximum strength of the Duffing
constant achieved in our experiments is (1.1±0.2)� 1020Nm� 3,
with an enhancement of six orders relative to the estimated
intrinsic nonlinearity due to the elongation of the beam
(a0E1� 1014Nm� 3), and is many orders of magnitude
larger in strength than those reported previously11,12,27–31

(see Supplementary Table 1 for comparison to other systems).
High tunability is easily reached by control force. In practical,
both non-contact and contact regimes can be used depending on
detailed applications. In the non-contact regime, jump-to-contact
leads to system’s instability (see Supplementary Note 1 for detail),
while in contact regime such instability is naturally avoided. The
frequency response of the device was studied by increasing the
drive force, and the results are plotted in Fig. 3j–m, with Fig. 3j
from device A, Fig. 3k,l from device B corresponding to regions I
and II in Fig. 3h, respectively, and Fig. 3m from device C. The
hysteresis responses are due to Duffing induced bi-states17, with
their directions agreeing with the signs of the nonlinear
coefficients measured in Fig. 3g–i.

Observation of thermally activated bi-states dynamics. In the
following we present a demonstration of a dynamical effect of the
strong nonlinear response. Thermal fluctuation effects in non-
linear regime can lead to various complex dynamics, and have
been studied in various systems, with an example being the centre
of mass motion of optical trapped particles32. However, such a
thermal nonlinear regime is exclusive in widely studied
micro- and nano-mechanical systems. A well-known
phenomenon is noise-activated bi-states transitions in a driven
Duffing oscillator33. As a consequence of lacking strong enough
nonlinear response, this phenomenon has only been previously
observed by introducing strong artificial noise that far above the
thermal fluctuation1–5,9. With the successful realization of strong
nonlinear response here, we have observed in our system the
bi-states transitions activated by the Brownian thermal noise even
at cryogenic temperatures.

In the process, we chose a device (device D) of a relative high
quality factor Q¼ 3,100, and tuned the control force to a point
with the Duffing constant approximately � 1� 1017Nm� 3.
We avoided using the maximum absolute Duffing constant, in
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Figure 2 | Experimental set-up. (a) Scanning electron microscopy of a

representative device in false colour. The macroscopic resonator is a doubly

clamped silicon beam with thin layer of gold deposited on it, with dimension

l�w� t¼ 50� 1.5�0.51mm and total mass B0.2 ng. The centre of the

beam has horizontal displacement x. In the presence of a 6-T external

magnetic field along the z direction, the electric current (I) can excite

and detect the motion of the beam, with the schematic circuits shown.

Scale bar, 5 mm. (b) Nano-bridge connecting the beam to a stiff electrode,

before experiments. Scale bar, 100 nm. (c) Cartoon plot of the atom contact

generated on the nano-bridge indicated by ‘c’ in (b). The gold–gold bonding

interaction is then tuned by force F, which is controlled by a d.c. current

through the beam, and the electrostatic interaction of the contact is

minimized applying a d.c. bias on the tip.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11517 ARTICLE

NATURE COMMUNICATIONS | 7:11517 | DOI: 10.1038/ncomms11517 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


which case the corresponding bi-states amplitude would be too
small and that would make the motion sensing the noise. We
drove the system to the bistable state regime and observed the
switching behaviour by recording the amplitude of vibrations of
the beam, as shown by the green trajectory in Fig. 4a.

To verify that such switchings are indeed from the Brownian
thermal noise of the beam, we introduced an amplitude
modulation to the driving signal of the form Fdrive(t)¼ Fdriveþ
dFdrive cos(Ot), with O¼ 0.5Hz and dFdrive¼ 0.18 pN. The
amplitudes of the vibration of the beam show periodic switchings
(Fig. 4a, purple trajectory) instead of random switchings.
Figure 4b shows the corresponding power density, Smod(O)
with modulations and Snoise(O) without modulations, from
which the signal to noise ratio (SNR) is calculated with

SNR(O)¼ Smod(O)/Snoise(O). By using the standard stochastic
resonance theory (Methods), we estimated the total force

noise as
ffiffiffiffiffiffiffiffiffi
SFtotal

q
¼ (3.6±0.6)� 10� 16NHz� 1/2. It agrees nicely

with the resonator’s Brownian thermal noise, estimated34 byffiffiffiffiffiffi
SFth

q
¼ 4mo0kBT/Q as 3.3� 10� 16NHz� 1/2. In the limit of O

approaching zero, the modulation becomes a perturbative force
signal dFdrivecos(ot) added to the driving force with the same
phase. In the rotating frame of the driving signal, the bi-states
dynamics is described by an over-damped double well whose
shape is tuned by dFdrive (ref. 33), and becomes sensitive to the
tuning near the bifurcation point. By applying a weak force
dFdrive¼ 2 fN that is only several times larger than the resonator’s
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Figure 3 | Tuning the nonlinear response by chemical bonding force. (a–c) Frequency shift (left axis) and the corresponding effective spring constant

change Dk (right axis) as a function of the external control force F for three different devices (A, B and C) which work in non-contact (device A) and contact

regimes (devices B and C). Typical data to obtain the resonant frequency under weak drive with the beam in near linear regime are plotted in inset.

(d–f) Conductance in unit of quantized conductance (2e2/h) between atom contact measured simultaneously with a–c with inset cartoons the

corresponding atom structures (schematic). The grey line in d indicates the noise level of measurement circuit. (g–i) Duffing constant a estimated from

a–c correspondingly. (j–m) Typical hysteresis response under drive frequency sweeping corresponding to device A (j) device B ((k) for region I and (l) for

region II) and device C (m). Note that the frequency shift, effective string constant change (Dk), control force F and driving frequency are all relative with

large constants being subtracted for the ease of displaying.
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Brownian thermal noise force, significant changes in the statistic
distribution are observed, as shown in Fig. 4c. The sensitivity of
such a response to the external force is limited by the total force

noise
ffiffiffiffiffiffiffiffiffi
SFtotal

q
. It is noted that, in our device, in addition to the

thermal noise, the electronic noise from the circuit also
contributes to the total force noise, but with a weak power
density of SFelec¼SFtotal � SFth. We estimated that SFelec is 11 dB below
the SFth level, corresponding to an electronic noise temperature of
500mK, and is mainly limited by our room-temperature
detection circuit (see Supplementary Table 2 for detailed data).

Discussion
In conclusion, we have demonstrated a highly controllable
nonlinearity in a macroscopic mechanical system, with its
fluctuation dynamics dominated by Brownian thermal noise.
The universal existence and the small scale of the chemical
bonding force make our method applicable to current widely used
micro- and nano-mechanical systems in improving their

nonlinear responses. With further improvements, nonlinearity-
induced quantum behaviours in macroscopic mechanics19–24 are
foreseeable in the type of systems described here.

Methods
Theoretical description of the system. Density functional theory calculations
were used to estimate qualitatively the chemical bonding force (see Supplementary
Note 1 for detailed description). Owing to stability considerations, a small structure
of two gold-atom clusters was adopted in the calculation (see Supplementary Fig. 1
for data). By changing only the relative position x of the left cluster relative to the
right one while otherwise keeping the relative positions of all the gold atoms fixed,
we obtained a chemical bonding energy function Uchem(x), from which the
nonlinearity is calculated as the fourth-order derivative. Other structures of clusters
are also considered (see Supplementary Fig. 2 for data). Owing to the existing
systematic error in performing density functional theory calculations, the
second-order derivative of the total energy shows slightly an oscillatory behaviour
at large distance range. We smoothed the calculated data by fitting it to the
function A

xa þ B
xb . In reality, however, the relaxation of gold atoms can occur, which

may modify the energy–displacement curve Uchem(x). We have considered this
effect and find out that the results do not change significantly. To estimate the
long-range forces, we considered analytically the van der Waals attraction and the
electrostatic force25 for the geometric model of two gold cylinders close to each
other, similar to the case of our nano-bridge structure and in modelling nonlinear
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dynamics, we have dropped the quadratic nonlinearity in the chemical interaction
(see Supplementary Fig. 3 for data). To estimate the intrinsic macroscopic
mechanical property, we modelled the macroscopic resonator as a doubly clamped
beam. The lowest vibrational mode has a weak intrinsic nonlinearity due to
elongation. In calculating the threshold drive force Fc and the corresponding power
Pc in Fig. 1e,f, we took the mechanical quality factor 3,000 and the ratio between
the beam’s thickness and length t/lZ0.005. We also estimated the electrostatic
force-induced nonlinear response based on the same doubly clamped beam
(see Supplementary Fig. 4 for data).

Fabrication of the device. The device was fabricated on a commercial silicon-on-
insulator wafer using nanolithography (see Supplementary Note 2 for detailed
descriptions). The nano-bridge connecting the beam and the stiff electrode is about
200 nm in length and 80 nm in diameter. Focus-ion beam was adopted to narrow it
down to o50 nm. Once such a device, that is, the doubly clamped beam with a
suspended nano-bridge, was successfully fabricated, it was placed in the ultrahigh
vacuum environment of the cryogenic system, and then the bridge was
electro-migrated to form an atomic point contact35. After the atom contact was
produced, the beam was disconnected from the stiff electrode and its lowest
vibrational mode was measured. The position of the equilibrium of the beam is
controlled by applying a d.c. current through the beam so that the atom interaction
can be tuned.

Device characterization and electronic noise. The resonant frequency (2p)� 1o
of the device under a control force F is measured directly when the device is
working in the linear regime under a weak drive. The spring constant k is calcu-
lated as k¼mo2. Here the effective mass m for the first vibrational mode of the
beam is estimated by using finite element simulation, which is widely used for
similar systems36. The electric conductance is measured by using G¼ dI(dV)� 1.

The Brownian thermal noise on the beam is calculated to be
3.3� 10� 16NHz� 1/2. On the basis of this and the calculated mass, the measured
resonator frequency and quality factor, we estimate the thermal motion amplitude
noise on resonance as 1.0� 10� 13mHz� 1/2 (refs 34,36), which cannot be
measured directly due to the sensitivity limitation of our room-temperature
measurement electrics. We modelled the mechanical resonator as LCR elements
following standard procedure37 (see Supplementary Note 3 for detailed
descriptions), and analysed the noise in the equivalence electric circuit (see
Supplementary Fig. 5 for circuit diagram). The separation of the atom contact can
be controlled with a precision of about 1 pm without any feedback control for
thousands of seconds (see Supplementary Fig. 6 for the data), and once jump-to-
contact occurred, a strong enough control force is used to pulled the tip out again
and device’s main nonlinear character is commonly preserved (see Supplementary
Fig. 7 for data). The intrinsic nonlinearity is measured from the frequency response
to the driving strength in a standard way based on the Duffing nonlinear
model17(see Supplementary Fig. 8 for data). To do this, we have pulled the beam
far apart from the stiff electrode with contact separation larger than 30 nm, so the
interaction due to the atom contact is negligible. A 6-T magnetic field is used in our
experiments so that control force can be generated using a small current. This
decreases the system total quality factor from its intrinsic value (see Supplementary
Fig. 9 for data). We also applied a voltage biaso200mV between the beam and the
stiff electrode to compensate the contact potential of the atom contact so that the
contribution of electrostatic force in our experiments is minimized (see
Supplementary Fig. 10 for data).

In our experiment, there are mainly three sources of electronic noise. The first
one is the Johnson–Nyquist noise SVR¼4RkBT , with T room temperature and R the
circuit’s resistant, which produces a force noise with power density SFR. The second
one is the current leakage from the input of the voltage preamplifier SIba. We model
the preamplifier back-action by a current source similar to that described in ref. 38.
In doing this, we assume that there is no correlation between voltage imprecision
SVim and the back-action SIba (ref. 39), so SIba leads to a force noise with power
density SFba. Another one is from the radio frequency driving signal, which
generates a phase noise and works as an equivalent force noise on the beam with
power density SFpha. We estimate the total electronic-induced force noise as

SFelec¼SFR þ SFba þ SFpha, and in the experiments,
ffiffiffiffiffiffiffiffi
SFelec

q
¼ 0.9� 10� 16NHz� 1/2,

with power density about 11 dB below the SFth.

Measurement of the total force noise on the beam. The dynamics of our system
is modelled by the standard Duffing oscillator of equation of motion

m€xþ g _xþmo2
0xþ ax3 ¼ Fdrive tð Þcos otð Þþ Fnoise tð Þ: ð3Þ

where the dissipation rate g¼mo0/Q, Fdrive(t)¼ Fdriveþ dFdrive cos(Ot) is the
amplitude-modulated driving force and Fnoise(t) is the total noise with power
density SFtotal. The minimum force that drives the system into the nonlinear regime
where bifurcation occurs is Fc, with the corresponding vibration frequency being
(2p)� 1oc, and the amplitude xc can be calculated from equation (3)17. Near the
nonlinear bifurcation point, we transform this equation to an over-damped one by
following the standard procedure33. For the case of modulation frequency O being
much smaller than the decay rate o0/Q of the system, the SNR is related to the

system’s noise power as40

SNR ¼ p
gk
do

x2m
dFdrivemo

SFtotal

� �2

; ð4Þ

with xm the half of the vibration amplitude of the bistable states, do the
nonlinearity frequency-induced shift from linear resonance peak and gk the
measured random switching rate without modulation. So from the measured SNR
we obtained SFtotal.
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