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Generating high-fidelity synthetic patient data for assessing

machine learning healthcare software
Allan Tucker 1✉, Zhenchen Wang2, Ylenia Rotalinti3 and Puja Myles 2

There is a growing demand for the uptake of modern artificial intelligence technologies within healthcare systems. Many of these

technologies exploit historical patient health data to build powerful predictive models that can be used to improve diagnosis and

understanding of disease. However, there are many issues concerning patient privacy that need to be accounted for in order to

enable this data to be better harnessed by all sectors. One approach that could offer a method of circumventing privacy issues is

the creation of realistic synthetic data sets that capture as many of the complexities of the original data set (distributions, non-linear

relationships, and noise) but that does not actually include any real patient data. While previous research has explored models for

generating synthetic data sets, here we explore the integration of resampling, probabilistic graphical modelling, latent variable

identification, and outlier analysis for producing realistic synthetic data based on UK primary care patient data. In particular, we

focus on handling missingness, complex interactions between variables, and the resulting sensitivity analysis statistics from

machine learning classifiers, while quantifying the risks of patient re-identification from synthetic datapoints. We show that,

through our approach of integrating outlier analysis with graphical modelling and resampling, we can achieve synthetic data sets

that are not significantly different from original ground truth data in terms of feature distributions, feature dependencies, and

sensitivity analysis statistics when inferring machine learning classifiers. What is more, the risk of generating synthetic data that is

identical or very similar to real patients is shown to be low.
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INTRODUCTION

It is increasingly evident that the use of historical data within
health systems can offer huge rewards in terms of increased
accuracy, timely diagnoses, the discovery of new knowledge
about disease and its progression, and the ability to offer a more
personalised prognosis and care pathway for patients1. What is
more, there is a huge demand from the public and governments
to make new technology available within health services as
quickly as possible while ensuring that any software that uses
Artificial Intelligence (AI), in particular Machine Learning, is
robustly validated to check for biases and errors2.
Many issues concerning patient privacy have been highlighted

since the introduction of General Data Protection Regulation3. This
includes protections from the identification of an individual’s data
within large data samples4 and the right to explanation for any
decision that is made by an automated system5. As a result of this
legislation, the ability to offer large samples of real individual-level
patient data to companies and institutions is limited. One possible
solution to this problem is the use of synthetic data as an
alternative to assist in the rapid development and validation of
new tools. This data must capture all of the correct (potentially
non-linear and multivariate) dependencies and distributions that
are apparent in the real data sets, while also preserving patient
privacy and avoiding the risks of individual identification.
In this paper, we explore some of the key issues in generating

realistic and useful synthetic data, namely preserving relation-
ships, distributions, predictive capabilities, and patients’ privacy.
We also explore what robust methods need to be used to validate
models using synthetic data in order to ensure biases in the
models, overfitting issues, and high variance are discovered and
reported. The paper is broken down in to three main sections: first,

we discuss some of the key issues concerning the generation and
use of synthetic data and introduce a method based on
probabilistic graphical models; second, we explore a case study
using primary care data from the Clinical Practice Research
Datalink (CPRD) in the UK. CPRD is a real-world research service
supporting retrospective and prospective public health and
clinical studies. It is jointly sponsored by the Medicines and
Healthcare products Regulatory Agency and the National Institute
for Health Research, as part of the Department of Health and
Social Care6. Finally, we make conclusions and recommendations
about the advantages and disadvantages of using synthetic data
for rapid development of AI systems in healthcare.
There are already existing methods for generating synthetic

data. One simple approach is through data perturbation by adding
noise to the original data set. For example, rotations, cropping,
and noise injection in images7–9 in order to produce more diverse
data sets for a more generalisable classifier, or through the
addition of noise from some distribution such as the Laplace
mechanism as used in PrivBayes10 in order to make it more
difficult to identify individuals from a data set. Another approach
uses generative models of data11. In this case, models that capture
the correct relationships and distributions are built, either hand-
coded based upon expert knowledge or inferred from real data
using models such as Bayesian networks (BNs)10,12 or neural
networks13. These can then be used to generate synthetic data via
sampling techniques. Generative Adversarial Networks have
become particularly popular as a method to generate synthetic
image data to build more robust models containing fewer biases
than those generated on real data alone14.
Bias in the data can appear due to the way data is collected. In

many fields, data analysis involves using historical secondary-use
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data that was not collected for the analysis in question, as
opposed to well-designed research data aimed at answering a
specific statistical question (as found in clinical trials for example).
This means that secondary-use data sets are often imbalanced,
particularly in medicine. For example, in primary care data the
number of patients with a specific disease may be far lower than
patients who do not have the disease. Conversely, data that is
collected by a particular hospital may not reflect the general
population as less-severe patients may be managed in primary
care, while the data collected in hospitals will only contain more
severe patients who are already diagnosed with a specific disease
or are at high risk of developing it. As a result, any models that are
inferred from such data must deal with these imbalances, either
through resampling methods15,16 or synthetic data generation.
SMOTE is a commonly used resampling technique in machine
learning for dealing with small and imbalanced samples and
involves generating synthetic datapoints to supplement existing
data17.
An important issue concerning the use of an underlying model

to generate synthetic data is that the inherent biases may not be
visible. For example, Neural Network approaches whereby models
are inferred from data have turned out to be biased, leading to
decisions and classifications being made for the wrong reasons18.
Agnostic network approaches have attempted to deal with
unwanted biases in the data by selecting known “protected
concepts” and using domain adversarial training19 to account for
these biases. The issue of bias is especially a problem for models
where the relationships between features are not explicitly
represented because unwanted correlations cannot easily be
identified. This is known as the black box problem where it is
difficult to know how a model will behave when it has many
complex parameters that are not easily interpreted. Approaches
that try to deal with this by modelling influences more
transparently include probabilistic graphical models20 and tree-
based models21,22.
Many data sets will contain specific characteristics that must be

taken into account when learning a model for synthetic data
generation. For example, missing data are common in most
medical data sets. These missing data can manifest for many
different reasons but if the data are not recorded for some
systematic reason then this must be accounted for in the
modelling process. This is structurally missing data—also known
as Missing Not At Random (MNAR) as opposed to Missing At
Random (MAR). If MNAR is non-ignorable, then we must find a way
to model these types of missingness. For example, in probabilistic
graphical models, a discrete variable can include a “missing” state,
while continuous value variables can include a binary node
representing whether the variable measurement is missing or
not23. However, for non-ignorable MNAR data we need to use
robust methods24. This is because the pattern of missing data can
often have value in itself and be exploited to assist in making
predictions23. Other approaches include explicitly modelling these
unmeasured effects as latent variables25, which we will explore in
this paper.
Most data sets will contain unmeasured effects. That is, some

underlying processes that have not been recorded in the data
(perhaps because they were not considered important at the time
of collection, or perhaps because they were not known at the time
—e.g. a particular clinical test that has been introduced part way
through the data collection process). These can be modelled using
latent variable approaches that use methods such as the FCI
algorithm20 to infer the location and the Expectation Maximisation
algorithm26 to infer the parameters of these unmeasured
variables. A key issue being explored in this paper is how
synthetic data can be used while ensuring patient privacy. That is,
the ability to use simulated patient data to build new models
without giving away personal information. There are a number of
concepts that attempt to measure how easy it is to identify a

patient from their data. For example, k-anonymisation is a
measure of the least number of individuals (k) in a data set who
share the set of attributes that might become identifying for each
individual27, while ε-differential privacy is a metric which enables
data managers to only release aggregates of data that cannot be
used to identify individuals28. Re-identification has proven to be
problematic, for example, through “differentiation attack” where
aggregated data are repeatedly requested for different subsets to
enable the attacker to identify individual. This is a risk even when
data have been anonymised29. For many individuals, aggregated
data can preserve their privacy if data cannot be repeatedly
requested as they cannot be identified from the summary
statistics/distributions that are learnt from a large population.
However, people who are considered outliers, for example, those
who have rare disease or demographics may still be identified. As
a result, outlier analysis30 needs to be incorporated. Simply
removing these patients may be an option but this can sometimes
mean missing out on important data that could be used to help
future patients.
In summary, there have been numerous attempts to generate

synthetic data for different reasons, including to deal with biased,
imbalanced, and small sampled data. There is now a push to
explore how synthetic data may enable researchers to build
predictive models while preserving patient privacy. In this paper,
we explore the integration of probabilistic graphical models with
latent variables and resampling to simultaneously capture many
features of real-world complex primary care data, including
missing data, non-linear relationships, and uncertainty, while
focussing on the importance of transparency of the modelling and
data generation process. In the next section, we describe the
methods that we have adopted to construct and robustly validate
synthetic data samples. We also describe the primary care data in
detail. We then carry out an empirical analysis on a subset of the
primary care data with a focus on cardiovascular risk. This includes
an evaluation of our probabilistic graphical model approach to
handling missing data by comparing the synthetic data to original
ground truth data in terms of distributional characteristics. We
then explore how the synthetic data compare on machine
learning classification tasks by comparing the sensitivity analyses
on synthetic and ground truth data.

RESULTS

Data and modelling

Our experiments make use of the CPRD Aurum data set. This
includes patient Electronic Healthcare Records collected routinely
from primary care practices using the EMIS® patient management
software system. When a practice agrees to contribute their
patient data to CPRD Aurum, CPRD receives a full historic
collection of the coded part of the practice’s electronic health
records, which includes data on deceased patients and those who
have left the practice. The coded clinical record includes
symptoms, diagnoses, prescriptions, immunisations, tests, lifestyle
factors, and referrals recorded by the general practitioner (GP) or
other practice staff but does not include free text medical notes6.
The November 2019 release of the CPRD Aurum database
included a total of 27.5 million patients (including deceased and
transferred patients) from 1042 practices of whom 9.7 million were
currently registered with a GP6.
We have chosen a generative approach to modelling the CPRD

data where the focus is on a combination of machine learning that
is augmented with expert knowledge. This is because we want to
ensure that any biases that occur in the ground truth data are
made explicit and can be dealt with at each stage of the data
generation process. As a result, the underlying model must deal
with all the potential uncertainty in the data while also modelling
the distributions and relationships in as transparent a manner as
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possible. For this reason, we have chosen a BN framework.
The first experiment involved learning a BN from the CPRD
data set.
The general structure of the discovered BNs from multiple

samples of the original CPRD data, which we denote as ground
truth (GT), are shown in Fig. 1. This explicit representation of
independencies between variables allows experts to assess the
underlying model and check for potential biases within the GT
data. For example, almost all the black arc relationships are well
recognised in medical research:

● Cholesterol/high-density lipoprotein ratio and type 2 diabetes:
increased ratio in type 2 diabetes31

● Steroid treatment and systemic lupus erythematosus (SLE):
steroids used in SLE treatment32

● Rheumatoid arthritis (RA) and SLE—both are autoimmune
conditions, and while RA affects joints, SLE can affect joints in
some variants and mimic RA. They are considered distinct
diseases but can co-occur33

● Severe mental illness and migraines: migraines can precede
mental illness and are common in those with anxiety
disorders34

● Smoking and severe mental illness: well-known association,
especially in schizophrenia (widely observed but may not be
causal)35

● Ethnicity and body mass index (BMI): possibly confounded by
lifestyle explanations but widely observed association36

● Smoking and systolic blood pressure: the grey in the network
reflects the conflicting evidence base in this area37

● Smoking and impotence; this also explains why there is a
relationship between the male gender and impotence38

● Type 1 diabetes and impotence39

● Age and systolic blood pressure: increasing systolic blood
pressure with increasing age40

● Family history of coronary heart disease increases risk of
stroke/heart attacks41

● Antipsychotics and severe mental illness: antipsychotics used
for treatment of severe mental illness (bnf.nice.org.uk)

● Systolic blood pressure and systolic blood pressure SD:
correlated variables

● Atrial fibrillation (AF) and stroke/heart attack: AF is risk factor
for stroke (stroke.org.uk)

● Chronic kidney disease and stroke/heart attacks: often co-
occur42

● Age and type 2 diabetes: increasing risk of type 2 diabetes
with age39

There were, however, some surprises:

● Region was connected to impotence. Perhaps there is an
indirect link as linked to regional distribution of smoking43

● There is no clear link between systolic blood pressure and
blood pressure treatment. This could possibly be due to
systolic blood pressure being a numeric variable spanning
normal and high systolic blood pressure readings

We adopt three BN modelling approaches to handle missing
data: First, we simply delete all cases with missing data. Second,
we model missingness in discrete nodes by adding a “Miss State”
to all possible node states, and in continuous nodes by adding a
new binary parent (a “Miss Node”) to each node, representing
whether the data point is missing or not. Finally, we explore the
use of the FCI algorithm20 to infer any latent variables in the
network. These methods are explained in more detail in the
“Methods” section. The following links to 6 latent variables were
discovered:
“L1” → “age”
“L1” → “af”
“L1” → “treathyp”
“L2” → “steroid”
“L2” → “treathyp”
“L3” → “impot”
“L3” → “gender”
“L4” → “migr”
“L4” → “choleratio”
“L4” → “gender”
“L5” → “strokeha”
“L5” → “ckidney”
“L5” → “type2”
“L5” → “choleratio”
“L5” → “sbps”
“L6” → “strokeha”
“L6” → “ckidney”
“L6” → “type2”
Having accepted this underlying BN model (though we can

choose to update it based on expert knowledge by removing
known false links and adding expected true links), we now explore
how it can generate synthetic data with the underlying distribu-
tions in the GT data on a variable by variable basis, while
accounting for missingness using the “Miss Nodes/States”
approach and the latent variable approach.

Synthetic data compared to ground truth data for underlying
distributions

We compare distributions of variables from 100,000 data samples
generated by the BN with the original ground truth data under
three conditions for handling missing data: first, by simply
deleting all cases with missing data. Second, by using “Miss
Nodes” (for continuous variables) and “Miss States” (for discrete
variables). Finally, by additionally learning latent variables within
the BN structure using the FCI algorithm to capture unmeasured
effects, including potentially MNAR data.
Figures 2 and 3 show the resulting distributions for a sample of

features in the CPRD. We explore the distribution comparisons
between the GT and SYN that is generated by logic sampling from
the BN under two conditions for a number of representative
variables—first, when missing data are simply deleted (Fig. 2).
Figure 2a shows the result for GT and Fig. 2b shows the SYN data
generated from this. Second, we explore explicitly modelling the
distributions using our approaches described in the “Methods”
(Fig. 3). Figure 3a shows the GT with no missing data removed, Fig.
3b shows the SYN data generated from this using our Miss Nodes/
States data approach, and Fig. 3c shows the resulting SYN from

Fig. 1 Resultant graph structure for BNs learnt from samples of
ground truth data. Confidences of 100% are represented by black
arcs while those <100% are represented by varying widths in grey.
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using the latent variable method. Also included are the number of
data points with missing cases and the number of distinct values
for a feature (e.g. a value of two for discrete binary features and
potentially large numbers for integers and real values).
First, notice how these results show that, for some variables,

simply deleting the missing data can result in very different
distributions. For example, the age distribution of the GT when
missing data are simply removed in Fig. 2a has a very different
distribution than for the original GT data without missing data
removal in Fig. 3a. What is more, the approach to modelling
missingness with “Miss Nodes/States” results in a similar shape
distribution to the original in Fig. 3b for some, but in certain cases,

the latent variable approach in Fig. 3c results in the most similar
distribution to the ground truth with missing data—compare bmi
in Fig. 3a–c. The bias in categorical data seems less significant and
both the “Miss Nodes/States” and latent variable approaches
capture the smoking and stroke distributions very closely though
notice how different the distributions are if the missing data are
simply removed, highlighting the importance of modelling
missing values rather than removing them.
Note that the amount of missing data that is generated (%

Missing) is different for the latent variable approach and the “Miss
Nodes/States” approach, with the “Miss Nodes/States” approach in
Fig. 3b reflecting this value more closely and the latent variable

Fig. 2 Plots of sample distributions and statistics of the original ground truth data when all missing data are deleted along with plots,
distributions, and statistics from the synthetic data that are generated using a BN inferred from the ground truth.
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approach exhibiting far fewer missing cases. This is likely due to
the latent variable method in Fig. 3c inferring the missing values.

In summary, a close distribution can be created between synthetic
data sets and ground truth. Distributions are generally closer to
the original when missing data are preserved and modelled. We

have found this general trend across all features.
Each discrete variable is compared using Chi-squared tests to

measure the difference between n samples of the Ground Truth
(GT) and n samples of SYNthetic data (SYN). For variables with
continuous values, Kolmogorov–Smirnov (KS) test is used to
measure the distribution difference between GT and SYN data

sets. In addition, the Kullback–Leibler divergence (KLD) is used to
measure the distribution difference between sampled GT and SYN
data sets. These approaches are described in more detail in the
“Methods” section.
Chi-squared test is performed with the null hypotheses to (1)

test whether there is no significant difference between expected

frequencies from SYN and (2) the observed frequencies from GT
for each variable (categorical).

Table 1 shows that for all features the null hypothesis cannot be
clearly rejected in both scenarios, i.e. removing the missing data
and modelling it (all p values are far greater than the 0.05 level).
This was surprising and implies that simply deleting missing data
is not a problem for this primary care data (or at least it does not

have much impact on the overall distribution). This could be
because of the size of data set that we are dealing with and
missing data may be more of an issue with smaller sample sizes. In
addition, modelling missingness explicitly is likely to impact
certain cases more than others (for example, where people have
refused to give certain information for some underlying reason—
i.e. MNAR data). These cases may be rare but significant.
The KS test is performed to test the hypothesis if the numerical

variables of the GT and SYN data sets come from the same
distribution. We explore this for a number of different sample sizes
(n). This is because larger sample sizes make the test more likely to
conclude that the two distributions are different (i.e. reject the null
hypothesis) because it is very sensitive to differences between
distributions44.

Fig. 3 Plots of sample distributions and statistics of the original ground truth data including missing data as well as plots for the synthetic
data that models missing data with “Miss Nodes/States” and with latent variables.
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Table 2 shows that the numerical variables from SYN and GT
data sets are indeed from the same distributions (the p values are
always >0.01, meaning we reject the hypothesis that they are from
different distributions) for all variables except age and bmi for very
high sample sizes (indeed the D statistics are nearly always smaller
for the models using latent variables, which means that data sets
are generally closer).
We now look at using the KLD to see the difference over all

variables for different samples (of size 100,000) of GT data in
comparison to the difference between SYN and GT data sets.
Table 3 shows the mean squared KL distances between

repeated GT samples compared to SYN samples scored against
GT samples. Table 4 calculates the diffKL values using the results
above. Additionally, the missing data rates of continuous variables
are listed below based on the KL distance. Applying a KS test to
these results for each variable shows that the KL distances of two
ground truth samples is not significantly different to the KL
distance between a ground truth sample and a synthetic data

samples for variables with reasonably higher distances (chol and
bmi with p values of 0.168 and 0.052, respectively). For age (p=
0.0), sbp (p= 0.0), and sbps (p= 0.002), they were found to be
significantly different: age and sbps distances are very small (or
zero) for both GT and SYN data comparisons (see Table 3) and sbp
interestingly is the variable where the synthetic data actually
contains smaller distances to ground truth than between ground
truth samples.
We assume that that the synthetic data are suitably similar in

distribution to the ground truth if the KL distances of the samples
of synthetic data to the ground truth are similar to the KL
distances of the resamples of ground truth data between one
another. In order to test this, we randomly resample from ground
truth, GT, and calculate the KL distances between each sample.
These distances are then compared to the KL distances between
the synthetic data, SYN, and the GT. diffKL represents the
difference in the KL distances between multiple resamples of GT
and between SYN data and GT, for each variable.
The mean diffKL values for the tested variables (in bottom rows

of Table 4) indicate that the synthetic KLDs vary between 8.244
and −1.286 when missing data are presented. In some cases, such
as systolic blood pressure (sbp), the synthetic data are constantly
closer to the ground truth distribution shape than the resampled
data are to one another. For variables without missing values such
as age, the KL distance differences are close to zero. In other
words, the synthetic data are closer to the GTi distributions. We
can thus conclude that our approach generates synthetic data
that is no more different to the ground truth data than differences
found when generating multiple resamples of ground truth.
We now explore the joint distributions in the synthetic data sets

by using kernel maximum mean discrepancy (kMMD) with a radial
basis function kernel. We conducted a combination of distribution
tests for 2-variable (253 combinations), 3-variable (1771 combina-
tions), and 4-variable (8855 combinations) comparison. The
hypothesis H0 for kMMD is that samples to be tested come from
the same distribution with alpha ~0.05. With the same SYN data
sets from the previous experiment for each iteration (10
iterations), we aim to see the difference between same-sized
samples from the GT population and samples from SYN in terms of
their distributions. The results of the H0 acceptance rate are shown
in Table 5 (joint distribution tests on 1000 samples from 1 million
GT population and 100,000 sampled SYN data).
We can conclude from these results that the distance between

SYN and GT distributions are generally low when taking account
of low-dimensional combinations of data features. What is more,
they are not significantly worse than between two GT samples,
when using our proposed methods of latent variable modelling to
handle missingness. The distance between SYN and GT, however,
can increase as the number of combinations of data features
increases (potentially as a result of simplification within the
structure of the model).

Table 1. Chi-squared p values for the hypothesis of there being a

difference in distributions between the GT and SYN data sets for

categorical variables.

Variable Missing deleted
p value

Missingness modelled
(latent) p value

strokeha [factor] 0.95 0.36

af [factor] 0.98 0.48

atyantip [factor] 1.00 1.00

steroid [factor] 0.50 0.16

impot [factor] 0.82 0.48

migr [factor] 0.73 0.16

ra [factor] 0.40 0.75

ckidney [factor] 0.90 0.51

semi [factor] 0.65 0.65

sle [factor] 1.00 1.00

treathyp [factor] 0.64 0.28

type1 [factor] 0.51 0.57

type2 [factor] 0.66 0.27

ethr [factor] 0.80 0.92

smoking [factor] 0.84 0.27

fh_cad [factor] 0.57 0.51

gender [factor] 0.87 0.89

region [factor] 0.71 0.28

Chi-squared tests comparing distributions between synthetic and ground

truth data for categorical variables.

Table 2. KS test p values for the hypotheses of numerical variables for GT and SYN data sets are from the same distribution and the associated D

statistic of the test.

Numerical
variable

Missingness
modelled (latent)
n= 1000

Missing deleted n
= 1000

Missingness
modelled (latent)
n= 5000

Missing deleted n
= 5000

Missingness
modelled (latent)
n= 10,000

Missing deleted n
= 10,000

age 0.023 [D= 0.025] 0.302 [D= 0.045] 0.017 [D= 0.027] 0.261 [D= 0.039] 0.008 [D= 0.025] 0.017 [D= 0.027]

bmi 0.023 [D= 0.0318] 0.206 [D= 0.068] 0.013 [D= 0.0315] 0.108 [D= 0.071] 0.005 [D= 0.0312] 0.014 [D= 0.069]

choleratio 0.012 [D= 0.0793] 0.244 [D= 0.046] 0.011 [D= 0.0796] 0.138 [D= 0.067] 0.009 [D= 0.0795] 0.014 [D= 0.057]

sbp 0.074 [D= 0.063] 0.065 [D= 0.063] 0.072 [D= 0.063] 0.064 [D= 0.063] 0.071 [D= 0.063] 0.062 [D= 0.063]

sbps 0.082 [D= 0.0340] 0.081 [D= 0.083] 0.080 [D= 0.0358] 0.072 [D= 0.076] 0.042 [D= 0.0348] 0.028 [D= 0.073]

Population sizes are 1,000, 5,000, and 10,000. Kolmogorov–Smirnoff tests comparing distributions between synthetic and ground truth data for numerical

variables.
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In order to see the practical implication of differences between
GT and SYN data, we further compare GT and SYN’s performance
on training and testing machine learning classifiers in the next
section.

Synthetic data compared to ground truth data for machine
learning classifier comparison

Figure 4 compares the receiver operator characteristic (ROC) and
precision recall (PR) curves for the GT data and SYN data
(generated using the latent variable method) when a machine
learning classifier is inferred for predicting stroke. The results
shown are on a Bayesian generalised linear classifier. In particular,
the area under the ROC curve (AUC) for both curves is calculated
for GT and SYN samples and the Granger causality statistic as
described in the “Methods” is calculated to determine how
predictive the SYN curves are of the underlying GT curves. Note
that a p value is generated that determines the Granger causality
statistic at the 5% significance level.
First, notice that the ROC and PR curves are similar in shape for

the GT data (blue) and the SYN data (red). Observing these sample
curves, it is not surprising the Granger causality statistic for all
samples is significant at less than the p= 0.001 level. We also
applied identical tests to other machine learning classifiers (see
Supplementary Figs. 3 and 4) where all p values were found to be

Table 3. The mean squared DKLðGT i jjGT
n

i
Þ (n∈ {1…10}) of each variable ending with “gt” and the mean squared DKLðGT

m

i
Þ SY

n

i

�

�

�

(m,n∈ {1…10}) of

each variable ending with “sy”.

Iteration age_gt chol_gt bmi_gt sbp_gt sbps_gt age_sy chol_sy bmi_sy sbp_sy sbps_sy

1 0.000 46.662 4.995 5.395 0.652 0.002 56.599 9.007 4.550 1.576

2 0.000 48.260 3.403 5.520 0.634 0.002 88.224 3.702 5.747 1.521

3 0.000 57.847 2.407 6.203 0.623 0.002 46.680 11.784 4.420 1.580

4 0.000 47.924 2.657 5.194 0.644 0.002 36.679 10.985 4.735 0.998

5 0.000 51.721 9.957 5.497 0.639 0.002 56.610 2.923 3.814 1.500

6 0.000 51.067 3.254 5.888 0.734 0.002 46.622 11.882 3.898 1.288

7 0.000 44.377 3.373 6.007 0.680 0.002 68.853 6.966 3.961 1.458

8 0.000 46.583 4.790 5.351 0.731 0.002 70.475 11.548 5.645 1.369

9 0.000 53.491 2.784 6.664 0.614 0.002 62.019 2.900 3.645 1.572

10 0.000 51.239 2.896 5.999 0.642 0.002 48.852 12.751 4.445 1.261

The mean squared Kullback–Leibler divergence between resampled ground truth data compared to synthetic samples scored against ground truth.

Table 4. KL divergence differences between resampled data sets and synthetic data sets for each variable and associated missing rate in

parentheses.

Iteration diffKLage (0% missing) diffKLchol (88.47%) diffKLbmi (15.85%) diffKLsbp (8.37%) diffKLsbps (38.25%)

1 0.002 9.937 4.012 −0.845 0.924

2 0.002 39.964 0.299 0.227 0.887

3 0.002 −11.167 9.377 −1.783 0.957

4 0.002 −11.245 8.328 −0.459 0.354

5 0.002 4.889 −7.034 −1.683 0.861

6 0.002 −4.445 8.628 −1.99 0.554

7 0.002 24.476 3.593 −2.046 0.778

8 0.002 23.892 6.758 0.294 0.638

9 0.002 8.528 0.116 −3.019 0.958

10 0.002 −2.387 9.855 −1.554 0.619

Mean (SD) 0.002 (0.000) 8.244 (16.863) 4.393 (5.376) −1.286 (1.065) 0.753 (0.204)

Kullback–Leibler divergence differences between resampled ground truth and synthetic data.

Table 5. Joint distribution tests for 2-, 3-, and 4-variable combinations

using kernel MMD.

Iteration 2-kMMD 3-kMMD 4-kMMD

1 75.49% 65.50% 56.82%

2 76.68% 68.44% 61.69%

3 69.96% 61.10% 53.64%

4 75.89% 66.57% 58.78%

5 83.00% 75.21% 68.02%

6 75.89% 67.25% 59.35%

7 75.89% 67.08% 58.80%

8 75.89% 67.65% 58.92%

9 69.96% 60.42% 53.19%

10 75.49% 66.12% 57.09%

Joint distribution similarity for synthetic and ground truth data. In each

iteration, 1000 data instances are sampled from ground truth population of

1 million instances and another 1000 from synthetic data set. The results of

H0 being not rejected are shown in percentages, and average H0

acceptance rates are 75.42, 66.53, and 58.63%, respectively.

A. Tucker et al.
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<0.001 except for ROC curves generated when using stepwise
regression with N < 1000. We conclude that the outcome of using
SYN data samples for the selected prediction algorithms is that we
can predict the sensitivity analysis of using actual GT data (as their

difference is not significant). Indeed, this experiment set-up
implies that the generated SYN data are able to achieve
equivalent statistical results to GT data. (Incidentally, these AUC
results are in line with similar results documented by Ozenne

Fig. 4 Five-sample sensitivity analyses for a Bayesian generalised linear classifier on GT and SYN data (latent model) for fixed sample size of
100,000, including ROC and PR curves, and AUC and Granger statistics.
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et al.45 i.e. high AUC ROC and low AUC PR curves were observed
across tests.).

Detecting re-identification risks using outlier analysis with distance
metrics

Finally, we explore the risk of re-identification of patients from the
SY data based on the clones (Rclone), inliers (Nin), and outlier (Nout)
statistics described in the “Methods” section. We base our
experiments on the concept of event per variable (EPV), which
explores the effect of sample size and number of variables on
predictive accuracy46. The number of EPV is the number of events
divided by the number of degrees of freedom required to
represent all of the variables in the model. We use an EPV value of
22.2 based on the conclusions in the study by Austin and
Steyerberg46. The results in Table 6 below are based on 10
iterations of resampling without replacement. This indicates a
sample size of 7000 for each iteration within 11 random
population groups. Notice how the risk of clones decreases as
the sample size increases (as one would expect). While we also see
that the risk of outliers decreases, they are always very small. What
is more, the actual number of outliers generated stays relatively
stable (between 10 and 70). These statistics demonstrate that,
while there is always a risk of risk of a synthetic patient being
linked to an actual patient in the ground truth data in the case or
outliers, we can exploit such metrics to identify the at-risk samples

and make a decision as to whether they should be removed or not
(if they are clones or outliers with a too-small k-anonymisation
value).

DISCUSSION

This paper has introduced and validated a set of techniques to
model complex heterogeneous data for generating realistic
synthetic data sets that capture the correct dependencies and
distributions. The approach exploits resampling with probabilistic
graphical modelling that explicitly handles missingness and
complex non-linear/non-Gaussian relationships and is transparent
in how data are modelled enabling biases to be assessed and
accounted for. Through a case study on cardiovascular risk, the
paper has demonstrated that these synthetic data sets not only
generate similar distributions over both discrete and continuous
variables but also produce similar sensitivity analyses to the
original ground truth data (in the form of PR and ROC curves).
Patient privacy is quantified through a demonstration that the

proximity of individual synthetic data points to real patients can
be scored by using outlier statistics and distance metrics, though
more research is required on the robustness of this particularly
when clusters of patients with rare disease/demographics are
modelled. We have demonstrated that our method can flag
identical or similar patient profiles in the synthetic and real data.
While the occurrence of these “clones” or similar rare patient
profiles appears to be low (and does not seem to increase with
sample size), there is still a small risk. However, our metrics enable
these risks to be quantified so that appropriate action can be
taken prior to releasing any data (depending on the risk protocol
adopted).
Another issue that may impact the production of realistic

synthetic data is the temporal nature of many health data sets.
The methods that we have adopted here are well suited to handle
this characteristic. For example, the dynamic BN47 and hidden
Markov model48 are generalisations of the standard BN model
used in this paper. Here the time dimension is represented by
unrolling networks so that nodes represent variables at specific
time points in Fig. 5c, d. These approaches will be included in our
future directions for the project.
Generating synthetic data from large-scale real-world data that

are noisy, contain structurally missing data, and many non-linear
relationships such as the UK primary care data can bring
enormous benefits to AI research. In particular, it can prevent
the need for using real patient data when developing and
validating state-of-the-art predictive models. This paper has
explored several key issues involved with this but there is scope
for more research to ensure that these data sets do not contain

Table 6. The risk of seeing clones Rclone, inliers Nin, and outliers Nout in

the synthetic data for increasing samples sizes of ground truth data.

GT population size Rclone Rin, Pr= 0.001 Rout, Pt= 0.999

100,000 0.016 462 (0.4620%) 25 (0.0250%)

200,000 0.013 770 (0.3850%) 34 (0.0170%)

300,000 0.014 613 (0.2043%) 24 (0.0080%)

400,000 0.012 553 (0.1383%) 53 (0.0133%)

500,000 0.016 529 (0.1058%) 19 (0.0038%)

600,000 0.009 254 (0.0423%) 45 (0.0075%)

700,000 0.008 534 (0.0763%) 24 (0.0034%)

800,000 0.011 581 (0.0726%) 13 (0.0016%)

900,000 0.012 518 (0.0576%) 33 (0.0037%)

1,000,000 0.012 30 (0.0030%) 45 (0.0045%)

2,000,000 0.010 78 (0.0039%) 29 (0.0015%)

Risk of seeing clones, inliers, and outliers.

Fig. 5 Bayesian network architectures. a A Bayesian network with four nodes. b A Bayesian network classifier with class node C. c A dynamic
Bayesian network with two time-slices, t and t−1. d A Hidden Markov model with latent variable H.
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underlying biases (e.g. by exploring data collection processes) or
present a privacy risk (e.g. by carrying out simulated privacy
attacks), if they are to be made freely available without any access
controls to facilitate innovation.

METHODS

Data description—CPRD Aurum

For our case study, we used an extract from this database on 122,328
patients (all aged >16 years).
We tested the synthetic data performance using a risk prediction

algorithm for cardiovascular disease (encompassing stroke, transient
ischaemic attack, myocardial infarction, heart attacks, and angina). We
used the same features as used by Hippisley-Cox et al.49 for predicting the
onset of cardiovascular disease within 10 years (explained in Table 7).

BN modelling

We have selected a BN due to its flexibility and transparency—see Fig. 5a.
BNs model the joint distribution of a data set p(X) by making assumptions
about conditional independence between features that are captured in a
directed acyclic graph (DAG). A BN represents the joint probability

distribution over a set of variables, X1,…,XN, by exploiting conditional
independence relationships. These relationships are represented by a DAG.
The conditional probability distribution (CPD) associated with each
variable, Xi, encodes the probability of observing its values given the
values of its parents and can be described by a continuous or a discrete
distribution. All the CPDs in a BN together provide an efficient factorisation
of the joint probability (see Eq. 1)

p xð Þ ¼
Y

n

i¼1

pðxi jpaiÞ; (1)

where pai are the parents of the node xi (which denotes both node and
variable).
This family of models can be used to perform inference by entering

evidence into one or more nodes and inferring the posterior distributions
of the remaining nodes. In this way, data can be sampled under different
observations. We use logic sampling50 to sample data where we “fix”
certain features if necessary, by entering evidence. For example, we can
generate data where all samples are formed from people aged >65 years,
or female-only samples, or all people who have been diagnosed with
hypertension.
BNs can be constructed by hand where the links represent some form of

influence or they can be inferred from data using constraint-based
algorithms such as the PC or FCI algorithm20, or search and score methods
such as BIC51, or MDL52. Here we use a method to infer models directly
from the CPRD that can handle missing data known as structural
expectation maximisation26,53. We record the fit of the models over
multiple runs to calibrate the robustness of the models to sampling
variation. This family of models can be used to perform machine learning
prediction such as in the BN classifier in Fig. 5b, clustering using the EM
algorithm, and time-series forecasting by unrolling the BN into the time-
domain in Fig. 5c, d.
We use three approaches to handle missing data: one for discrete nodes

where we add a “missing” state to all possible states in Fig. 6a, one for
continuous nodes where we add a new binary parent to each node that
represents either missing or not in Fig. 6b and one where we use the FCI
algorithm to infer any latent variables in the network. The algorithm is
applied to 10 resampled data sets to calculate robust statistics for
determining the inclusion and position of any latent variables in the
networks, e.g. Fig. 6c where the distribution of a variable is directly
influenced by a discrete latent variable that is discovered as a parent. By

Table 7. Description of the selected features used from CPRD for

analysis based on predicting cardiovascular disease.

Variable
acronym

Type of variable
(D= dependent, I
= independent)

Description

age I Age of patient

gender I Gender of patient

strokeha D Stroke or heart attack

af I Atrial fibrillation

atyantip I On atypical antipsychotic
medication?

steroid I On regular steroid tablets?

impot I A diagnosis of or treatment for
erectile dysfunction?

migr I Do you have migraines?

ra I Rheumatoid arthritis?

ckidney I Chronic kidney disease (stage 3,
4, or 5)?

semi I Severe mental illness?
(this includes schizophrenia,
bipolar disorder, and moderate/
severe depression)

sle I Systemic lupus erythematosus?

treathyp I On blood pressure treatment?

type1 I Type I diabetes

type2 I Type II diabetes

bmi I Body mass index

ethr I Ethnicity

choleratio I Cholesterol/HDL ratio

sbp I Systolic blood pressure (mmHg)

sbps I Standard deviation of at least
two most recent systolic blood
pressure readings

smoking I Smoking status

fh_cad I Family history of coronary
artery disease

region I Practice region

Selected features for predicting cardiovascular disease from the CPRD.

Fig. 6 Methods to capture missing data and unmeasured effects.
a A binary “Miss Node” pointing to all continuous nodes in a
Bayesian network. b A “Miss State” for discrete nodes. c A latent
variable with m states to capture Missing Not at Random data and
other unmeasured effects (in both discrete and continuous nodes).
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identifying these robust latent variables, we aim to improve the details of
the underlying distributions as well as capture any MNAR effects. Please
see Supplementary Fig. 1 for the threshold statistics for each variable and
Supplementary Fig. 2 for a sample network including latent variables.

Experiments

Modelling missing data to capture underlying distributions. We assume that
the synthetic data are suitably similar in distribution to the ground truth if
the KL distances of the samples of synthetic data to the ground truth are
similar to the KL distances of the resamples of ground truth data between
one another. In order to test this, the experiment base population GTi is
randomly sampled from the full CPRD primary care database. KL distances
are compared to assess if the generated SYN can be representative. Three
groups of data are used, where i denotes the sample size.
GTi—The sampled ground truth from the total population P;
SY

n

i
—The generated n synthetic data sets based on GTi (with equal size

to GTi);
GT

n

i
;GT

m

i
—The other n or m sets of resampled ground truth data (with

equal size to GTi) from the total population P without replacement.
Two KL distances are obtained from each target variable’s distribution

shape and these then can be compared as in Eqs. 2–5.

D
2
KL
ðGTm

i
jjSYn

i
Þ and D

2
KL
ðGT ijjGT

n

i
Þ: (2)

When the D
2
KL
is close to 0, then the distributions are almost identical.

When the value of D2
KL
ðGTm

i
jjSYn

i
Þ is close to D

2
KL
ðGT ijjGT

n

i
Þ, then the

generated synthetic variable has an almost identical distribution as the
GTi.

D
2
KL
ðGT ijjGT

n

i
Þ is the mean squared KLD n 2 1¼ 10f gð Þ: (3)

D
2
KL
ðGTm

i
jjSYn

i
Þ is the mean squared KLD m; n 2 1¼ 10f gð Þ: (4)

diffKL ¼ D
2
KL
ðGTm

i
jjSYn

i
Þ � D

2
KL
ðGT ijjGT

n

i
Þ: (5)

We also explore the joint distribution of our models compared to the
ground truth data using MMD. The MMD is an approach to represent
distances between distributions as distances between mean embeddings
of features54. The approach tests whether distributions p and q are
different on the basis of samples drawn from each of them, by finding a
smooth function that is large on the points drawn from p and small (as
negative as possible) on the points from q. The test statistic is the
difference between the mean function values on the two samples. When
this is large, the samples are likely to be drawn from different distributions.
For example, if we have any joint distributions P from GTi and Q from

SY
n

i
over a set X. The MMD can be defined by a feature map φ:X→H, where

H is called a reproducing kernel Hilbert space. Hence, when
x ¼ H ¼ Rd and φ xð Þ ¼ a kernel function over x. MMD is defined in Eq. 6.

MMD P;Qð Þ ¼ jjEX�P φ Xð Þ½ � � EY�Q φ Yð Þ½ �jjH
¼ jjEX�P½X� � EY�Q½Y�jjRd

¼ jjμP � μQjjRd;

(6)

where μP and μQ are the mean embeddings for distributions p and q.
We take 10 synthetic and ground truth data set pairs. For each pair, we

explored the combination of 2, 3, and 4 variables and applied the MMD
test to compare all combinations of these variables. Each test produces the
H0 hypothesis for that combination. We calculate the percentage of times
that the H0 is not rejected for the combinations of 2, 3, and 4 variables.

Comparing machine learning classifiers inferred and tested from synthetic
data and ground truth data. ROC and PR curves are often used to assess
the predictive performance of a machine learning model. ROC curves
capture the trade-off between false positives and false negatives but can
often mask the biases in imbalanced data sets (for example, when the
positive case is rare in a population)55. PR curves, on the other hand, can
detect these biases as they capture the trade-off between precision (also
known as the positive predictive value representing the number of correct
true positives from all positive prediction) and recall (sensitivity). We
analyse the ROC curves and PR curves that are generated when 3 machine
learning classifiers (stepwise regression, linear discriminant analysis, and
Bayesian generalised linear models) are used to model and predict GT
data. We explore the ROC and PR plots for the classifiers’ performance on
the SYN data and the original GT. We also measure the capability of the

synthetic data curves to predict the GT curves for varying sample sizes
using a Granger causality test56. In our experiments, the Granger causality
test checks for the null hypothesis that the synthetic data curves cannot
predict (or “Granger cause”) the ground truth curves.

Detecting re-identification risks using outlier analysis with distance metrics.
The method we propose aims to generate synthetic data that avoids
privacy issues associated with releasing real patient data. However, if the
synthetic data sets enable re-identification of real patients (for example,
through proximity between a synthetic data point and a real patient), then
the intrinsic value is lost. As the probability of re-identification increases,
the more unique a patient’s data is (for example, the older a patient is or
cases of rare disease). Here we use a form of outlier detection to measure
this risk. We randomly select synthetic datapoints from SYN and calculate
the distances between it and all GT datapoints. Using an outlier analysis
method (based on the distribution of GT data and the individual synthetic
data), we calculate the number of GT datapoints (k) that are in the same
distribution as the synthetic data point (rather than being statistically
separate as an outlier). We apply this for varying large samples (100 K to 1
million) of synthetic datapoints. The smallest value of k for each of these
can be considered the k-anonymisation value.
We use the quantile function to assess how many real-world patients are

close to a synthetic patient given a pre-defined probability of smallest
distance (e.g. Euclidean distance) observations. For example, given the
probability of 0.1%, n observations of real patient records that are closest
to a real patient record can be obtained. In this experiment, GT and SYN
data sets are combined into one data set, so the total size of the data set
will be S= SGT= SSYN, and we define the instances with high privacy risk
under any of the following conditions:
Clones—when distance is 0, i.e. the synthetic patient record is identical

to real-world patient record, the clone rate is used to measure clone risk
Rclone defined in Eq. 7.

Rclone ¼
Total identical instances

Total instances
: (7)

Inliers—when there is only one real patient instance that is closest to the
synthetic patient given a pre-defined probability Pr within lower quantiles.
The total number of such pairs are used to measure inliers risk Rin defined
in Eq. 8.

Rin ¼ j Pair SYNi ;GTj
� �

jPr
� �

j; i; j 2 f1; ¼ ; Sg: (8)

Outliers—when there is only one real patient instance that is closest to
the synthetic patient given a pre-defined probability Pt within upper
quantiles. The total number of such pairs are used to measure outliers risk
Rout defined in Eq. 9.

Rout ¼ j Pair SYNi ;GTj
� �

jPt
� �

j; i; j 2 f1; ¼ ; Sg: (9)

Ethics. The project was undertaken within the institutional governance
framework of the Medicines and Healthcare products Regulatory Agency
(MHRA) UK and Brunel University London. The use of real anonymised
patient data as ground truth data was undertaken under the CPRD’s
overarching research ethics committee (REC) approval (reference: 05/
MRE04/87) and within CPRD’s secure research environment. Additional
advice on privacy of the ground truth data was obtained from the UK
Information Commissioner’s Office (ICO) Innovation Hub in response to a
formal query by the MHRA.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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