
Journal of Heuristics manuscript No.
(will be inserted by the editor)

Generating Highly Balanced Sudoku Problems as Hard
Problems

Carlos Ansótegui · Ramón Béjar · Cèsar

Fernández · Carla Gomes · Carles Mateu

Received: date / Accepted: date

Abstract Sudoku problems are some of the most known and enjoyed pastimes, with a

never diminishing popularity, but, for the last few years those problems have gone from

an entertainment to an interesting research area, a twofold interesting area, in fact. On

the one side Sudoku problems, being a variant of Gerechte Designs and Latin Squares,

are being actively used for experimental design, as in [8,44,39,9]. On the other hand,

Sudoku problems, as simple as they seem, are really hard structured combinatorial

search problems, and thanks to their characteristics and behavior, they can be used as

benchmark problems for refining and testing solving algorithms and approaches. Also,

thanks to their high inner structure, their study can contribute more than studies

of random problems to our goal of solving real-world problems and applications and

understanding problem characteristics that make them hard to solve. In this work

we use two techniques for solving and modeling Sudoku problems, namely, Constraint

Satisfaction Problem (CSP) and Satisfiability Problem (SAT) approaches. To this effect

we define the Generalized Sudoku Problem (GSP), where regions can be of rectangular

shape, problems can be of any order, and solution existence is not guaranteed. With

respect to the worst-case complexity, we prove that GSP with block regions of m rows

and n columns with m 6= n is NP-complete. For studying the empirical hardness of

GSP, we define a series of instance generators, that differ in the balancing level they

guarantee between the constraints of the problem, by finely controlling how the holes

are distributed in the cells of the GSP. Experimentally, we show that the more balanced

are the constraints, the higher the complexity of solving the GSP instances, and that

Some of the results of this paper were presented in the Twenty-First Conference on Artificial
Intelligence (AAAI-06) [2].

C. Ansótegui, R. Béjar, C. Fernández, C. Mateu
Departament d’Informàtica i Enginyeria Industrial
Universitat de Lleida
Jaume II, 69, E-25001 Lleida, Spain.
E-mail: {carlos,ramon,cesar,carlesm}@diei.udl.cat

C. Gomes
Department of Computer Science
Cornell University
Ithaca, NY 14853, USA.
E-mail: gomes@cs.cornell.edu



2

GSP is harder than the Quasigroup Completion Problem (QCP), a problem generalized

by GSP. Finally, we provide a study of the correlation between backbone variables –

variables with the same value in all the solutions of an instance– and hardness of GSP.

1 Introduction

Research on typical case complexity and worst-case complexity in structured problem

domains – see [22,23,32,35,7] – or understanding how the structure of the problems

affects the complexity to solve them – as in [43,46,26,27,25,13,20,48,47] – has always

attracted, and continues to, a well deserved attention. As real world and industrial

problems usually present some kind of structure, whereas random problems generally

do not have inner structure, Sudoku puzzles have drawn the attention of researchers

[2,42,36,16,19,45,33] because they show more structure than similar problems as the

Latin Square Completion Problem –also known as Quasigroup Completion Problem

(QCP)– while being, for similar problem sizes, harder to solve. Moreover, Sudoku has

been recently used to help on experimental design [37].

In order to deepen our understanding of when structured problems are harder to

solve, we define a generalized Sudoku problem, then we conduct a deep experimental

study of typical case and worst case hardness of Sudoku problems, identifying the

factors influencing hardness and proposing methods and algorithms to generate Sudoku

problems of different hardness.

We propose a generalization of the Sudoku problem, that in turn, is a QCP with

additional constraints, but with particular block region constraints that subsumes QCP.

The proposed generalization extends Sudoku in several directions. First, as opposed to

regular Sudokus, a Generalized Sudoku Problem (GSP) may adopt any arbitrary size.

Second, block regions do not need to be square shaped1.

GSP also has a good scaling behaviour by allowing rectangular block regions. When

using only square block regions, after a 5x5 Sudoku (25 columns across and 25 rows

high), the next problem available is a 6x6 Sudoku, that is, 36 rows by 36 columns.

The jump in hardness between a 5x5 and a 6x6 is huge, thus leaving researchers with

either easy problems or very hard problems. Rectangular shaped problems hardness,

as can be seen in our empirical results, fits in between those square shaped sizes. For

benchmarking purposes they provide a handful of size and options to choose from,

offering more possibilities on hardness.

As this problem is an extension of QCP we have plenty of opportunity to introduce

new balancing methods and, as has been previously shown [30,2], balancing has a

significant impact on the hardness of the resulting problem instances. Due to the more

complex underlying structure, as opposed to previously studied more random constraint

satisfaction problems [3,4], introducing balance in all the groups of constraints is more

challenging. Previous work has also considered how to produce harder instances of

graph problems with methods that use balance in some way. For example, in [11] the

authors give an algorithm that hides an independent set I on a graph and forces the

number of edges from vertices outside of I to vertices inside I to be nearly equal, and

they show that it is hard for heuristics to find such independent set. Finally, in [15] the

authors show how to hide a k−coloring on a graph in such a way that it is hard to be

1 Note that when the GSP size is a prime number (p), the only possible decomposition for
blocks size is 1× p, i.e., a QCP.



3

found by heuristics, thanks to balancing the degree of the vertices and edge distribution

between pairs of vertex sets from an initial partition of the vertices in k sets.

In this work we also provide an empirical study on several facets of the GSP. One

feature we measure experimentally is the effect of varying block region shape and size on

problem hardness, showing that the more square shaped block regions are, the harder

the problem is. Another studied facet is the effect that different degrees of balance in

the hole pattern have on problem hardness, showing a step increase in hardness as hole

patterns are more balanced. So, we define three different balancing patterns, called:

singly, doubly, and fully balanced, introducing in each step one additional balancing

rule, and we provide algorithms for generating problems with such patterns.

The article is structured as follows. Section 2 defines the Generalized Sudoku Prob-

lem. Section 3 presents a method to generate Generalized Sudokus, extending the

Markov chain based algorithm for generation of Latin Squares [28] that was used for

the generation of quasigroup problems with guaranteed solution [1]. Section 4 shows

how to generate hole patterns to be applied to the already generated Sudokus. This

section includes three methods for balancing hole patterns, with different degrees of

balance. Section 5 studies the worst-case complexity of Sudoku problems for the case

of non-square region shape. Section 6 is devoted to encode the GSP to SAT and CSP

problems. Section 7 is a detailed empirical study of typical case complexity of Sudoku

problems with any of the three balancing methods previously introduced, as well as,

a study on the impact of balancing on hardness. Finally, before concluding, Section 8

studies the correlation of the backbone and the complexity of Sudoku instances.

2 Sudoku Problems

A Latin Square (LS), or Quasigroup, of order s, is an s× s matrix, with each of its s2

cells filled with one of s symbols, such that no symbol is repeated in a row or column.

A valid complete Generalized Sudoku (GS) of order s on s symbols, is a LS of order

s with the additional restriction that each symbol occurs exactly once in each block

region. A block region is a contiguous set of s pre-defined cells; block regions do not

overlap, and there are exactly s block regions in a GS of order s. In the case of square

block regions, each block region is an
√
s×
√
s matrix (s has to be a square number);

in the case of rectangular block regions, each block region is an m× n matrix (m rows

and n columns) with m × n = s. Then, a GS with m × n block regions will have n

region rows and m region columns (as an illustrating example, Fig. 1(c) shows a GS

structure with m = 2 and n = 3).

We can trivially generate a GS of arbitrary order, with rectangular or square block

regions, using the following method: let S denote the set of symbols of the GS,

S = (Sk,l
i,j ), 0 ≤ i, l ≤ n− 1, 0 ≤ j, k ≤ m− 1, (1)

where Sk,l
i,j corresponds to the symbol located at i-th region row, j-th region column,

and inside such a region it is on the k-th row and l-th column (see Fig. 1(a)). Then,

these symbols can be represented as ordered pairs (see Fig. 1(b)) defined as

Sk,l
i,j = (s1, s0) = (k + j (mod m), i+ l (mod n)). (2)

Note that one can obtain the symbol value as s1 · n+ s0 (see Fig. 1(c)).



4

S00
00 S01

00 S02
00

S10
00 S11

00 S12
00

S00
01 S01

01 S02
01

S10
01 S11

01 S12
01

S00
10 S01

10 S02
10

S10
10 S11

10 S12
10

S00
11 S01

11 S02
11

S10
11 S11

11 S12
11

S00
20 S01

20 S02
20

S10
20 S11

20 S12
20

S00
21 S01

21 S02
21

S10
21 S11

21 S12
21

(a)

0,0 0,1 0,2

1,0 1,1 1,2

1,0 1,1 1,2

0,0 0,1 0,2

0,1 0,2 0,0

1,1 1,2 1,0

1,1 1,2 1,0

0,1 0,2 0,0

0,2 0,0 0,1

1,2 1,0 1,1

1,2 1,0 1,1

0,2 0,0 0,1

(b)

0 1 2

3 4 5

3 4 5

0 1 2

1 2 0

4 5 3

4 5 3

1 2 0

2 0 1

5 3 4

5 3 4

2 0 1

(c). .

..

Fig. 1 GS construction example for m = 2 and n = 3.

These generalizations provide us with a range of interesting problems, from the

Generalized Sudoku with square (m = n) or rectangular (m 6= n) block regions to the

QCP [24] (m = 1).

We define the Generalized Sudoku Problem (GSP) as follows: given a partially

filled Generalized Sudoku instance of order s, can we fill the remaining cells of the s×s
matrix such that we obtain a valid complete Generalized Sudoku instance?

We define the Generalized Sudoku Problem (GSP) as follows: given a partially

filled Generalized Sudoku instance of order s, can we fill the remaining cells of the s×s
matrix such that we obtain a valid complete Generalized Sudoku instance?2

Also, to follow the research trend focusing on solvable problems, and coherently

to the conventions for QWHP (Quasigroup With Holes Problem) [1], we define the

Generalized Sudoku With Holes Problem (GSWHP) as those instances of GSP built

from an existing GS where some cells have been emptied. This ensures that, at least, a

solution exists. During this work, unless stated otherwise, we will deal with GSWHP,

that is, problems with guaranteed solution.

3 Generating Complete Generalized Sudokus

From the previous definitions in section 2 is easily seen that in order to create a GSWHP

instance, first we need to obtain a (valid and complete) GS. Then, to generate such

GS, we follow the approach used in [28] of building a Markov chain whose set of states

includes, as a subset, the set of complete Generalized Sudokus.

The procedure described in [28] allows, from an initial s× s Latin square, visit all

the space of s × s Latin squares, following an uniform distribution, by defining some

kind of random moves between the visited LS. These moves or perturbations defines

a chain of states, where each state corresponds to a particular LS, and where the

transition probability is state independent, so being a Markov chain.

One can think on different types of moves between LS. A type of moves could

be row or column permutation, that always define moves to another LS (proper LS).

2 Notice that we are mainly interested in problem benchmarking, so we do not consider the
solution uniqueness of a well posed Sudoku problem. Nevertheless, we have oberved that the
number of solutions ranges from one to many along the phase transition. In particular, the
hardest point of the transition curve coincides with the point where the number of solutions
abruptly increases from a few (or one) to many.



5

0 1 2

3 4 5

3 4 5

0 1 2

1 2 3

4 5 0

4 5 0

1 2 3

2 3 4

5 0 1

5 0 1

2 3 4

(a)

0 1 2

3 4 5

3 4 5

0 0 2

1 2 3

4 5 0

4 5 0

1 2 3

2 3 4

5 0 1

5 1 1

2 3 4

(b)

0 1 2

3 4 5

3 4 5

5 0 2

1 2 3

4 5 0

4 5 0

1 2 3

2 3 4

5 0 1

0 1 1

2 3 4

(c)

0 1 2

3 4 1

3 4 5

5 0 2

1 2 3

4 5 0

4 5 0

1 2 3

2 3 4

5 0 5

0 1 1

2 3 4

(d)

0 1 2

3 4 1

3 4 5

5 0 2

1 2 3

4 5 0

4 5 0

1 2 3

5 0 4

2 3 5

2 3 1

0 1 4

(e)

0 1 2

3 4 1

3 4 5

5 0 2

1 2 3

4 5 0

4 5 0

1 2 3

5 0 4

2 3 5

2 3 1

0 1 4

(f)

0 1 2

3 4 5

3 4 5

5 0 2

1 2 3

4 5 0

4 5 0

1 2 3

5 0 4

2 3 1

2 3 1

0 1 4

(g)

0 1 2

3 4 5

3 4 5

0 0 2

1 2 3

4 5 0

4 5 0

1 2 3

5 0 4

2 3 1

2 3 1

5 1 4

(h)

0 1 2

3 4 5

3 4 5

0 1 2

1 2 3

4 5 0

4 5 0

1 2 3

5 0 4

2 3 1

2 3 1

5 0 4

(i)

. .

Fig. 2 GS generation example.

Another type of finer moves could be symbol swapping, that obviously could lead to

something that is not a LS (improper LS). In order to ensure that all the LS space is

visited, we will require of those improper LS as pivots toward a proper LS, because row

and column permutations do not guarantee per se visiting all the space. In order to

define more precisely these finer moves, an s× s× s incidence binary matrix is defined,

where each component indicates if a given symbol is at a given column and row (1)

or not (0). Finer moves are defined as operations over the incidence matrix, and it is

proved that there exists a maximum number of movements that lead from an improper

LS to a proper one. If we use the Markov chain that considers only proper LS as states

and using improper LS as pivots, and because any GS is also a LS of the same order,

this chain obviously includes a subchain with all the possible GSs. So, for any pair

of complete GSs, there exists a sequence of proper moves, of the type mentioned in

Theorem 6 of [28], that transforms one into the other.

However, if we simply use the Markov chain by making proper moves uniformly at

random, starting from an initial complete GS, most of the time we will reach LS that

are not valid GSs. To cope with this problem, we select the move that minimizes the



6

number of violated cells, i.e. cells with a symbol that appears at least twice in the same

block region. To minimize those violated cells we proceed using the method defined

in [28], that moves from one LS to another by choosing initially 4 random parameters

(r1, r2, t, i) (two rows, r1,r2, a symbol, t, and a number of iterations, i). If through

our search for a GS we stop in a LS that is not a GS, instead of starting a new search

by choosing those above mentioned parameters at random, we choose the initial rows

at random but only among those that contain violated cells, and the same is applied

to the initial symbol, which is one of the symbols that violated the GS condition in a

block.

To escape local minima, if after a certain number of moves3 we do not get a GS,

we restart the move from the previous GS, and we perform the moves described above

until we have traversed a certain number of valid GSs. Observe that this method does

not necessarily generate a GS instance uniformly at random, because we do not always

select the next move uniformly at random. However, as we will see in the experimen-

tal results, this method provides us with very hard computational instances of the

GSWHP, once we punch holes in the appropriate manner. It is worth to mention that

even if we were able to use a uniform generation method for GS, because we produce

the final GSWHP instance by punching the holes in a second step independently of the

first one, the distribution of GSWHP instances obtained will not be uniform. The rea-

sons are the same as the ones discussed in [30] for explaining why a two-step generation

process for satisfiable latin-square completion problems will be biased proportionally

towards instances with more solutions. That is, the more solutions a GSWHP instance

has, the more different GSs can be obtained in the first step with our Markov chain

that can lead towards the same final GSWHP instance.

Fig. 2 shows an example of an execution of our Markov chain algorithm. From the

canonical GS (a), we perform 2 moves ([a-e] and [f-i]) of the second method detailed

in [28] until we obtain a valid GS (i). Each move is started by randomly selecting 2

rows, a symbol and the number of iterations. For the first move (a-e), the initial random

values are (1, 4, 1, 3). At the first iteration (a), symbol 1 points to the corresponding

symbol to be switched by intersecting its column with the second row (symbol 0).

Symbols to be switched are framed, becoming framed/shadowed once the change is

produced. Previously switched symbol 0 is taken in the second iteration to designate

its corresponding counterpart to be switched (symbol 5 in this case)(b). The same

procedure applies up to the last iteration (c). At this point, the last selected symbol

(5), is switched with the initial random selected symbol (1) at its corresponding row,

giving (d). Once arrived at this point, if the resulting LS is improper (as it is in our

example), switches between symbols of the second initial row and the row that contains

the last selected symbol (5) are applied until getting a proper LS (e). Dashed blocks

show which blocks violate the GS condition, so a second move will be needed. On the

second move, the initial random values are (1, 5, 1, 3). Note that in this case, rows 1 and

5 as well as symbol 1 are chosen at random from those that violate the GS condition,

i.e. from dashed blocks on (e). The same procedure as before applies from (e) to (i),

getting at this last step (i) a proper GS, so no additional shuffles are required unlike

in (e).

3 In our experiments, this number has been fixed to 20, because it works reasonably well
with all the orders of GSs that we have tested.



7

The source code of the Markov chain algorithm, as well as the source code of all

the hole pattern generators we present in the next section, can be downloaded from

our web page at http://ia.udl.cat/sudoku/.

4 Balanced Hole Patterns

Once a valid GS is generated, to create a GSWHP we must punch holes to be filled. The

simplest method to remove values from the GS is to choose which cells will be removed

randomly. Actually, this was the method used in [33] to create Sudoku instances. This

creates problems that will be, usually, easier to solve than if we choose these holes

following a pattern. This is true especially when such a pattern is balanced, that is,

that the number of holes in every row, column or block region is the same (or very

similar). We will present here three methods to punch holes, each one progressively

providing a more refined pattern, and we will see later, in the experimental results,

that this increasingly refined balance heavily influences problem hardness.

4.1 Singly Balanced

First, we consider the balanced pattern used in [30] for QWHP instances, that we call

here singly balanced. In a singly balanced pattern we have, when possible, the same

number of holes in every row and column of the Sudoku. Given the total number

of holes h, we can distribute q = h/s holes in each row and column of the Sudoku

using an algorithm for regular bipartite graph generation, based on a Markov Chain

algorithm [29]. Observe that a hole pattern with q holes in every row and every column

is equivalent to a q−regular bipartite graph (R ∪ C,E), with R the set of rows of the

Sudoku and C its set of columns and (r, c) ∈ E indicates that there is a hole in position

(r, c) of the Sudoku. We move along the Markov chain, where every state is a pattern

that satisfies that the number of holes in each row and column is the same, using a

“switch” [29]. A switch is defined by two entries (i, j), (i′, j′) of the GS instance, such

that there is a hole in (i, j) and (i′, j′) but not in (i, j′) and (i′, j). If we change both

holes to positions (i, j′) and (i′, j) the row and column hole number does not change.

When q = h/s is not an integer, we can still generate, with the same algorithm, an

almost balanced pattern with a bipartite graph where the degree of the vertices is

either bqc or bqc + 1. In this case, we create the initial hole pattern putting bqc holes

in every row and column of the GS. Then we distribute the remaining (h mod s) holes

by randomly selecting (h mod s) additional cells with no rows or columns in common.

4.2 Doubly Balanced

Because the distribution of holes between different blocks can make a difference in

the difficulty of the problem, we propose a new method that ensures that the number

of holes in every row, column, and block region will be the same. Our new doubly

balanced method is based on the Markov chain of section 4.1, but now every state is a

hole pattern that also satisfies that the number of holes is the same in all blocks. So,

we use this Markov chain, but we restrict the moves to those moves that also maintain

the number of holes present in each block, i.e., moves such that the blocks of (i, j) and



8

(i′, j′) are either in the same block row or the same block column, or both. Such moves

always exist, even for a hole pattern with only one hole in each block. With this, we

have the code detailed in Algorithm 1 for generating a hole pattern H with q = h/s

holes in each row, column and block, using a GS S(i, j) (with symbols {1, . . . , s}) to

create the initial pattern considering each symbol as a hole, and then performing t

moves trough the Markov chain in order to sample from the set of possible doubly

balanced hole patterns.

Algorithm 1: Algorithm to create Doubly Balanced hole patterns in a given GS

input : s, h, t
output: a doubly balanced hole pattern H of order s with h holes
H = { (i, j) | S(i, j) ∈ [1, bh/sc] }
for 1 . . . t do

T = { switch((i, j), (i′, j′)) of H | bi/lc = bi′/lc ∨ bj/nc = bj′/nc }
pick a uniformly random switch((i, j), (i′, j′)) from T
H = (H − {(i, j), (i′, j′)}) ∪ {(i, j′), (i′, j)}

Observe that the Sudoku S considered to create the initial hole pattern can be any

arbitrary Sudoku, and has no relation with the Sudoku to which we want to apply the

hole pattern. Building such an arbitrary Sudoku can be done using Equations 1 and 2.

This code, obviously, only generates a perfect doubly balanced pattern when h/s

is an integer. If this is not the case, we generate a hole pattern that is almost a doubly

balanced one. That is, a hole pattern H that contains h mod s rows, columns and

blocks with bh/sc+ 1 holes each and the remaining s− (h mod s) rows, columns and

blocks with bh/sc holes. To get this hole pattern, we generate the initial pattern as

in Algorithm 1, but also select a random subset M (with |M | = (h mod s)) of the

positions (i, j) of the Sudoku with S(i, j) = bh/sc + 1 to select the positions of the

additional (h mod s) holes. So, the initial pattern will be:

H = { (i, j) | S(i, j) ∈ [1, bh/sc] } ∪
{ (i, j) | S(i, j) = bh/sc+ 1 ∧ (i, j) ∈M}

4.3 Fully Balanced

Our last balanced method, which we call fully balanced, is a generalization of the

previous one. Here, we also force the number of holes in each row and column inside

each block to be the same, when possible. So, this method produces a fully balanced

hole pattern if the block regions are square (m = n), if the total number of holes h

satisfies that q1 = h/s is an integer (the number of holes in each block, row and column

of the Sudoku) and if q2 = q1/n is also an integer (the number of holes in each row and

column inside any block region). For that reason, in this model we restrict regions to

be square (so n =
√
s), although we do not restrict the number of holes, so in general

we will not always get a fully balanced pattern. If all these conditions are met, because

what we indeed need in every block is a hole pattern that is singly balanced inside the

block, the following simple code generates a fully balanced Sudoku:



9

Algorithm 2: Algorithm to create Fully Balanced hole patterns in a given GS

input : s, h
output: a fully balanced hole pattern H of order s with h holes
for i ∈ 1 . . .

√
s do

for j ∈ 1 . . .
√
s do

H′ := Singly balanced hole pattern of order
√
s with bh/sc holes

set the hole pattern of block region (i, j) in H equal to H′

0 1 2
1 2 0
2 0 1

(a)

0 1 2 0 1 2 0 1 2
1 2 0 1 2 0 1 2 0
2 0 1 2 0 1 2 0 1
0 1 2 0 1 2 0 1 2
1 2 0 1 2 0 1 2 0
2 0 1 2 0 1 2 0 1
0 1 2 0 1 2 0 1 2
1 2 0 1 2 0 1 2 0
2 0 1 2 0 1 2 0 1

(b)

Fig. 3 Fully balanced GS hole poking example. (a) LS of order
√
s, every cell is associated

with a region block on the resulting GS instance. (b) Resulting hole pattern where grayed cells
will be holes in the GS instance.

In the case that q1 = h/s is not an integer, we have an additional set of (h mod s)

holes that we need to distribute as uniformly as possible between the s blocks. So,

we will distribute one additional hole in every block region from a selected set of

(h mod s) block regions. To do it, consider a Latin Square R(i, j) of order
√
s, with

symbols {0, . . . ,
√
s− 1}, such that entry R(i, j) is associated with the block region in

block row i and block column j of our desired hole pattern. We use R(i, j) to decide

which blocks will contain one additional hole, trying to select the same number of block

regions from every block row and every block column. Let q = b((h mod s) /
√
s)c and

r = ((h mod s) mod
√
s). Then, the set of blocks (i, j) that will contain one additional

hole will be:

{(i, j) | R(i, j) < q} ∪ {(i, j) | R(i, j) = q ∧ i < r} (3)

Observe that we try to distribute the remaining (h mod s) holes giving almost the

same number holes to every block row and block column (take into account that when

r > 0, we cannot evenly distribute holes, some block rows and some block columns will

necessarily have one more hole than the rest of block rows or block columns).

Finally, given a block (i, j) and the number of holes hi,j we have decided to dis-

tribute in the block, we basically use the Markov chain algorithm of section 4.1 in

order to have the same number of holes in every subrow and subcolumn of the block,

or almost the same number when hi,j/
√
s is not an integer.

This hole punching method can be easily seen in Fig. 3. In this example we poke

23 holes in a 9× 9 sudoku puzzle, i.e. a 81 cell sudoku. As the number of holes is not a

multiple of the number of block regions, we must punch 2 holes in every block region,

and the remaining 5 holes will be punched using Equation 3. For this example, we have

h = 23, s = 9, q = 1 and r = 2, thus Equation 3 results in

{(i, j) | R(i, j) < 1} ∪ {(i, j) | R(i, j) = 1 ∧ i < 2}



10

this gives the following (i, j) values, referring to the following cells of LS in Fig. 3(a)

that will have one additional hole: {(0, 0), (1, 2), (2, 1)} ∪ {(0, 1), (1, 0)}, shown in the

figure as grayed cells. This leads to some unbalancing on some constraints, as are rows

3,5, and 7, that have less holes than the rest of the rows.

Once the number of holes to poke in every block region is set forth, we proceed

as if the block region was a LS of
√
s order and punch holes accordingly. The result

can be seen on Fig. 3(b), where grayed cells represent holes, and, as it can be easily

noticed, block regions with one additional hole (in the figure, block regions with 3

holes), correspond to grayed cells in 3(a).

5 Worst-case Complexity of GSP

It has been shown in [49], that GSP is NP-complete for the particular case of square

regions (n columns and n rows). As the empirical complexity results of Section 7 will

show, on average, GSP with rectangular regions is easier than with square regions (the

complexity decreasing the larger the ratio n/m) the next natural question to answer

was if NP-completeness still applied to the rectangular case. We show here that this is

the case.

Theorem 1 GSP with block regions with m rows, n columns and n 6= m is NP-

complete.

Proof: The proof for this case is a generalization of the proof of [49], and shows a

reduction from QCP (Quasigroup Completion Problem) to GSP (Generalized Sudoku

Problem).

The following construction uses a GSP with n > m but can be transformed to an

isomorphic GSP with m > n, simply by a 90 degrees rotation.

Given an instance of the QCP of order m, the reduction follows by constructing

an instance of GSP with region blocks with m rows and n columns such that the GSP

instance has solution if and only if the QCP instance has solution. The symbols of the

QCP instance are embedded into the first columns of the regions of the first region

row.

Let L be the QCP instance and S the GSP instance, and their symbols be denoted

by
L = (Li,j), 0 ≤ i, j ≤ m− 1;

S = (Sk,l
i,j ), 0 ≤ i, l ≤ n− 1, 0 ≤ j, k ≤ m− 1,

where Sk,l
i,j corresponds to the symbol of S located at k-th row and l-th column inside

i-th region row, j-th region column.

Then, these symbols are ordered pairs defined as

Sk,l
i,j =

{
(Lk,j , 0), if i = l = 0

(k + j (mod m), i+ l (mod n)), otherwise.

Under this construction, the original cells of the QCP instance are mapped to cells

of the GSP instance with i = l = 0, that is, to cells of the first region column in the

regions of the first region row.

It is straightforward to observe the GSP instances with rectangular block regions

have solution if and only if the QCP instance has solution, because the same argument

used in [49] can be used here to show that every solution to the QCP instance can



11

be embedded into the GSP instance to give it a solution, and at the same time every

solution to the GSP instance gives a solution to the QCP instance by looking at the

symbols located at cells with i = l = 0. 2

6 Encodings and Solvers

In order to experimentally measure the hardness of the GSP instances we have decided

to solve them by their translation to the SAT and CSP domains. In the following we

present the encoding strategies and the state-of-the-art solvers we have applied.

6.1 SAT and CSP

We consider the best performing encodings for the QCP analyzed in [6], and we ex-

tend them with the suitable representation of the additional alldiff constraints for the

blocks in the GSP. Through the rest of the section we will consider a GSP instance on

s symbols.

SAT

We focus on a particular type of SAT formulas, the CNF (clausal normal form)

formulas.

Definition 1 Boolean variables are denoted with lower case letters b1, . . . , bn and can

be assigned truth values 0 (or F ) or 1 (or T ). A literal is an expression of the form

bi or ¬bi, where bi is a Boolean variable. The complement of a literal l of the form

bi (¬bi), denoted by l, is ¬bi (bi). A clause c of length s is a disjunction of s literals,

l1 ∨ . . . ∨ ls. A CNF formula of length t is a conjunction of t clauses, c1 ∧ . . . ∧ ct.

Definition 2 A truth assignment for a CNF formula is a mapping that assigns to

every Boolean variable to value T or F. A truth assignment I satisfies a literal bi (¬bi)
iff bi = T (bi = F ), satisfies a clause C iff it satisfies at least one of the literals in C, and

satisfies a CNF formula Γ iff it satisfies all clauses in Γ . The SAT problem consists of

deciding whether there exists a truth assignment to the variables such that the formula

becomes satisfied.

The GSP can be modelled as a set of permutations, i.e., every row, column and

block region has to be a permutation of s symbols. Permutations can be modelled

through the use of the alldiff constraint, which states that a set of variables have to be

assigned to different values.

When dealing with SAT solvers, in the end we need to encode the problem into a

SAT formula in clausal normal form (CNF), since this is the input that accepts a SAT

solver. In order to show how we can encode an alldiff constraint into CNF, we recall

two well known constraints: at least one and at most one, which will be the building

blocks of the alldiff constraint, and we show how these constraints are translated into

CNF.

Given a set of B = {b1, . . . , bn} of Boolean variables;



12

– the at least one constraint on B represents that at least one Boolean variable in B

has to be true.
n∑
1

bi ≥ 1, bi ∈ B

The standard encoding into CNF produces the following clause:

b1 ∨ . . . ∨ bn

– the at most one constraint on B represents that at most one Boolean variable in

B can be true.
n∑
1

bi ≤ 1, bi ∈ B

The standard encoding into CNF produces n ∗ (n− 1)/2 clauses:

¬bi ∨ ¬bj , ∀i 6= j, 1 ≤ i, j ≤ n

Lets consider that we have a group of s cells that take one symbol from a set of

size s. Then, if we want to model an alldiff constraint on the symbols assigned to these

cells using the CNF encoding of the at least one and at most one constraints, we can

do it in the following way:

– We use s Boolean variables per cell. Therefore, we have a set B of bij Boolean

variables, 1 ≤ i, j ≤ s, such that if the ith cell takes the jth symbol then the truth

assignment evaluates bij to true, false otherwise.

1 Each symbol is assigned to at least one cell.

∀j, 1 ≤ j ≤ s,
i=s∑
i=1

bij ≥ 1, bij ∈ B

2 Each symbol is assigned to at most one cell.

∀j, 1 ≤ j ≤ s,
i=s∑
i=1

bij ≤ 1, bij ∈ B

The previous at most one and at least one can be now translated into CNF. Notice

that we could have also added the following two constraints:

3 Each cell has to have at least one symbol.

∀i, 1 ≤ i ≤ s,
j=s∑
j=1

bij ≥ 1, bij ∈ B

4 Each cell has to have at most one symbol.

∀i, 1 ≤ i ≤ s,
j=s∑
j=1

bij ≤ 1, bij ∈ B



13

Any subset of the previous constraints that includes at least 1 or 2 and also includes

any pair at least one and at most one models the alldiff constraint of our problem. The

addition of redundant constraints usually helps to increase the propagation power of

the filtering algorithms incorporated into the solvers.

Once we know how to encode an alldiff constraint into CNF we can introduce the

first SAT encoding for the GSP. This encoding extends the (2D) encoding proposed

in [30] for the QCP. The SAT encoding uses s Boolean variables per cell; each variable

represents a symbol assigned to a cell, and the total number of variables is s3.

The clauses corresponding to the 2D-GSP encoding represent the following con-

straints:

– Each cell c has to have at least one symbol (alo-cellc).

– Each symbol is assigned to at most one cell in each row r (amo-rowr)

– Each symbol is assigned to at most one cell in each column cl (amo-columncl).

The previous constraints encode the alldiff constraints on the rows and columns.

Then, in order to fully encode a GSP, for each block region b we add the clauses that

represent the following constraint:

– Each symbol is assigned to at most one cell in each block b (amo-blockb).

In [30] it was already shown that the 2D encoding for QCP is not really efficient

in terms of the computation time needed by the SAT solver to find a truth assignment

that satisfies the formula. A second encoding, the SAT 3-dimensional (3D) encoding

was proposed. This encoding adds a set of redundant constraints that help to increase

the propagation power of SAT solvers. In [2], it was shown that this propagation power

is equivalent to the application of the Arc consistency filtering algorithm applied by

CSP solvers. The clauses corresponding to our extension of the 3D encoding for the

GSP (3D-GSP) represent the following constraints:

– Each cell c has to have at least one symbol (alo-cellc).

– Each cell c has to have at most one symbol (amo-cellc).

– Each symbol is assigned to at least one cell in each row r (alo-rowr);

– Each symbol is assigned to at most one cell in each row r (amo-rowr)

– Each symbol is assigned to at least one cell in each column r (alo-columncl);

– Each symbol is assigned to at most one cell in each column cl (amo-columncl).

– Each symbol is assigned to at least one cell in each block b (alo-blockb).

– Each symbol is assigned to at most one cell in each block b (amo-blockb).

As we can see, we have added for every at least one and at most one constraints their

counterparts. The above SAT encoding was proposed independently in [2] and [36]. For

the experimental investigation we considered the best SAT solvers in the previous ex-

perimental studies on the QCP [30,2]: Satz [34], zChaff [40], MiniSAT [18], and Siege4.

CSP

We also wanted to evaluate the encodings of the GSP into the Constraint Satisfac-

tion Problem (CSP) and to test the performance of the CSP solvers.

4 Available at http://www.cs.sfu.ca/∼cl/software/siege/



14

Definition 3 A constraint satisfaction problem (CSP) instance, or constraint network

is defined as a triple 〈X,D,C〉, where X = {x1, . . . , xn} is a set of variables, D =

{d(x1), . . . , d(xn)} is a set of domains containing the values the variables may take,

and C = {C1, . . . , Cp} is a set of constraints. Each constraint Ci = 〈Si, Ri〉 is defined

as a relation Ri over a subset of variables Si = {xi1 , . . . , xik}, called the constraint

scope. The relation Ri may be represented extensionally as a subset of the Cartesian

product d(xi1)× · · · × d(xik ). This is also called a good representation of the relation.

A nogood representation presents the relation extensionally as the complement of the

good representation into the previous Cartesian product. A Binary CSP is a CSP where

all the constraints have a scope of size at most two.

Definition 4 An assignment for a CSP instance 〈X,D,C〉 is a mapping that assigns

to each variable xi ∈ Y , where Y ⊆ X, a value from d(xi). An assignment I satisfies a

constraint 〈{xi1 , . . . , xik}, Ri〉 ∈ C, if 〈I(xi1), . . . , I(xik )〉 ∈ Ri. An assignment I with

domain Y is consistent, if for every constraint Ci ∈ C defined on variables Y ′ ⊆ Y , I

restricted to Y ′ satisfies Ci.

The Constraint Satisfaction Problem (CSP) consists of, given a CSP instance, find-

ing an assignment that satisfies the instance, if it exists, or showing that it is unsatis-

fiable.

The CSP encoding of the GSP extends the “bichannelling model” used in [17] for

QCP, that uses dual variables linked with the primal variables in order to produce a

higher propagation during search. We have two different sets of variables:

– A set of primal variables X = {xij | 1 ≤ i ≤ s, 1 ≤ j ≤ s}; the value of xij is the

symbol assigned to the cell in the ith row and jth column.

– Two sets of dual variables: R = {rik | 1 ≤ i ≤ s, 1 ≤ k ≤ s}, where the value of rik is

the column j where symbol k occurs in row i; and C = {cjk | 1 ≤ j ≤ s, 0 ≤ k ≤ s}
where the value of cjk represents the row i where symbol k occurs in column j.

The domain of all variables is {1, . . . , s}, where these values represent respectively

symbols, columns, and rows. Variables of different types are linked by channeling con-

straints:

– Row channeling constraints link the primal variables with the row dual variables:

xij = k ⇔ rik = j.

– Column channeling constraints link the primal variables with the column dual vari-

ables: xij = k ⇔ cjk = i.

The concrete CSP encoding we use in our experimental investigation is a Binary

CSP represented with nogoods. Finally, for each block we add the nogoods representing

the alldiff constraint over the set of primal variables involved in each block of the

Sudoku problem.

For the experimental investigation we used a variation of the MAC solver by Régin

and Bessière [10] (MAC-LAH) proposed in [6] that incorporates the technique of failed

literals and the Satz’s heuristic in terms of a CSP approach. The description of the

heuristic is the following:

1. For each free CSP variable of domain size 2, we propagate each value of the domain

in order to see if the domain can be reduced. As a result, the domain can remain

as before, can be a singleton or can be empty. In the first case, we weight the

variable using the balance function H of Satz’s heuristics, where w(x = i) is the



15

number of times that domains whose size is greater than 2 have been reduced after

propagating the value i. In the second case, we fix the variable to the only value of

its domain. In the third case, we have detected an inconsistency and we backtrack.

2. We select the first free CSP variable of domain size 2 with greatest value of func-

tion H.

3. If there is no candidate variable in step 2, we apply the default heuristic of the CSP

solver (in our experiments, the minimum domain first heuristic).

As pointed out in [6] it is interesting to notice that each pair of constraints (alo,

amo) into the SAT encoding, actually represent a CSP variable that takes the ith value,

when the ith Boolean variable involved into the pair is true and the rest are false (the

only allowed interpretations). For example, the pair (alo-cellc, amo-cellc) models the

primal CSP variable for the cell c. The channeling constraints considered in the CSP

encoding are represented in the SAT encoding by the pairs (alo,amo) used for the rows

and columns.

In particular, every pair (alo,amo) into the SAT encoding corresponds to a cardi-

nality constraint of the form
∑

n bi = 1, where the bi’s represent the Boolean variables

involved into the constraint. It is worth mentioning that there are solvers that can

directly manage this kind of constraints; many-valued SAT solvers as described in [5],

Satisfiability Modulo Theories (SMT) solvers, or Pseudo-Boolean solvers. However, in

the current work we have not conducted any experimental investigation in this sense.

6.2 Higher arity CSP encoding

With higher arity constraints solvers, although we can use both approaches (so called

primal and dual or 3D encoding) to solve the problem, we have used only 3D encoding.

The higher arity constraint solver used is a state of the art solver, named Minion[21].

Problem variables are defined as multivalued variables (in our case, using Minion scalar

variable type ) and we have two sets, primal and dual variables, that correspond to the

same sets as defined in CSP encoding section (6.1).

The encoding of GSP using the primal encoding with higher arity constraints uses

the following global constraints, defined over all variables of the row, column or region

block, as corresponds:

– One alldiff constraint for every row

– One alldiff constraint for every column

– One alldiff constraint for every region block

Channeling constraints (to ensure that values are consistent between primal vari-

ables and their corresponding dual variables), have been built, due to Minion language

limitations, using two reification (implication) constraints. And so, we have:

– A set of row channeling constraints, linking problem variables (primal variables)

with row variables.

– A set of column channeling constraints, linking problem variables (primal variables)

with column variables.



16

7 Typical case complexity

In this section, we experimentally analyze the complexity behavior of GSWHP prob-

lems depending on the employed method for punching holes. We first compare the

complexity patterns among singly balanced GSWHP problems for distinct block re-

gion shapes, looking as well to the performance of different solving algorithms at the

hardest zone of the complexity pattern. Finally, we show how this complexity is raised

when more balanced puncturing methods for generating holes (doubly and fully) are

used.

7.1 Singly Balanced

We consider the complexity of solving GSWHP instances generated with the Singly

Balanced method. Our first set of results shows the complexity of Solving GSWHP

instances with different block factor forms, comparing it with the complexity of solving

QWHP instances. Fig. 4 shows the results for GSWHP with blocks 15×2, 10×3 and 6×5

(size 30) and QWHP also of size 30 (the encoding used for QWHP is 3D). We employ

100 instances per point and MiniSAT solver with 5,000 seconds cutoff. Complexity

patterns are quite similar. First, all of them show the characteristic easy-hard-easy

behavior depending on the number of holes and associated to a phase transition effect

that is mentioned in the next section. This typical behavior for Sudoku problems was

already cited in [2,33]. Second, it’s worth to note that the closer to a square is the

block region shape, the greater is its peak complexity. So, for the same size, the easiest

instances are from QWHP and the hardest ones those from GSWHP with almost square

blocks5. Observe that the difference between QWHP and GSWHP with square blocks

is about three orders of magnitude for this size. Our conjecture is the following; for a

GSWHP instance with blocks n × m = s , for a given s, each cell has the following

constraints:

s− 1 constraints with cells in the same block

(m− 1) · n constraints with the remainder cells in the same row

(n− 1) ·m constraints with the remainder cells in the same column

giving a total number of constraints per cell of

3s− 1− n− s

n
.

Deriving respect to n and setting equal to zero, we obtain a maximum for n =
√
s, i.e.

squared blocks. Being GSWHP a satisfiable problem, independently of the puncturing

method, squared blocks lead to more constrained problems and as experimentation

proves, harder to solve.

The shape of the blocks can also make a difference with respect to the effect on the

block constraints when the heuristic of the algorithm is evaluating the next assignment

to perform. Consider a Sudoku with block regions with m rows and n columns. If

the heuristic of the solver is evaluating the effect of coloring a cell (i, j) with color c,

observe that an inmmediate consequence of such assignment will be that color c will

be removed from the domain of all the cells in column j and row i (and from all the

cells of its block region). But for block regions different of the block region of the cell

5 Since 30 is not a perfect square, we cannot have perfectly square blocks.



17

Sudoku 6x5
Sudoku 10x3
Sudoku 15x2
QWH-30

M
ed

ia
n

 t
im

e 
(s

ec
on

d
s)

0.01

0.1

1

10

100

1000

104

Number of holes
300 400 500 600

Fig. 4 Empirical complexity patterns for singly balanced GSWHP instances with different
block regions form factor and same size

(i, j) the impact will not be uniform. For a block region that intersects with column

j, m cells from the block region will become more constrained, so that from the total

mxn = s cells of the block region the color c will be only possible to be assigned to

at most m× n−m cells. Analogously, for a block region that intersects with row i, n

cells from the block region will become more constrained, so in this case from the total

m×n cells of the block region the color c will be only possible to be assigned to at most

m×n−n cells. So, observe that these two quantities will be different when m 6= n. For

example, if n >> m, the block regions that interset row i will lose a higher percentatge

number of possible cells to receive color c than the block regions that intersect column

j. That means that for rectangular block regions, the assignments that the heuristic

chooses can lead towards overconstrained subproblems more quickly than with square

block regions, so partial assignments that do not lead to complete solutions may be

pruned earlier.

We observe the same qualitative behavior when using different SAT algorithms.

The main difference is the magnitude of the peak of the complexity curve. Fig. 5 shows

a plot with the performance of different algorithms in the critically constrained area for

different GSWHP problems. The plot shows, for different sizes and different algorithms,

the percentage of solved instances from a test-set of 200 instances, when using a cutoff

of 104 seconds. For small sizes, all algorithms solve almost all the instances. But as the

hardness increases, the solver MiniSAT clearly outperforms the other solvers.

7.2 Doubly and Fully Balanced

Next, we consider the doubly and fully balanced method for punching holes. When

using doubly balanced, the typical hardness of the GSWHP instances seems to be

very similar to the singly balanced method for small sizes, however, as we increase

the size of the instances, bigger differences appear in computational hardness. This



18

 0

 20

 40

 60

 80

 100

15x2-412

16x2-462

7x4-408

10x3-440

17x2-516

18x2-572

6x5-480

11x3-522

8x4-518

12x3-612

7x5-632

9x4-642

6x6-656

%
 s

ol
ve

d 
in

st
an

ce
s 

Sudoku block size and number of holes

minisat
siege

satz
zchaff

MAC-LAH

Fig. 5 Empirical complexity patterns for singly balanced GSWHP instances with different
block shapes. 104 seconds time out

Table 1 Comparison of percentage of solved GSWHP instances generated with three methods
(singly, doubly, and fully balanced) for putting holes, for instances at the peak of hardness.
500 instances per row with a 5,000 seconds time out

Satz Minisat
block holes singly doubly fully singly doubly fully
5×5 344 98.8 98.8 77.0 100.0 100.0 95.6
7×4 414 71.6 67.4 n/a 98.8 97.0 n/a
10×3 446 58.4 54.0 n/a 95.8 93.4 n/a
6×5 480 18.6 11.6 n/a 81.4 71.4 n/a
16×2 462 85.8 79.2 n/a 98.4 96.8 n/a
8×4 518 2.6 1.8 n/a 37.4 31.6 n/a
17×2 504 48.6 37.8 n/a 85.2 76.0 n/a
18×2 572 33.8 24.9 n/a 91.6 86.0 n/a
6×6 686 0.0 0.0 0.0 3.2 1.6 0.0

is probably due to the fact that the singly balanced method tends to distribute the

holes uniformly between blocks in such a way that the difference with respect to the

doubly balanced method is not significant for small instances. This can be quantified

by looking at the percentage of solved instances from a test-set with 500 instances,

for both methods, when working with a cutoff of 5,000 seconds. Table 1 shows these

values. Solved ratios are almost the same for 5×5 Sudokus, but as the order increases,

so does the relative difference between doubly and singly balance methods in terms of

ratio of solved instances as well as in terms of time to solve them as reflected in Table

2. Our doubly balanced method, then, gives harder instances than those produced by

balanced QWH, guaranteeing satisfiabilitiy as well, and therefore constituting a good

benchmark for the evaluation of local and systematic search methods.

Besides, when applicable (squared blocks), the fully balanced method generates

even harder instances. Due to the hardness of the problems generated by this method,



19

Table 2 Median time (in seconds) for GSWHP problems from Table 1 where the percentage
of solved instances is greater than 50%

Satz Minisat
block holes singly doubly fully singly doubly fully
5×5 344 13 12 733 3 3 129
7×4 414 1,236 1,480 n/a 55 65 n/a
10×3 446 2,646 4,227 n/a 91 117 n/a
6×5 480 – – n/a 663 1,481 n/a
16×2 462 150 465 n/a 15 40 n/a
8×4 518 – – n/a 2,529 5,027 n/a
17×2 504 – – n/a 220 497 n/a
18×2 572 – – n/a 103 213 n/a

Sudoku 5x5 (T.O. 100")

Singly balanced
Doubly balanced
Fully balanced

R
at

io
 o

f s
ol

ve
d

 in
st

an
ce

s

0.4

0.6

0.8

1

Ratio of holes

0.5 0.55 0.6 0.65 0.7

Sudoku 6x6 (T.O. 10,000")

Singly balanced
Doubly balanced
Fully balanced

0

0.25

0.5

0.75

1

Ratio of holes
0.475 0.5 0.525 0.55 0.575

Fig. 6 Comparison of the hardness of instances generated using single, doubly balanced and
fully balanced methods of punching holes. Plot shows the rate of solved instances (using Minisat
over 200 generated instances) for a specified time out in seconds as a function of the number
of holes

we are able to compute results only for small GSWHP of size 5×5, but even in this sort

of problems, fully balanced method is able to produce much harder instances (in time)

than singly and doubly balanced. In order to depict such differences, Fig. 6 compares

the hardness of the three balanced methods for GSWHP sizes of 5×5 and 6×6, along

a broad range of holes, above and below the peak of hardness.

We also conducted experimentation using state of the art solvers implementing

high arity constraints such as Minion[21]. Results in Table 3 show the behavior of

a MAC [10] as compared to Minion. In this case the instances were created with the

doubly balanced hole pattern. The results show that, even for rather small puzzle sizes,

Minion is unable to solve a significant number of instances.

8 Backbone

In this section, results about the correlation between the backbone of the GSWH in-

stances and computational hardness are discussed. A variable pertains to the backbone

of the instance if it adopts the same value in all the solutions of the instance. The back-

bone fraction is the number of backbone variables versus the total number of variables



20

Table 3 Comparison of solved GSWHP instances with Minion [21] and MAC [10] solvers
(dual encoding used, time out of 10,000 seconds, median time in seconds)

MAC Minion
block holes % solved median % solved median
4×4 148 100 0.19 100 7.98
5×4 222 100 1.7 11 > 10, 000
5×5 346 42 > 10, 000 0 > 10, 000

ratio. As GSWHP instances have always at least one solution, the backbone is well

defined for them. Observe that instances with a unique solution will have all of their

variables in the backbone, whereas instances with many different solutions will have

an smaller backbone fraction. So, the backbone fraction can be used to quantify how

much different are all the solutions of an instance.

It has been previously shown for other NP problems that there is a correlation

between problem hardness and backbone fraction such that the hardest problems seem

to be concentrated around the point where a sudden change on the backbone fraction

occurs, like for example SAT [38] and QWHP [1]. So, given that the usual 3x3 Sudoku

puzzles have the additional property of having unique solution, it is natural to ques-

tion whether for Generalized Sudoku Problems, like GSWHP, the property of solution

uniqueness is really fundamental for problem hardness.

It is known that computing the exact backbone is an intractable problem [31],

so we consider only an approximation of the full backbone. In particular, we use the

look-ahead backbone provided by the solver Satz when solving the SAT encoding of

GSWHP instances. This is the set of variables that Satz discovers to have a unique

value by checking all possible individual assignments (for every variable check the effect

of assigning it either the value true or false) with unit propagation6 and fixing every

discovered backbone variable, until no new backbone variable is discovered.

In our approximation of the backbone, we consider the fraction of look-ahead back-

bone variables discovered by Satz over the number of variables of the (satisfiable) SAT

encoded instance. Our satisfiable SAT instances are obtained after preprocessing our

GSWHP instances for discarding the cells that are discovered to have a unique pos-

sible value due to the initial partial assignment of the cells of the Sudoku and the

propagation of the Sudoku constraints.

Fig. 7 shows the evolution of the backbone together with the complexity (median

time) to solve the instances, for different region shapes, but normalized so that the value

at the peak of hardness coincides with the maximum number of look-ahead backbone

variables. We observe that this approximated backbone fraction starts to increase until

it reaches a point where it decreases abruptly and then it again starts to increase, but

this time more slowly. The point where it reaches the minimum value is around the

value where the hardness starts to increase towards its peak. So, this point of “sudden”

decrease in the backbone fraction can be used as a sign for the beginning of the hard

region of the problem. It is remarkable that even though the backbone is hard to ap-

proximate, in this problem this approximated backbone provides valuable information.

Observe that the sudden decrease in the backbone fraction actually indicates the point

6 Unit propagation is a linear-time constraint propagation rule that simplifies formulas with
unit literals by discarding clauses that contain a unit literal as satisfied clauses, and eliminating
complementary literals from the rest of clauses because they cannot be satisfied.



21

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 300  320  340  360  380  400  420  440  460  480

Nu
m

be
r o

f v
ar

ia
bl

es

Number of holes

5x5
9x3

15x2
7x4

10x3

Fig. 7 Look-ahead backbone and normalized complexity patterns for Sudokus with different
blocks

where problem instances change from having one solution to many. This indicates that

Sudoku problems with few solutions may be harder than Sudoku problems with just

one solution.

We have obtained an approximated location of this minimum point through a

doubly exponential regression model (see Fig. 8), using the location of this minimum

value for every possible region form (m × n), from size 26 to 49. The model obtained

is:

holes = e0.537 ·m1.57 · n1.72

The coefficient of regression (R2) is 0.989, thus indicating that the model is quite

good. We have also obtained an analogous regression model, but for the location of the

hardness peak. For this model we used data obtained experimentally with Satz, but

only for problems with sizes ranging from 26 to 30. The model obtained is:

holes = e−0.217 ·m1.8 · n1.97

Again, we obtain a high value for R (R2 = 0.997). Observe that for the hardest

problems (m = n), the relative difference between these two points is only O(m1.14),

much smaller than the whole range of possible holes (m4). So, as m increases, the width

of the hard part of the phase transition seems to decrease, in a normalized scale.

9 Conclusions

As hardness characterization of random generated problems has been deeply studied

in the past, this paper focuses on getting a better understanding of where the harder

problem instances are for a class of more structured problems. Given the importance of

balance in random problems, it was natural to think that balancing on more structured

problems also should be important. However it is not easy to study the effect of balance

in problems with a rich and complex structure, as the procedures needed to enforce



22

7x7

8x6

12x4

16x3

9x5

11x4
15x3 24x2

7x6
23x2

14x3
8x5 22x210x4

21x213x3

20x2
6x69x4

12x3 7x5
19x2

18x211x3
8x4

17x2

6x516x2
10x3

7x4 15x2

9x3
14x2

5x5
13x2

N
u

m
b

er
 o

f h
o

le
s

400

600

800

1000

Fitted model

400 600 800 1000

Fig. 8 Regression model for the hardness peak location on Sudokus from size 26 to 49

some level of balance become more and more complex as the the problem constraints

gain in complexity.

So, on top of a widely known problem, Sudoku, we formalize a generalization,

Generalized Sudoku Problem (GSP), relaxing one of the intrinsic restrictions of the

Sudoku problem (block region square shape), to have a problem that still keeps enough

structural properties but that now has a good margin to adjust its balancing properties

by simply varying block region squareness.

Our results show that as more balance is introduced between the constraints of

the problem, the hardness of the typical instances increases. For doing such a study,

we have provided both an algorithm to generate initial complete Sudokus and algo-

rithms to force different levels of balance between the constraints of the problem, by

controlling the distribution of holes, such that almost all the constraints of a class are

indistinguishable from the point of view of how much they constraint the problem.

Finally, as future work, we plan to study the effect of balance on more complex

structured problems, like for example combinatorial auctions [41] and mixed multi-unit

combinatorial auctions [12], that are of direct interest in real applications (electronic

commerce), but they still do not have too many kinds of constraints such that defining

ways of controlling the balance between the constraints becomes inaccessible. As possi-

ble ways to further extend our understanding of hard instances of structured problems,

we believe that connections between our notion of balanced problems and the concepts

of solution symmetry and constraint symmetry [14] may hold, given that it is natural to

think that higher levels of balance between the constraints of a problem, will increase

the possibilities of having constraint symmetries.



23

Acknowledgements This research was partially supported by the Spanish CICYT Projects
MULOG2 (TIN2007-68005-C04-02) and ARINF (TIN2009-14704-C03-01) and TASSAT (TIN2010-
20967-C04-03).

References

1. Achlioptas, D., Gomes, C., Kautz, H., Selman, B.: Generating satisfiable problem in-
stances. In: Proc. of National Conference on Artificial Intelligence, (AAAI’00), pp. 193–200
(2000)

2. Ansótegui, C., Béjar, R., Fernández, C., Gomes, C.P., Mateu, C.: The impact of balancing
on problem hardness in a highly structured domain. In: Twenty-First National Conference
on Artificial Intelligence (AAAI’06) (2006)

3. Ansótegui, C., Béjar, R., Fernández, C., Mateu, C.: On Balanced CSPs with High
Treewidth. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI’07), pp. 161–166 (2007)

4. Ansótegui, C., Béjar, R., Fernández, C., Mateu, C.: From High Girth Graphs to Hard
Instances. In: Proceedings of the 14th international conference on Principles and Practice
of Constraint Programming, (CP’08), pp. 298–312. Springer-Verlag, Berlin, Heidelberg
(2008). DOI http://dx.doi.org/10.1007/978-3-540-85958-1\ 20

5. Ansótegui, C., Larrubia, J., Li, C.M., Manyà, F.: Exploiting multivalued knowledge in vari-
able selection heuristics for SAT solvers. Annals of Mathematics and Artificial Intelligence
49(1–4), 191–205 (2007)

6. Ansótegui, C., del Val, A., Dotú, I., Fernández, C., Manyà, F.: Modelling choices in quasi-
group completion: SAT vs CSP. In: Proc. of National Conference on Artificial Intelligence,
(AAAI-04) (2004)

7. Argelich, J., Lynce, I.: CNF instances from the software package installation problem. In:
In Proceedings of 15th RCRA workshop on Experimental Evaluation of Algorithms for
Solving Problems with Combinatorial Explosion, (RCRA’08) (2008)

8. Bailey, R.A., Cameron, P.J., Connelly, R.: Sudoku, gerechte designs, resolutions, affine
space, spreads, reguli, and hamming codes. American Mathematical Monthly 115, 383–
404 (2008)

9. Bailey, R.A., Kunert, J., Martin, R.J.: Some comments on gerechte designs. Journal of
Agronomy and Crop Science 165, 121–130 (1990)

10. Bessière, C., Régin, J.C.: MAC and combined heuristics: Two reasons to forsake FC (and
CBJ?) on hard problems. In: Proceedings of the Second International Conference on
Principles and Practice of Constraint Programming, (CP’96), pp. 61–75 (1996)

11. Brockington, M., Culberson, J..: Camouflaging independent sets in quasi-random graphs.
In: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, pp.
75–88. AMS (1996)

12. Cerquides, J., Endriss, U., Giovannucci, A., Rodŕıguez-Aguilar, J.A.: Bidding languages
and winner determination for mixed multi-unit combinatorial auctions. In: Proceedings of
the 20th International Joint Conference on Artificial Intelligence, (IJCAI’07), pp. 1221–
1226 (2007)

13. Chen, H., Gomes, C.P., Selman, B.: Formal models of heavy-tailed behavior in combina-
torial search. In: Proceedings of the International Conference on Principles and Practice
of Constraint Programming, (CP’01), pp. 408–421 (2001)

14. Cohen, D.A., Jeavons, P., Jefferson, C., Petrie, K.E., Smith, B.M.: Symmetry definitions
for constraint satisfaction problems. Constraints 11(2–3), 115–137 (2006)

15. Culberson, J., Luo, F.: Exploring the k-colorable landscape with iterated greedy. In:
Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, pp. 245–
284. AMS (1996)

16. Delahaye, J.P.: The science behind sudoku. Scientific American (June 2006), 80–87 (2006)
17. Dotú, I., del Val, A., Cebrián, M.: Redundant modeling for the quasigroup completion

problem. In: Proceedings of the Ninth International Conference on Principles and Practice
of Constraint Programming, (CP’03), pp. 288–302 (2003)

18. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proceedings of the International
Conference on Theory and Applications of Satisfiability Testing, (SAT’2003) (2003)

19. Felgenhauer, B., Jarvis, F.: Mathematics of sudoku i. Mathematical Spectrum 39, 15–22
(2006)



24

20. Gao, Y., Culberson, J.: Consistency and random constraint satisfaction models. Journal
of Artificial Intelligence Research 28, 517–557 (2007)

21. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In: 17th
European Conference on Artificial Intelligence, (ECAI 2006), pp. 98–102 (2006)

22. Gent, I.P., Walsh, T.: The tsp phase transition. Artificial Intelligence 88(1–2), 349–358
(1996)

23. Gomes, C., Selman, B.: Problem structure in the presence of perturbations. In: Proceedings
of the Fourteenth National Conference on Artificial Intelligence, (AAAI’97), pp. 221–227.
AAAI Press, New Providence, RI (1997)

24. Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial search. In:
Proceedings of the Third International Conference of Constraint Programming, (CP’97).
Springer-Verlag, Linz, Austria. (1997)

25. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability
and constraint satisfaction problems. Journal of Automated Reasoning 24(1–2), 67–100
(2000)

26. Hoffmann, J., Gomes, C.P., Selman, B.: Structure and problem hardness: Goal asymmetry
and DPLL proofs in SAT-based planning. In: Proceedings of the Sixteenth International
Conference on Automated Planning and Scheduling, (ICAPS’06), pp. 284–293 (2006)

27. Hogg, T.: Exploiting the deep structure of constraint satisfaction problems with quan-
tum computers. In: Proceedings of the National Conference on Artificial Intelligence,
(AAAI’97), pp. 334–339 (1997)

28. Jacobson, M.T., Matthews, P.: Generating uniformly distributed random latin squares.
Journal of Combinatorial Design 4, 405–437 (1996)

29. Kannan, R., Tetali, P., Vempala, S.: Simple Markov-chain algorithms for generating bi-
partite graphs and tournaments. In: Proc. of the eighth annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 193–200 (1997)

30. Kautz, H., Ruan, Y., Achlioptas, D., Gomes, C., Selman, B., , Stickel, M.: Balance and
filtering in structured satisfiable problems. In: Proc. of Iinternational Conference on Arti-
ficial Intelligence, (JCAI’01), pp. 193–200 (2001)

31. Kilby, P., Slaney, J., Thiebaux, S., Walsh, T.: Backbones and backdoors in satisfiability.
In: Proc. of National Conference on Artificial Intelligence, (AAAI’05), pp. 193–200 (2005)

32. Kilby, P., Slaney, J.K., Walsh, T.: The backbone of the travelling salesperson. In: Pro-
ceedings of the International Joint Conference on Artificial Intelligence, (IJCAI’05), pp.
175–180 (2005)

33. Lewis, R.: Metaheuristics can solve sudoku puzzles. Journal of Heuristics 13(4), 387–401
(2007)

34. Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In: Proceed-
ings of the International Conference on Principles and Practice of Constraint Program-
ming, (CP’97), pp. 341–355 (1997)

35. Lynce, I., Marques-Silva, J.: Haplotype inference with boolean satisfiability. International
Journal on Artificial Intelligence Tools 17(2), 355–387 (2008)

36. Lynce, I., Ouaknine, J.: Sudoku as a SAT problem. In: Proc. of Ninth International
Symposium on Artificial Intelligence and Mathematics, (ISAIM-06) (2006)

37. MO, H.D., XU, R.G.: Sudoku square – a new design in field. Acta Agronomica Sinica
34(9), 1489 – 1493 (2008)

38. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: 2+p-sat: Relation
of typical-case complexity to the nature of the phase transition. Random Structures and
Algorithms 15(3-4), 414–435 (1999)

39. Morgan, J.P.: Latin Squares and related experimental designs, chap. To be published.
Wiley

40. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient
sat solver. In: Proceedings of 39th Design Automation Conference (2001)

41. Sandholm, T., Suri, S.: Improved algorithms for optimal winner determination in combi-
natorial auctions and generalizations. In: Proc. of Seventeenth National Conference on
Artificial Intelligence, (AAAI’00), pp. 90–97 (2000)

42. Simonis, H.: Sudoku as a constraint problem. In: Proc. of Fourth International Workshop
on Modelling and Reformulating Constraint Satisfaction Problems (in CP-2005), pp. 13–27
(2005)

43. Smith, B.M., Grant, S.A.: Sparse constraint graphs and exceptionally hard problems. In:
Proc. of the International Joint Conference on Artificial Intelligence, (IJCAI’95), pp. 646–
654 (1995)



25

44. Vaughan, E.R.: The complexity of constructing gerechte designs. The electronic journal
of combinatorics 16 (2009)

45. Weber, T.: A SAT-based Sudoku solver. In: G. Sutcliffe, A. Voronkov (eds.) LPAR-12,
The 12th International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning, Short Paper Proceedings, pp. 11–15 (2005)

46. Williams, C.P., Hogg, T.: Exploiting the deep structure of constraint problems. Artificial
Intelligence 70, 73–117 (1994)

47. Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: Random constraint satisfaction: Easy
generation of hard (satisfiable) instances. Artificial Intelligence 171(8-9), 514–534 (2007)

48. Xu, K., Li, W.: Exact phase transitions in random constraint satisfaction problems. Journal
of Artificial Intelligence Research 12, 93–103 (2000)

49. Yato, T., Seta, T.: Complexity and completness of finding another solution and its appli-
cation to puzzles. In: Proc. of National Meeting of the Information Processing Society of
Japan (IPSJ) (2002)


	Introduction
	Sudoku Problems
	Generating Complete Generalized Sudokus
	Balanced Hole Patterns
	Worst-case Complexity of GSP
	Encodings and Solvers
	Typical case complexity
	Backbone
	Conclusions

