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Abstract

We propose a class of loss functions, which we call deep perceptual similarity
metrics (DeePSiM), allowing to generate sharp high resolution images from com-
pressed abstract representations. Instead of computing distances in the image space,
we compute distances between image features extracted by deep neural networks.
This metric reflects perceptual similarity of images much better and, thus, leads to
better results. We demonstrate two examples of use cases of the proposed loss: (1)
networks that invert the AlexNet convolutional network; (2) a modified version of
a variational autoencoder that generates realistic high-resolution random images.

1 Introduction

Recently there has been a surge of interest in training neural networks to generate images. These are
being used for a wide variety of applications: generative models, analysis of learned representations,
learning of 3D representations, future prediction in videos. Nevertheless, there is little work on
studying loss functions which are appropriate for the image generation task. The widely used
squared Euclidean (SE) distance between images often yields blurry results; see Fig. 1 (b). This is
especially the case when there is inherent uncertainty in the prediction. For example, suppose we
aim to reconstruct an image from its feature representation. The precise location of all details is not
preserved in the features. A loss in image space leads to averaging all likely locations of details,
hence the reconstruction looks blurry.

However, exact locations of all fine details are not important for perceptual similarity of images.
What is important is the distribution of these details. Our main insight is that invariance to irrelevant
transformations and sensitivity to local image statistics can be achieved by measuring distances in a
suitable feature space. In fact, convolutional networks provide a feature representation with desirable
properties. They are invariant to small, smooth deformations but sensitive to perceptually important
image properties, like salient edges and textures.

Using a distance in feature space alone does not yet yield a good loss function; see Fig. 1 (d).
Since feature representations are typically contractive, feature similarity does not automatically
mean image similarity. In practice this leads to high-frequency artifacts (Fig. 1 (d)). To force the
network generate realistic images, we introduce a natural image prior based on adversarial training,
as proposed by Goodfellow et al. [1] 1 . We train a discriminator network to distinguish the output of
the generator from real images based on local image statistics. The objective of the generator is to
trick the discriminator, that is, to generate images that the discriminator cannot distinguish from real
ones. A combination of similarity in an appropriate feature space with adversarial training yields
the best results; see Fig. 1 (e). Results produced with adversarial loss alone (Fig. 1 (c)) are clearly
inferior to those of our approach, so the feature space loss is crucial.

1An interesting alternative would be to explicitly analyze feature statistics, similar to Gatys et al. [2] .
However, our preliminary experiments with this approach were not successful.
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Figure 1: Reconstructions from AlexNet FC6 with dif-
ferent components of the loss.

Figure 2: Schematic of our model.
Black solid lines denote the forward pass.
Dashed lines with arrows on both ends
are the losses. Thin dashed lines denote
the flow of gradients.

The new loss function is well suited for generating images from highly compressed representations.
We demonstrate this in two applications: inversion of the AlexNet convolutional network and a
generative model based on a variational autoencoder. Reconstructions obtained with our method from
high-level activations of AlexNet are significantly better than with existing approaches. They reveal
that even the predicted class probabilities contain rich texture, color, and position information. As an
example of a true generative model, we show that a variational autoencoder trained with the new loss
produces sharp and realistic high-resolution 227× 227 pixel images.

2 Related work

There is a long history of neural network based models for image generation. A prominent class of
probabilistic models of images are restricted Boltzmann machines [3] and their deep variants [4, 5].
Autoencoders [6] have been widely used for unsupervised learning and generative modeling, too.
Recently, stochastic neural networks [7] have become popular, and deterministic networks are being
used for image generation tasks [8]. In all these models, loss is measured in the image space. By
combining convolutions and un-pooling (upsampling) layers [5, 1, 8] these models can be applied to
large images.

There is a large body of work on assessing the perceptual similarity of images. Some prominent
examples are the visible differences predictor [9], the spatio-temporal model for moving picture
quality assessment [10], and the perceptual distortion metric of Winkler [11]. The most popular
perceptual image similarity metric is the structural similarity metric (SSIM) [12], which compares
the local statistics of image patches. We are not aware of any work making use of similarity metrics
for machine learning, except a recent pre-print of Ridgeway et al. [13]. They train autoencoders
by directly maximizing the SSIM similarity of images. This resembles in spirit what we do, but
technically is very different. Because of its shallow and local nature, SSIM does not have invariance
properties needed for the tasks we are solving in this paper.

Generative adversarial networks (GANs) have been proposed by Goodfellow et al. [1]. In theory,
this training procedure can lead to a generator that perfectly models the data distribution. Practically,
training GANs is difficult and often leads to oscillatory behavior, divergence, or modeling only part
of the data distribution. Recently, several modifications have been proposed that make GAN training
more stable. Denton et al. [14] employ a multi-scale approach, gradually generating higher resolution
images. Radford et al. [15] make use of an upconvolutional architecture and batch normalization.

GANs can be trained conditionally by feeding the conditioning variable to both the discriminator and
the generator [16]. Usually this conditioning variable is a one-hot encoding of the object class in the
input image. Such GANs learn to generate images of objects from a given class. Recently Mathieu
et al. [17] used GANs for predicting future frames in videos by conditioning on previous frames. Our
approach looks similar to a conditional GAN. However, in a GAN there is no loss directly comparing
the generated image to some ground truth. As Fig. 1 shows, the feature loss introduced in the present
paper is essential to train on complicated tasks we are interested in.
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Several concurrent works [18–20] share the general idea — to measure the similarity not in the image
space but rather in a feature space. These differ from our work both in the details of the method and
in the applications. Larsen et al. [18] only run relatively small-scale experiments on images of faces,
and they measure the similarity between features extracted from the discriminator, while we study
different “comparators” (in fact, we also experimented with features from the disciminator and were
not able to get satisfactory results on our applications with those). Lamb et al. [19] and Johnson et al.
[20] use features from different layers, including the lower ones, to measure image similarity, and
therefore do not need the adversarial loss. While this approach may be suitable for tasks which allow
for nearly perfect solutions (e.g. super-resolution with low magnification), it is not applicable to
more complicated problems such as extreme super-resolution or inversion of highly invariant feature
representations.

3 Model

Suppose we are given a supervised image generation task and a training set of input-target pairs
{yi, xi}, consisting of high-level image representations yi ∈ R

I and images xi ∈ R
W×H×C .

The aim is to learn the parameters θ of a differentiable generator function Gθ(·) : R
I → R

W×H×C

which optimally approximates the input-target dependency according to a loss function L(Gθ(y),x).
Typical choices are squared Euclidean (SE) loss L2(Gθ(y),x) = ||Gθ(y) − x||22 or ℓ1 loss
L1(Gθ(y),x) = ||Gθ(y)− x||1, but these lead to blurred results in many image generation tasks.

We propose a new class of losses, which we call deep perceptual similarity metrics (DeePSiM ). These
go beyond simple distances in image space and can capture complex and perceptually important
properties of images. These losses are weighted sums of three terms: feature loss Lfeat, adversarial
loss Ladv , and image space loss Limg:

L = λfeat Lfeat + λadv Ladv + λimg Limg. (1)

They correspond to a network architecture, an overview of which is shown in Fig. 2 . The architecture
consists of three convolutional networks: the generator Gθ that implements the generator function,
the discriminator Dϕ that discriminates generated images from natural images, and the comparator C
that computes features used to compare the images.

Loss in feature space. Given a differentiable comparator C : RW×H×C → R
F , we define

Lfeat =
∑

i

||C(Gθ(yi))− C(xi)||
2
2. (2)

C may be fixed or may be trained; for example, it can be a part of the generator or the discriminator.

Lfeat alone does not provide a good loss for training. Optimizing just for similarity in a high-level
feature space typically leads to high-frequency artifacts [21]. This is because for each natural image
there are many non-natural images mapped to the same feature vector 2 . Therefore, a natural image
prior is necessary to constrain the generated images to the manifold of natural images.

Adversarial loss. Instead of manually designing a prior, as in Mahendran and Vedaldi [21], we learn
it with an approach similar to Generative Adversarial Networks (GANs) of Goodfellow et al. [1] .
Namely, we introduce a discriminator Dϕ which aims to discriminate the generated images from real
ones, and which is trained concurrently with the generator Gθ. The generator is trained to “trick” the
discriminator network into classifying the generated images as real. Formally, the parameters ϕ of
the discriminator are trained by minimizing

Ldiscr = −
∑

i

log(Dϕ(xi)) + log(1−Dϕ(Gθ(yi))), (3)

and the generator is trained to minimize

Ladv = −
∑

i

logDϕ(Gθ(yi)). (4)

2This is unless the feature representation is specifically designed to map natural and non-natural images far
apart, such as the one extracted from the discriminator of a GAN.
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Loss in image space. Adversarial training is unstable and sensitive to hyperparameter values. To
suppress oscillatory behavior and provide strong gradients during training, we add to our loss function
a small squared error term:

Limg =
∑

i

||Gθ(yi)− xi||
2
2. (5)

We found that this term makes hyperparameter tuning significantly easier, although it is not strictly
necessary for the approach to work.

3.1 Architectures

Generators. All our generators make use of up-convolutional (’deconvolutional’) layers [8] . An up-
convolutional layer can be seen as up-sampling and a subsequent convolution. We always up-sample
by a factor of 2 with ’bed of nails’ upsampling. A basic generator architecture is shown in Table 1 .

In all networks we use leaky ReLU nonlinearities, that is, LReLU(x) = max(x, 0) + αmin(x, 0).
We used α = 0.3 in our experiments. All generators have linear output layers.

Comparators. We experimented with three comparators:

1. AlexNet [22] is a network with 5 convolutional and 2 fully connected layers trained on image
classification. More precisely, in all experiments we used a variant of AlexNet called CaffeNet [23].

2. The network of Wang and Gupta [24] has the same architecture as CaffeNet, but is trained without
supervision. The network is trained to map frames of one video clip close to each other in the feature
space and map frames from different videos far apart. We refer to this network as VideoNet.

3. AlexNet with random weights.

We found using CONV5 features for comparison leads to best results in most cases. We used these
features unless specified otherwise.

Discriminator. In our setup the job of the discriminator is to analyze the local statistics of images.
Therefore, after five convolutional layers with occasional stride we perform global average pooling.
The result is processed by two fully connected layers, followed by a 2-way softmax. We perform
50% dropout after the global average pooling layer and the first fully connected layer. The exact
architecture of the discriminator is shown in the supplementary material.

3.2 Training details

Coefficients for adversarial and image loss were respectively λadv = 100, λimg = 2 · 10−6. The
feature loss coefficient λfeat depended on the comparator being used. It was set to 0.01 for the
AlexNet CONV5 comparator, which we used in most experiments. Note that a high coefficient in
front of the adversarial loss does not mean that this loss dominates the error function; it simply
compensates for the fact that both image and feature loss include summation over many spatial
locations. We modified the caffe [23] framework to train the networks. For optimization we used
Adam [25] with momentum β1 = 0.9, β2 = 0.999 and initial learning rate 0.0002. To prevent the
discriminator from overfitting during adversarial training we temporarily stopped updating it if the
ratio of Ldiscr and Ladv was below a certain threshold (0.1 in our experiments). We used batch size
64 in all experiments. The networks were trained for 500, 000-1, 000, 000 mini-batch iterations.

4 Experiments

4.1 Inverting AlexNet

As a main application, we trained networks to reconstruct images from their features extracted by
AlexNet. This is interesting for a number of reasons. First and most straightforward, this shows which
information is preserved in the representation. Second, reconstruction from artificial networks can
be seen as test-ground for reconstruction from real neural networks. Applying the proposed method
to real brain recordings is a very exciting potential extension of our work. Third, it is interesting to
see that in contrast with the standard scheme “generative pretraining for a discriminative task”, we
show that “discriminative pre-training for a generative task” can be fruitful. Lastly, we indirectly
show that our loss can be useful for unsupervised learning with generative models. Our version of
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Type fc fc fc reshape uconv conv uconv conv uconv conv uconv uconv uconv

InSize − − − 1 4 8 8 16 16 32 32 64 128

OutCh 4096 4096 4096 256 256 512 256 256 128 128 64 32 3

Kernel − − − − 4 3 4 3 4 3 4 4 4

Stride − − − − ↑2 1 ↑2 1 ↑2 1 ↑2 ↑2 ↑2

Table 1: Generator architecture for inverting layer FC6 of AlexNet.

Image

CONV5

FC6

FC7

FC8

Figure 3: Representative reconstructions from higher layers of AlexNet. General characteristics of
images are preserved very well. In some cases (simple objects, landscapes) reconstructions are nearly
perfect even from FC8. In the leftmost column the network generates dog images from FC7 and FC8.

reconstruction error allows us to reconstruct from very abstract features. Thus, in the context of
unsupervised learning, it would not be in conflict with learning such features.

We describe how our method relates to existing work on feature inversion. Suppose we are given a
feature representation Φ, which we aim to invert, and an image I. There are two inverse mappings:

Φ−1
R such that Φ(Φ−1

R (φ)) ≈ φ, and Φ−1
L such that Φ−1

L (Φ(I)) ≈ I. Recently two approaches to
inversion have been proposed, which correspond to these two variants of the inverse.

Mahendran and Vedaldi [21] apply gradient-based optimization to find an image Ĩ which minimizes

||Φ(I)− Φ(̃I)||22 + P (̃I), (6)

where P is a simple natural image prior, such as the total variation (TV) regularizer. This method pro-
duces images which are roughly natural and have features similar to the input features, corresponding

to Φ−1
R . However, due to the simplistic prior, reconstructions from fully connected layers of AlexNet

do not look much like natural images (Fig. 4 bottom row).

Dosovitskiy and Brox [26] train up-convolutional networks on a large training set of natural images to
perform the inversion task. They use squared Euclidean distance in the image space as loss function,

which leads to approximating Φ−1
L . The networks learn to reconstruct the color and rough positions of

objects, but produce over-smoothed results because they average all potential reconstructions (Fig. 4
middle row).

Our method combines the best of both worlds, as shown in the top row of Fig. 4. The loss in
the feature space helps preserve perceptually important image features. Adversarial training keeps
reconstructions realistic.

Technical details. The generator in this setup takes the features Φ(I) extracted by AlexNet and
generates the image I from them, that is, y = Φ(I). In general we followed Dosovitskiy and Brox
[26] in designing the generators. The only modification is that we inserted more convolutional layers,
giving the network more capacity. We reconstruct from outputs of layers CONV5 –FC8. In each layer
we also include processing steps following the layer, that is, pooling and non-linearities. For example,
CONV5 means pooled features (pool5), and FC6 means rectified values (relu6).

5



Image CONV5 FC6 FC7 FC8 Image CONV5 FC6 FC7 FC8

Our

D&B

M&V

Figure 4: AlexNet inversion: comparison with Dosovitskiy and Brox [26] and Mahendran and Vedaldi
[21] . Our results are significantly better, even our failure cases (second image).

The generator used for inverting FC6 is shown in Table 1 . Architectures for other layers are similar,
except that for reconstruction from CONV5, fully connected layers are replaced by convolutional ones.
We trained on 227× 227 pixel crops of images from the ILSVRC-2012 training set and evaluated on
the ILSVRC-2012 validation set.

Ablation study. We tested if all components of the loss are necessary. Results with some of these
components removed are shown in Fig. 1 . Clearly the full model performs best. Training just with
loss in the image space leads to averaging all potential reconstructions, resulting in over-smoothed
images. One might imagine that adversarial training makes images sharp. This indeed happens, but
the resulting reconstructions do not correspond to actual objects originally contained in the image.
The reason is that any “natural-looking” image which roughly fits the blurry prediction minimizes this
loss. Without the adversarial loss, predictions look very noisy because nothing enforces the natural
image prior. Results without the image space loss are similar to the full model (see supplementary
material), but training was more sensitive to the choice of hyperparameters.

Inversion results. Representative reconstructions from higher layers of AlexNet are shown in Fig. 3 .
Reconstructions from CONV5 are nearly perfect, combining the natural colors and sharpness of details.
Reconstructions from fully connected layers are still strikingly good, preserving the main features of
images, colors, and positions of large objects. More results are shown in the supplementary material.

For quantitative evaluation we compute the normalized Euclidean error ||a− b||2/N . The normaliza-
tion coefficient N is the average of Euclidean distances between all pairs of different samples from
the test set. Therefore, the error of 100% means that the algorithm performs the same as randomly
drawing a sample from the test set. Error in image space and in feature space (that is, the distance
between the features of the image and the reconstruction) are shown in Table 2 . We report all numbers
for our best approach, but only some of them for the variants, because of limited computational
resources.

The method of Mahendran&Vedaldi performs well in feature space, but not in image space, the
method of Dosovitskiy&Brox — vice versa. The presented approach is fairly good on both metrics.
This is further supported by iterative image re-encoding results shown in Fig. 5 . To generate these, we
compute the features of an image, apply our "inverse" network to those, compute the features of the
resulting reconstruction, apply the "inverse" net again, and iterate this procedure. The reconstructions
start to change significantly only after 4− 8 iterations of this process.

Nearest neighbors Does the network simply memorize the training set? For several validation
images we show nearest neighbors (NNs) in the training set, based on distances in different feature
spaces (see supplementary material). Two main conclusions are: 1) NNs in feature spaces are much
more meaningful than in the image space, and 2) The network does more than just retrieving the NNs.

Interpolation. We can morph images into each other by linearly interpolating between their features
and generating the corresponding images. Fig. 7 shows that objects shown in the images smoothly
warp into each other. This capability comes “for free” with our generator networks, but in fact it is
very non-trivial, and to the best of our knowledge has not been previously demonstrated to this extent
on general natural images. More examples are shown in the supplementary material.
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CONV5 FC6 FC7 FC8

M & V [21] 71/19 80/19 82/16 84/09
D & B [26] 35/− 51/− 56/− 58/−

Our image loss −/− 46/79 −/− −/−
AlexNet CONV5 43/37 55/48 61/45 63/29
VideoNet CONV5 −/− 51/57 −/− −/−

Table 2: Normalized inversion error (in %)
when reconstructing from different layers of
AlexNet with different methods. First in each
pair – error in the image space, second – in the
feature space.

CONV5 FC6 FC7 FC8

1

2

4

8

Figure 5: Iteratively re-encoding images with
AlexNet and reconstructing. Iteration number
shown on the left.

Image Alex5 Alex6 Video5 Rand5

Figure 6: Reconstructions from FC6 with dif-
ferent comparators. The number indicates the
layer from which features were taken.

Image pair 1 Image pair 2

FC6

Figure 7: Interpolation between images by interpo-
lating between their FC6 features.

Different comparators. The AlexNet network we used above as comparator has been trained on
a huge labeled dataset. Is this supervision really necessary to learn a good comparator? We show
here results with several alternatives to CONV5 features of AlexNet: 1) FC6 features of AlexNet, 2)
CONV5 of AlexNet with random weights, 3) CONV5 of the network of Wang and Gupta [24] which
we refer to as VideoNet. The results are shown in Fig. 6 . While the AlexNet CONV5 comparator
provides best reconstructions, other networks preserve key image features as well.

Sampling pre-images. Given a feature vector y, it would be interesting to not just generate a single
reconstruction, but arbitrarily many samples from the distribution p(I|y). A straightforward approach
would inject noise into the generator along with the features, so that the network could randomize its
outputs. This does not yield the desired result, even if the discriminator is conditioned on the feature
vector y. Nothing in the loss function forces the generator to output multiple different reconstructions
per feature vector. An underlying problem is that in the training data there is only one image per
feature vector, i.e., a single sample per conditioning vector. We did not attack this problem in this
paper, but we believe it is an interesting research direction.

4.2 Variational autoencoder

We also show an example application of our loss to generative modeling of images, demonstrating its
superiority to the usual image space loss. A standard VAE consists of an encoder Enc and a decoder
Dec. The encoder maps an input sample x to a distribution over latent variables z ∼ Enc(x) =
q(z|x). Dec maps from this latent space to a distribution over images x̃ ∼ Dec(z) = p(x|z). The
loss function is ∑

i

−Eq(z|xi) log p(xi|z) +DKL(q(z|xi)||p(z)), (7)

where p(z) is a prior distribution of latent variables and DKL is the Kullback-Leibler divergence.
The first term in Eq. 7 is a reconstruction error. If we assume that the decoder predicts a Gaussian
distribution at each pixel, then it reduces to squared Euclidean error in the image space. The second
term pulls the distribution of latent variables towards the prior. Both q(z|x) and p(z) are commonly
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(a) (b) (c)

Figure 8: Samples from VAEs: (a) with the squared Euclidean loss, (b), (c) with DeePSiM loss with
AlexNet CONV5 and VideoNet CONV5 comparators, respectively.

assumed to be Gaussian, in which case the KL divergence can be computed analytically. Please
see Kingma and Welling [7] for details.

We use the proposed loss instead of the first term in Eq. 7 . This is similar to Larsen et al. [18], but
the comparator need not be a part of the discriminator. Technically, there is little difference from
training an “inversion” network. First, we allow the encoder weights to be adjusted. Second, instead
of predicting a single latent vector z, we predict two vectors µ and σ and sample z = µ + σ ⊙ ε,
where ε is standard Gaussian (zero mean, unit variance) and ⊙ is element-wise multiplication. Third,
we add the KL divergence term to the loss:

LKL =
1

2

∑

i

(
||µi||

2
2 + ||σi||

2
2 − 〈log σ2

i , 1〉
)
. (8)

We manually set the weight λKL of the KL term in the overall loss (we found λKL = 20 to work
well). Proper probabilistic derivation in presence of adversarial training is non-straightforward, and
we leave it for future research.

We trained on 227 × 227 pixel crops of 256 × 256 pixel ILSVRC-2012 images. The encoder
architecture is the same as AlexNet up to layer FC6, and the decoder architecture is same as in
Table 1 . We initialized the encoder with AlexNet weights when using AlexNet as comparator, and at
random when using VideoNet as comparator. We sampled from the model by sampling the latent
variables from a standard Gaussian z = ε and generating images from that with the decoder.

Samples generated with the usual SE loss, as well as two different comparators (AlexNet CONV5,
VideoNet CONV5) are shown in Fig. 8 . While Euclidean loss leads to very blurry samples, our
method yields images with realistic statistics. Global structure is lacking, but we believe this can be
solved by combining the approach with a GAN. Interestingly, the samples trained with the VideoNet
comparator and random initialization look qualitatively similar to the ones with AlexNet, showing
that supervised training may not be necessary to yield a good loss function for generative model.

5 Conclusion

We proposed a class of loss functions applicable to image generation that are based on distances in
feature spaces and adversarial training. Applying these to two tasks — feature inversion and random
natural image generation — reveals that our loss is clearly superior to the typical loss in image space.
In particular, it allows us to generate perceptually important details even from very low-dimensional
image representations. Our experiments suggest that the proposed loss function can become a useful
tool for generative modeling.
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