Generating linear spans over finite fields

by

WUN-SENG CHOU (Taipei) and GARY L. MULLEN^{*} (University Park, PA)

1. Introduction. In [1] Fitzgerald and Yucas defined the notion of an *n*-dimensional generating pattern over \mathbb{F}_p . In particular an *n*-tuple (a_0, \ldots, a_{n-1}) with $a_i \in \mathbb{F}_p$ was called an *n*-dimensional generating pattern over \mathbb{F}_p if for every *n*-dimensional vector space V over \mathbb{F}_p and every basis v_1, \ldots, v_n of V, the recursive sequence $\{s_k\}$ defined by

(1)
$$s_{k} = \begin{cases} v_{k} & \text{if } k \leq n, \\ \sum_{i=0}^{n-1} a_{i} s_{k-n+i} & \text{if } k > n, \end{cases}$$

consists of all nonzero elements of V for $k = 1, ..., p^n - 1$. Such generating patterns are of interest because they provide simple algorithms for generating the linear span of independent subsets of vector spaces over \mathbb{F}_p (see [1] for details).

In this paper we generalize a number of the results from [1] by working over \mathbb{F}_q where \mathbb{F}_q is the finite field of order q and by showing that if $a_0 \neq 0$, (a_0, \ldots, a_{n-1}) is an *n*-dimensional generating pattern over \mathbb{F}_q if and only if $f(x) = x^n - \sum_{i=0}^{n-1} a_i x^i$ is a primitive polynomial over \mathbb{F}_q . More generally, we show that the number of distinct elements generated by a linear recurring sequence is related to the order of its characteristic polynomial. For $q = p^n < 10^{50}$ with $p \leq 97$, we indicate when one can find an optimal *n*-dimensional generating pattern over \mathbb{F}_p with weight two, i.e. with two nonzero a_i 's (in [1] the length is defined to be the number of nonzero a_i 's but a more natural term is Hamming weight).

If V is an n-dimensional vector space over \mathbb{F}_q then V is isomorphic to \mathbb{F}_{q^n} as a vector space over \mathbb{F}_q . Consequently, instead of considering vectors in V as in [1], we may assume that the elements of the sequence are in \mathbb{F}_{q^n} . We will make this identification throughout the remainder of the paper.

 $^{^*}$ This author would like to thank the National Security Agency for partial support under grant agreement $\# \rm MDA904\text{-}87\text{-}H\text{-}2023.$

From (1) it is easily seen that the recursive sequence $\{s_k\}$ is really a linear recurring sequence. If n is a positive integer and $a_0, a_1, \ldots, a_{n-1} \in \mathbb{F}_q$, a sequence s_0, s_1, \ldots of elements of \mathbb{F}_q satisfying the relation

(2)
$$s_{k+n} = a_{n-1}s_{k+n-1} + a_{n-2}s_{k+n-2} + \ldots + a_0s_k$$
 for $k = 0, 1, \ldots$ is called a *linear recurring sequence* in \mathbb{F}_q . The vectors

$$S_i = (s_i, s_{i+1}, \dots, s_{i+n-1}), \quad i = 0, 1, \dots,$$

are called the *i*-th state vectors. If $a_0 \neq 0$ in (2) then the sequence $\{s_k\}$ is periodic (see [3, Thm. 8.11]). The polynomial $f(x) = x^n - \sum_{i=0}^{n-1} a_i x^i$ is a characteristic polynomial for the sequence $\{s_k\}$ defined by (2). Hence we note that if $s_0, s_1, \ldots, s_{n-1}$ is a basis of \mathbb{F}_{q^n} over \mathbb{F}_q and f is a monic polynomial of degree n with $f(0) \neq 0$, then f corresponds to an n-dimensional generating pattern if and only if the linear recurring sequence with initial state vector $S_0 = (s_0, \ldots, s_{n-1})$ and characteristic polynomial f(x) is uniformly distributed over $\mathbb{F}_{q^n}^*$.

Let

(3)
$$A = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & a_0 \\ 1 & 0 & 0 & \dots & 0 & a_1 \\ 0 & 1 & 0 & \dots & 0 & a_2 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & a_{n-1} \end{pmatrix}$$

be the companion matrix of f(x). Then we have $S_k = S_0 A^k$, for $k \ge 0$. Moreover, if $a_0 \ne 0$ and $s_0, s_1, \ldots, s_{n-1}$ are linearly independent over \mathbb{F}_q then for any $k, s_k, s_{k+1}, \ldots, s_{k+n-1}$ is a basis since A is nonsingular. We also note that if $a_0 = 0$ then the sequence is ultimately periodic with a preperiod of length h where $f(x) = x^h g(x)$ with $g(0) \ne 0$. We shall hence consider only linear recurring sequences for which $a_0 \ne 0$. For further details and many other properties of linear recurring sequences over \mathbb{F}_q , see [3, Ch. 8].

If f(x) is a polynomial over \mathbb{F}_q with $f(0) \neq 0$ then the *order* of f, denoted by $\operatorname{ord}(f)$, is the least positive integer e for which f(x) divides $x^e - 1$. We note that if f is irreducible of degree n over \mathbb{F}_q then $\operatorname{ord}(f)$ divides $q^n - 1$ (see [3, Cor. 3.4]). If f is reducible, such a result does not hold in general but Theorems 3.8 and 3.11 of [3] provide a method for the calculation of orders. For numerous other details concerning polynomials and their orders over \mathbb{F}_q , see [3, Ch. 3, Sec. 1].

2. Basic properties. The following result generalizes Proposition 1 of [1].

THEOREM 2.1. Let $f(x) = x^n - \sum_{i=0}^{n-1} a_i x^i$ with $a_0 \neq 0$ be a polynomial of degree n over \mathbb{F}_q . Let $s_0, s_1, \ldots, s_{n-1} \in \mathbb{F}_{q^n}$ be a basis of \mathbb{F}_{q^n} over \mathbb{F}_q .

Let s_0, s_1, \ldots be the linear recurring sequence with initial state vector $S_0 = (s_0, s_1, \ldots, s_{n-1})$ and characteristic polynomial f(x). If $\operatorname{ord}(f) = e$ then the elements $s_0, s_1, \ldots, s_{e-1}$ are distinct and the least period of this sequence is e.

Proof. If A is the companion matrix of f(x) from (3) then $S_i = S_0 A^i$ for $i \ge 0$ and $\{s_i, s_{i+1}, \ldots, s_{i+n-1}\}$ is a basis of \mathbb{F}_{q^n} over \mathbb{F}_q . Let t be the smallest positive integer so that $s_t = s_i$ for some $0 \le i \le t-1$. We note that $n \le t \le e$ and without loss of generality, we can assume $s_t = s_0$ for otherwise, if $s_t = s_i$ we may consider the sequence s_i, s_{i+1}, \ldots Now $S_t = S_0 A^t$ and since $\{s_0, s_1, \ldots, s_{n-1}\}$ is a basis of \mathbb{F}_{q^n} over \mathbb{F}_q and $A \in \mathrm{GL}(n,q)$, the general linear group of all nonsingular $n \times n$ matrices over \mathbb{F}_q , the first column of A^t has entry 1 in the (1, 1) position and 0 elsewhere.

Note that $A^{2t} = A^t A^t$ also has first column of the form $\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$.

Let $1 \le k \le n-1$. From the definition of A, it is easy to see that the

(k+1)-st columns of both A^{t-k} and A^{2t-k} are of the form $\begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}$.

Let
$$A^t = (a_{ij})$$
 for $1 \le i, j \le n$. Since $A^{2t-k} = A^{t-k}A^t$,

$$A^{t-k} \begin{pmatrix} a_{1,k+1} \\ \vdots \\ a_{n,k+1} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} .$$

Let B be the $(n-1) \times (n-1)$ matrix obtained from A^{t-k} by deleting the first row and (k+1)-st column. Then we have

$$B\begin{pmatrix}a_{1,k+1}\\\vdots\\a_{k,k+1}\\a_{k+2,k+1}\\\vdots\\a_{n,k+1}\end{pmatrix} = \begin{pmatrix}0\\\vdots\\\vdots\\0\end{pmatrix}$$

Since A^{t-k} is nonsingular, B is nonsingular and so $a_{i,k+1} = 0$ for $i \neq k+1$.

Hence

186

$$A^{t-k} \begin{pmatrix} 0\\ \vdots\\ a_{k+1,k+1}\\ 0\\ \vdots\\ 0 \end{pmatrix} = \begin{pmatrix} 1\\ 0\\ \vdots\\ 0 \end{pmatrix}$$

Since the first row of A^{t-k} has entry 1 at the (k+1)-st place, we have $a_{k+1,k+1} = 1$. Hence for $1 \le k \le n-1$,

$$a_{i,k+1} = \begin{cases} 1 & \text{if } i = k+1, \\ 0 & \text{otherwise.} \end{cases}$$

Combining this with the fact that A^t has first column of the form $\begin{pmatrix} 0\\ \vdots\\ 0 \end{pmatrix}$,

we have $A^t = I_n$, the $n \times n$ identity matrix.

Since the order of $A \in \operatorname{GL}(n,q)$ is equal to $\operatorname{ord}(f) = e$, we have $e \mid t$ but since $n \leq t \leq e$, we have t = e. Thus $s_0, s_1, \ldots, s_{e-1}$ are distinct and so the least period of this sequence is e since $S_e = S_0 A^e = S_0 I_n = S_0$.

The following corollary generalizes Proposition 1 of [1].

COROLLARY 2.2. Let $s_0, s_1, \ldots, s_{n-1}$ be a basis of \mathbb{F}_{q^n} over \mathbb{F}_q . The monic polynomial f(x) of degree n over \mathbb{F}_q with $f(0) \neq 0$ corresponds to an n-dimensional generating pattern if and only if f(x) is a primitive polynomial.

Proof. If f(x) is a primitive polynomial then $\operatorname{ord}(f) = q^n - 1$. It follows from the theorem that the linear recurring sequence with initial state vector $(s_0, s_1, \ldots, s_{n-1})$ and characteristic polynomial f(x) has period $q^n - 1$ and $s_0, s_1, \ldots, s_{q^n-2}$ are distinct so f(x) corresponds to an *n*-dimensional generating pattern.

Conversely, if f(x) corresponds to an *n*-dimensional generating pattern, the linear recurring sequence with initial vector $(s_0, s_1, \ldots, s_{n-1})$ and characteristic polynomial f(x) has least period $q^n - 1$. Since f is monic and $f(0) \neq 0, f$ is primitive by [3, Thm. 3.16].

Since the number of primitive polynomials of degree n over \mathbb{F}_q is known to be $\phi(q^n - 1)/n$ where ϕ is Euler's function (see [3, Thm. 3.5]), we have

COROLLARY 2.3. The number of distinct n-dimensional generating patterns (a_0, \ldots, a_{n-1}) over \mathbb{F}_q with $a_0 \neq 0$ is $\phi(q^n - 1)/n$. Theorem 2.1 explains why the 5-tuple (1, 1, 0, 0, 0) over \mathbb{F}_2 from [1, p. 55] is not a 5-dimensional generating pattern over \mathbb{F}_2 but instead the corresponding sequence has exactly 21 distinct elements. We have $x^5 + x + 1 = (x^2 + x + 1)(x^3 + x^2 + 1)$ and the order is $3 \cdot 7 = 21$ corresponding to the 21 distinct elements.

3. A more general setting. In this section we relax the condition that the initial state vector $S_0 = (s_0, s_1, \ldots, s_{n-1})$ consists of a basis and instead assume that the subspace of \mathbb{F}_{q^n} generated by $s_0, s_1, \ldots, s_{n-1}$ has dimension $m \leq n$. Our first result is

THEOREM 3.1. Let $f(x) = x^n - \sum_{i=0}^{n-1} a_i x^i$ be a monic polynomial of degree n over \mathbb{F}_q with $f(0) \neq 0$. Assume that the subspace generated by $s_0, s_1, \ldots, s_{n-1}$ has dimension $0 < m \leq n$. Consider the linear recurring sequence which has initial state vector $S_0 = (s_0, s_1, \ldots, s_{n-1})$ and characteristic polynomial f. Let N be the number of distinct elements in the sequence. Then $N \leq \min\{q^m, \operatorname{ord}(f)\}$.

Proof. From [3, Thm. 8.27] the least period of the sequence is at most ord(f) and so $N \leq \operatorname{ord}(f)$. We will show that the subspace V_k of \mathbb{F}_{q^n} generated by $s_k, s_{k+1}, \ldots, s_{k+n-1}$ is the same as the subspace V_{k+1} generated by $s_{k+1}, s_{k+2}, \ldots, s_{k+n}$. Since s_{k+n} is a linear combination of s_k, \ldots, s_{k+n-1} , we have $V_{k+1} \subseteq V_k$. Let T be the subspace of \mathbb{F}_{q^n} generated by $s_{k+1}, \ldots, s_{k+n-1}$ over \mathbb{F}_q . If $T = V_k$ then $s_k \in T$ and so $s_{k+n} \in T$ and thus $V_{k+1} = T = V_k$. If $T \neq V_k$ then $s_k \notin T$. Since $a_0 \neq 0$ and $s_{k+n} = a_{n-1}s_{k+n-1} + \ldots + a_0s_k, s_k \notin T$ implies $s_{k+n} \notin T$. Hence $T \subsetneq V_{k+1}$, $\dim V_{k+1} = 1 + \dim T = \dim V_k$. But $V_{k+1} \subseteq V_k$ and so $V_{k+1} = V_k$.

We have shown that for any k, $V_k = V_0$, the subspace generated by $s_0, s_1, \ldots, s_{n-1}$. Every element of the sequence is in V_0 so that $N \leq q^m$. Since $N \leq \operatorname{ord}(f)$ we have $N \leq \min\{q^m, \operatorname{ord}(f)\}$.

The following example shows that equality may not hold in Theorem 3.1. Let $f(x) = x^3 + x + 1$ be a polynomial over \mathbb{F}_4 so that f is irreducible and $\operatorname{ord}(f) = 7$. Let $\alpha \in \mathbb{F}_{4^3}$, $\alpha \neq 0$ and set $s_0 = \alpha$, $s_1 = s_2 = 0$. Then the linear recurring sequence with initial state vector $(\alpha, 0, 0)$ and characteristic polynomial f consists of only two distinct elements and $2 < \min\{4, 7\}$.

We do note, however, that from Theorem 2.1 equality holds when m = n, i.e. when the initial state vector consists of a basis. We now consider another special case in which equality holds in Theorem 3.1.

THEOREM 3.2. Let f be a primitive polynomial of degree n over \mathbb{F}_q . Let $s_0, s_1, \ldots, s_{n-1} \in \mathbb{F}_{q^n}$ and let m < n be the largest number of linearly independent elements among $s_0, s_1, \ldots, s_{n-1}$. If N is the number of distinct elements in the linear recurring sequence with initial state vector $(s_0, s_1, \ldots, s_{n-1})$ and characteristic polynomial f, then $N = q^m$. Proof. If S denotes the sequence and its least period is r, then $r \mid \operatorname{ord}(f)$. Consider any basis $\{t_0, t_1, \ldots, t_{n-1}\}$ of \mathbb{F}_{q^n} over \mathbb{F}_q . Let T be the linear recurring sequence with initial state vector $t_0, t_1, \ldots, t_{n-1}$ and characteristic polynomial f. Then T has least period $\operatorname{ord}(f) = q^n - 1$ and the elements $t_0, t_1, \ldots, t_{q^n-2}$ are distinct by Theorem 2.1. Hence $\{t_i \mid 0 \leq i \leq q^n - 2\} = \mathbb{F}_{q^n}^*$.

Let σ be the linear transformation of \mathbb{F}_{q^n} into itself defined by $\sigma(t_i) = s_i$, $0 \leq i \leq n-1$. Let \overline{T} be the sequence so that for each $i \geq 0$, the *i*th term $\overline{t_i}$ of \overline{T} is $\overline{t_i} = \sigma(t_i)$. We will show that the sequences \overline{T} and S are identical.

From the construction of \overline{T} , $\overline{t}_i = s_i$ for $0 \le i \le n-1$. Write

$$f(x) = x^n - \sum_{i=0}^{n-1} a_i x^i$$

For any $k \ge 0$, $t_{k+n} = a_{n-1}t_{k+n-1} + \ldots + a_0t_k$ so that for any $k \ge 0$

$$\overline{t}_{k+n} = \sigma(t_{k+n}) = a_{n-1}\sigma(t_{k+n-1}) + \ldots + a_0\sigma(t_k)$$
$$= a_{n-1}\overline{t}_{k+n-1} + \ldots + a_0\overline{t}_k.$$

Hence f is a characteristic polynomial of \overline{T} . Since \overline{T} and S have the same initial state vector and the same characteristic polynomial, \overline{T} and S are identical.

We have shown that $s_i = \sigma(t_i)$ for $i \ge 0$. Since $\{t_i \mid 0 \le i \le q^n - 2\} = \mathbb{F}_{q^n}^*$, $\{s_i \mid 0 \le i \le q^n - 2\} = \sigma(\mathbb{F}_{q^n}^*)$. Since $\sigma(\mathbb{F}_{q^n}^*)$ is a subspace of \mathbb{F}_{q^n} of dimension m over \mathbb{F}_q , $\{s_i \mid 0 \le i \le q^n - 2\}$ consists of exactly q^m distinct elements. This completes the proof.

Remark. We would like to thank Harald Niederreiter for the following argument which provides, in the m = 1 case, a sufficient condition in order that N = q. The condition is that $r \operatorname{ord}(f) > (q-1)^2 q^n$ where r is the least period length of the sequence. If f(x) is the minimal polynomial of the sequence so that $r = \operatorname{ord}(f)$, the condition simplifies to $\operatorname{ord}(f) > (q-1)q^{n/2}$. By [3, Thm. 8.82] we have

$$\left|\mathbb{Z}(b) - \frac{r}{q}\right| \le \left(1 - \frac{1}{q}\right) \left(\frac{r}{\operatorname{ord}(f)}\right)^{1/2} q^{n/2},$$

where $\mathbb{Z}(b)$ denotes the number of n with $0 \leq n < r$, with $s_n = b$. Thus

$$\mathbb{Z}(b) \ge \frac{r}{q} - \left(1 - \frac{1}{q}\right) \left(\frac{r}{\operatorname{ord}(f)}\right)^{1/2} q^{n/2} > 0$$

for all $b \in \mathbb{F}_q$ so that every $b \in \mathbb{F}_q$ occurs in the sequence and hence N = q.

A periodic sequence is said to be *weakly equidistributed* in \mathbb{F}_q if every element of \mathbb{F}_q^* appears equally often in a period of the sequence. Since we can embed \mathbb{F}_{q^k} as a subspace of \mathbb{F}_{q^n} over \mathbb{F}_q if $k \leq n$, then from the proof of Theorem 3.2 each nonzero element of \mathbb{F}_{q^k} appears exactly q^{n-k} times and so we may state

COROLLARY 3.3. Let f be a primitive polynomial of degree n over \mathbb{F}_q . Let $s_0, s_1, \ldots, s_{n-1} \in \mathbb{F}_{q^k}$, where $1 \leq k \leq n$. Let s_0, s_1, \ldots be the linear recurring sequence on \mathbb{F}_{q^k} with initial state vector $(s_0, s_1, \ldots, s_{n-1})$ and characteristic polynomial f(x). Then the sequence is weakly equidistributed on \mathbb{F}_{q^k} if and only if the subspace of \mathbb{F}_{q^k} generated by $s_0, s_1, \ldots, s_{n-1}$ over \mathbb{F}_q equals \mathbb{F}_{q^k} , or equivalently, there are exactly k linearly independent elements over \mathbb{F}_q among $s_0, s_1, \ldots, s_{n-1}$.

The result of Corollary 3.3 is related to [4, Cor. 1]. We close this section with the following:

PROBLEM. Find an exact formula for the number N of distinct elements given in Theorem 3.1 where the elements of the initial state vector generate a subspace of dimension $m \leq n$ and f is any monic polynomial of degree n over \mathbb{F}_q with $f(0) \neq 0$.

4. An application. In [1], parts 2 and 3 of Corollary 2 are incorrectly stated. The modulus should be $p^n - 1$ rather than p^n . This error also occurs in the proof of Proposition 4 of [1]. For a corrected and generalized version over \mathbb{F}_q we prove

COROLLARY 4.1. Let $f(x) = x^n - \sum_{i=0}^{n-1} a_i x^i$ with $a_0 \neq 0$ be a polynomial of degree n over \mathbb{F}_q . Let $s_0, s_1, \ldots, s_{n-1} \in \mathbb{F}_{q^n}$ be a basis of \mathbb{F}_{q^n} over \mathbb{F}_q . Let s_0, s_1, \ldots be the linear recurring sequence with initial state vector $S_0 = (s_0, s_1, \ldots, s_{n-1})$ and characteristic polynomial f(x). Then for any k and j

(1) $s_k, s_{k+1}, \ldots, s_{k+n-1}$ is a basis of \mathbb{F}_{q^n} .

(2) $s_k = s_{k+j}$ if and only if $j \equiv 0 \pmod{\operatorname{ord}(f)}$.

(3) Let $f(x) = (f_1(x))^{e_1} \dots (f_r(x))^{e_r}$ where $f_1(x), \dots, f_r(x) \in \mathbb{F}_q[x]$ are irreducible and $e_1, \dots, e_r \geq 1$. Then $\{s_j - s_k, s_{j+1} - s_{k+1}, \dots, s_{j+n-1} - s_{k+n-1}\}$ is a basis of \mathbb{F}_{q^n} over \mathbb{F}_q if and only if $j \neq k \pmod{\operatorname{ord} f_i(x)}$ for all $1 \leq i \leq r$.

Proof. Let A be the companion matrix of f(x). Then (1) holds since $a_0 \neq 0$ and the companion matrix of f is nonsingular, (2) follows from Theorem 2.1, and for (3)

$$(s_j - s_k, s_{j+1} - s_{k+1}, \dots, s_{j+n-1} - s_{k+n-1})$$

= $S_j - S_k = S_0 A^j - S_0 A^k = S_0 A^k (A^{j-k} - I).$

So $\{s_j - s_k, s_{j+1} - s_{k+1}, \ldots, s_{j+n-1} - s_{k+n-1}\}$ is a basis of \mathbb{F}_{q^n} over \mathbb{F}_q if and only if $A^{j-k} - I$ is nonsingular. The last statement is equivalent to that 1 is not an eigenvalue of A^{j-k} , or equivalently, $j \neq k \pmod{\text{ord} f_i(x)}$, for all $1 \leq i \leq r$. Let $W \subseteq \mathbb{F}_{q^n}$. By an *m*-spread of W is meant a collection $\{U_i\}_{i=1}^k$ of *m*-dimensional subspaces of \mathbb{F}_{q^n} satisfying $U_i \cap U_j = \{0\}$ for $i \neq j$ and $W = \bigcup U_i$. While we can consider W a subset of \mathbb{F}_{q^n} , we will restrict our attention to the case when W is a subspace of \mathbb{F}_{q^n} over \mathbb{F}_q .

THEOREM 4.2. Let W be a subspace of \mathbb{F}_{q^n} over \mathbb{F}_q with dim W = k. Let m be a positive integer. Then W has an m-spread if and only if $m \mid k$. Furthermore, if $m \mid k$, and if $\{w_1, \ldots, w_k\}$ is a basis of W over \mathbb{F}_q , then we can find an m-spread of W in the following way: Fix a primitive polynomial $f(x) \in \mathbb{F}_q[x]$ of degree m. Write k = mh for some positive integer h. For $1 \leq i \leq h$, let $S_{i,j}$ be the j-th state vector of the linear recurring sequence which has characteristic polynomial f(x) and initial state vector $S_{i,1} = (w_{(i-1)m+1}, \ldots, w_{im})$. Moreover, let $S_{i,0} = (0, \ldots, 0)$ for all $1 \leq i \leq h$. Then the collection of all subspaces of W spanned by all possible sums $S_{i,1} + S_{i-1,j_1} + \ldots + S_{1,j_{i-1}}$, where $1 \leq i \leq h$ and $0 \leq j_t \leq q^m - 1$ for each $1 \leq t \leq i - 1$, is an m-spread of W.

Proof. For necessity, we have $(q^m - 1) | (q^k - 1)$ from the definition of *m*-spread and so m | k. For sufficiency, we just need to prove the second assertion.

Take any two distinct vectors $S_{i,1} + S_{i-1,r_1} + \ldots + S_{1,r_{i-1}}$ and $S_{j,1} + S_{j-1,t_1} + \ldots + S_{1,t_{j-1}}$. Let U, V be subspaces of W spanned by these two vectors, respectively. If $i \neq j$, it is easy to see $U \cap V = \{0\}$. So, consider i = j. Let $a \in U \cap V$. There are two column vectors $B_1, B_2 \in \mathbb{F}_{q^m}$ so that $(S_{i,1} + S_{i-1,r_1} + \ldots + S_{1,r_{i-1}})B_1 = a = (S_{i,1} + S_{i-1,t_1} + \ldots + S_{1,t_{i-1}})B_2$. So, $S_{i,1}B_1 = S_{i,1}B_2$. Since all elements in $S_{i,1}$ are linearly independent we have $B_1 = B_2 = B$. Let c be the smallest integer so that $r_c \neq t_c$. Without loss of generality, let $r_c < t_c$. Since $0 \leq r_c < t_c \leq q^m - 1$ and $S_{c,0} = 0$, all elements in $S_{i-c,t_c} - S_{i-c,r_c}$ are linearly independent by Corollary 4.1(3). So,

$$(S_{i-c,t_c} - S_{i-c,r_c})B$$

= [(S_{i-c-1,r_{c+1}} - S_{i-c-1,t_{c+1}}) + ... + (S_{1,r_{i-1}} - S_{1,t_{i-1}})]B = 0

implies that B is the zero vector. So a = 0 and thus $U \cap V = \{0\}$.

Note that there are exactly $q^{(h-1)m} + \ldots + q^m + 1$ vectors of the form $S_{i,1} + S_{i-1,j_1} + \ldots + S_{1,j_{i-1}}$. From the second paragraph, the total number of distinct elements in the union of subspaces of W spanned by all such vectors $S_{i,1} + S_{i-1,j_1} + \ldots + S_{i,j_{i-1}}$ is $(q^m - 1)(q^{(h-1)m} + \ldots + q^m + 1) + 1 = q^{hm} = q^k$.

Hence W is the union of all such subspaces. This completes the proof.

We note that the first assertion of our theorem was proved by induction for \mathbb{F}_p by Fitzgerald and Yucas [1]. The first assertion is quite well known. We, however, give a constructive proof using the second assertion. Generating linear spans

5. Optimal *n*-dimensional generating patterns. In [2] for each $p^n < 10^{50}$ with $p \leq 97$, Hansen and Mullen have obtained a primitive polynomial of degree *n* over \mathbb{F}_p . Moreover, the given polynomial has minimal weight, i.e. the minimal number of nonzero coefficients among all primitive polynomials of degree *n* over \mathbb{F}_p . From their tables, with the exception of 234 values of p^n in the above range, there is always a primitive trinomial of degree *n* over \mathbb{F}_p and hence always an optimal *n*-dimensional generating pattern with weight two. Of the exceptions, 90 occur in the p = 2 case and 144 occur for odd *p*. Tables of primitive polynomials from [2] are available upon request from the second author.

References

- R. Fitzgerald and J. Yucas, On generating linear spans over GF(p), Congr. Numer. 69 (1989), 55-60.
- [2] T. Hansen and G. L. Mullen, *Tables of primitive polynomials over finite fields*, Math. Comp., to appear.
- R. Lidl and H. Niederreiter, *Finite Fields*, Encyclopedia Math. Appl. 20, Addison-Wesley (now distributed by Cambridge Univ. Press), 1983.
- [4] H. Niederreiter and J.-S. Shiue, *Weak equidistribution of sequences in finite fields*, in: Contributions to General Algebra, B. G. Teubner, Stuttgart, 6 (1988), 203–212.

INSTITUTE OF MATHEMATICS	MATHEMATICS DEPARTMENT
ACADEMIA SINICA	THE PENNSYLVANIA STATE UNIVERSITY
NANKANG, TAIPEI 11529	UNIVERSITY PARK, PENNSYLVANIA 16802
TAIWAN	U.S.A.
REPUBLIC OF CHINA	E-mail: MULLEN@MATH.PSU.EDU
E-mail: MACWS@TWNAS886.BITNET	

Received on 2.1.1991

(2108)