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1. Introduction. In [1] Fitzgerald and Yucas defined the notion of
an n-dimensional generating pattern over Fp. In particular an n-tuple
(a0, . . . , an−1) with ai ∈ Fp was called an n-dimensional generating pat-
tern over Fp if for every n-dimensional vector space V over Fp and every
basis v1, . . . , vn of V , the recursive sequence {sk} defined by

(1) sk =
{

vk if k ≤ n ,∑n−1
i=0 aisk−n+i if k > n ,

consists of all nonzero elements of V for k = 1, . . . , pn − 1. Such generating
patterns are of interest because they provide simple algorithms for generat-
ing the linear span of independent subsets of vector spaces over Fp (see [1]
for details).

In this paper we generalize a number of the results from [1] by working
over Fq where Fq is the finite field of order q and by showing that if a0 6= 0,
(a0, . . . , an−1) is an n-dimensional generating pattern over Fq if and only
if f(x) = xn −

∑n−1
i=0 aix

i is a primitive polynomial over Fq. More gener-
ally, we show that the number of distinct elements generated by a linear
recurring sequence is related to the order of its characteristic polynomial.
For q = pn < 1050 with p ≤ 97, we indicate when one can find an optimal
n-dimensional generating pattern over Fp with weight two, i.e. with two
nonzero ai’s (in [1] the length is defined to be the number of nonzero ai’s
but a more natural term is Hamming weight).

If V is an n-dimensional vector space over Fq then V is isomorphic to
Fqn as a vector space over Fq. Consequently, instead of considering vectors
in V as in [1], we may assume that the elements of the sequence are in Fqn .
We will make this identification throughout the remainder of the paper.

∗ This author would like to thank the National Security Agency for partial support
under grant agreement #MDA904-87-H-2023.
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From (1) it is easily seen that the recursive sequence {sk} is really a linear
recurring sequence. If n is a positive integer and a0, a1, . . . , an−1 ∈ Fq, a
sequence s0, s1, . . . of elements of Fq satisfying the relation

(2) sk+n = an−1sk+n−1 + an−2sk+n−2 + . . . + a0sk for k = 0, 1, . . .

is called a linear recurring sequence in Fq. The vectors

Si = (si, si+1, . . . , si+n−1), i = 0, 1, . . . ,

are called the i-th state vectors. If a0 6= 0 in (2) then the sequence {sk} is
periodic (see [3, Thm. 8.11]). The polynomial f(x) = xn −

∑n−1
i=0 aix

i is a
characteristic polynomial for the sequence {sk} defined by (2). Hence we
note that if s0, s1, . . . , sn−1 is a basis of Fqn over Fq and f is a monic poly-
nomial of degree n with f(0) 6= 0, then f corresponds to an n-dimensional
generating pattern if and only if the linear recurring sequence with initial
state vector S0 = (s0, . . . , sn−1) and characteristic polynomial f(x) is uni-
formly distributed over F∗qn .

Let

(3) A =


0 0 0 . . . 0 a0

1 0 0 . . . 0 a1

0 1 0 . . . 0 a2

. . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 an−1


be the companion matrix of f(x). Then we have Sk = S0A

k, for k ≥ 0.
Moreover, if a0 6= 0 and s0, s1, . . . , sn−1 are linearly independent over Fq

then for any k, sk, sk+1, . . . , sk+n−1 is a basis since A is nonsingular. We
also note that if a0 = 0 then the sequence is ultimately periodic with a
preperiod of length h where f(x) = xhg(x) with g(0) 6= 0. We shall hence
consider only linear recurring sequences for which a0 6= 0. For further de-
tails and many other properties of linear recurring sequences over Fq, see [3,
Ch. 8].

If f(x) is a polynomial over Fq with f(0) 6= 0 then the order of f , denoted
by ord(f), is the least positive integer e for which f(x) divides xe − 1. We
note that if f is irreducible of degree n over Fq then ord(f) divides qn − 1
(see [3, Cor. 3.4]). If f is reducible, such a result does not hold in general
but Theorems 3.8 and 3.11 of [3] provide a method for the calculation of
orders. For numerous other details concerning polynomials and their orders
over Fq, see [3, Ch. 3, Sec. 1].

2. Basic properties. The following result generalizes Proposition 1
of [1].

Theorem 2.1. Let f(x) = xn −
∑n−1

i=0 aix
i with a0 6= 0 be a polynomial

of degree n over Fq. Let s0, s1, . . . , sn−1 ∈ Fqn be a basis of Fqn over Fq.
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Let s0, s1, . . . be the linear recurring sequence with initial state vector S0 =
(s0, s1, . . . , sn−1) and characteristic polynomial f(x). If ord(f) = e then the
elements s0, s1, . . . , se−1 are distinct and the least period of this sequence
is e.

P r o o f. If A is the companion matrix of f(x) from (3) then Si = S0A
i for

i ≥ 0 and {si, si+1, . . . , si+n−1} is a basis of Fqn over Fq. Let t be the smallest
positive integer so that st = si for some 0 ≤ i ≤ t−1. We note that n ≤ t ≤ e
and without loss of generality, we can assume st = s0 for otherwise, if
st = si we may consider the sequence si, si+1, . . . Now St = S0A

t and since
{s0, s1, . . . , sn−1} is a basis of Fqn over Fq and A ∈ GL(n, q), the general
linear group of all nonsingular n × n matrices over Fq, the first column of
At has entry 1 in the (1, 1) position and 0 elsewhere.

Note that A2t = AtAt also has first column of the form


1
0
...
0

.

Let 1 ≤ k ≤ n − 1. From the definition of A, it is easy to see that the

(k + 1)-st columns of both At−k and A2t−k are of the form


1
0
...
0

.

Let At = (aij) for 1 ≤ i, j ≤ n. Since A2t−k = At−kAt,

At−k

 a1,k+1

...
an,k+1

 =


1
0
...
0

 .

Let B be the (n − 1) × (n − 1) matrix obtained from At−k by deleting the
first row and (k + 1)-st column. Then we have

B



a1,k+1

...
ak,k+1

ak+2,k+1

...
an,k+1


=



0

...

0


.

Since At−k is nonsingular, B is nonsingular and so ai,k+1 = 0 for i 6=
k + 1.
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Hence

At−k



0
...

ak+1,k+1

0
...
0


=


1
0
...
0

 .

Since the first row of At−k has entry 1 at the (k + 1)-st place, we have
ak+1,k+1 = 1. Hence for 1 ≤ k ≤ n− 1,

ai,k+1 =
{ 1 if i = k + 1,

0 otherwise.

Combining this with the fact that At has first column of the form


1
0
...
0

,

we have At = In, the n× n identity matrix.
Since the order of A ∈ GL(n, q) is equal to ord(f) = e, we have e | t but

since n ≤ t ≤ e, we have t = e. Thus s0, s1, . . . , se−1 are distinct and so the
least period of this sequence is e since Se = S0A

e = S0In = S0.

The following corollary generalizes Proposition 1 of [1].

Corollary 2.2. Let s0, s1, . . . , sn−1 be a basis of Fqn over Fq. The
monic polynomial f(x) of degree n over Fq with f(0) 6= 0 corresponds to an
n-dimensional generating pattern if and only if f(x) is a primitive polyno-
mial.

P r o o f. If f(x) is a primitive polynomial then ord(f) = qn − 1. It
follows from the theorem that the linear recurring sequence with initial state
vector (s0, s1, . . . , sn−1) and characteristic polynomial f(x) has period qn−1
and s0, s1, . . . , sqn−2 are distinct so f(x) corresponds to an n-dimensional
generating pattern.

Conversely, if f(x) corresponds to an n-dimensional generating pattern,
the linear recurring sequence with initial vector (s0, s1, . . . , sn−1) and char-
acteristic polynomial f(x) has least period qn − 1. Since f is monic and
f(0) 6= 0, f is primitive by [3, Thm. 3.16].

Since the number of primitive polynomials of degree n over Fq is known
to be φ(qn − 1)/n where φ is Euler’s function (see [3, Thm. 3.5]), we have

Corollary 2.3. The number of distinct n-dimensional generating pat-
terns (a0, . . . , an−1) over Fq with a0 6= 0 is φ(qn − 1)/n.
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Theorem 2.1 explains why the 5-tuple (1, 1, 0, 0, 0) over F2 from [1, p. 55]
is not a 5-dimensional generating pattern over F2 but instead the corre-
sponding sequence has exactly 21 distinct elements. We have x5 + x + 1 =
(x2 + x + 1)(x3 + x2 + 1) and the order is 3 · 7 = 21 corresponding to the 21
distinct elements.

3. A more general setting. In this section we relax the condition
that the initial state vector S0 = (s0, s1, . . . , sn−1) consists of a basis and
instead assume that the subspace of Fqn generated by s0, s1, . . . , sn−1 has
dimension m ≤ n. Our first result is

Theorem 3.1. Let f(x) = xn −
∑n−1

i=0 aix
i be a monic polynomial of

degree n over Fq with f(0) 6= 0. Assume that the subspace generated by
s0, s1, . . . , sn−1 has dimension 0 < m ≤ n. Consider the linear recurring
sequence which has initial state vector S0 = (s0, s1, . . . , sn−1) and character-
istic polynomial f . Let N be the number of distinct elements in the sequence.
Then N ≤ min{qm, ord(f)}.

P r o o f. From [3, Thm. 8.27] the least period of the sequence is at
most ord(f) and so N ≤ ord(f). We will show that the subspace Vk of
Fqn generated by sk, sk+1, . . . , sk+n−1 is the same as the subspace Vk+1

generated by sk+1, sk+2, . . . , sk+n. Since sk+n is a linear combination of
sk, . . . , sk+n−1, we have Vk+1 ⊆ Vk. Let T be the subspace of Fqn generated
by sk+1, . . . , sk+n−1 over Fq. If T = Vk then sk ∈ T and so sk+n ∈ T
and thus Vk+1 = T = Vk. If T 6= Vk then sk 6∈ T . Since a0 6= 0 and
sk+n = an−1sk+n−1 + . . .+a0sk, sk 6∈ T implies sk+n 6∈ T . Hence T  Vk+1,
dim Vk+1 = 1 + dim T = dim Vk. But Vk+1 ⊆ Vk and so Vk+1 = Vk.

We have shown that for any k, Vk = V0, the subspace generated by
s0, s1, . . . , sn−1. Every element of the sequence is in V0 so that N ≤ qm.
Since N ≤ ord(f) we have N ≤ min{qm, ord(f)}.

The following example shows that equality may not hold in Theorem 3.1.
Let f(x) = x3 + x + 1 be a polynomial over F4 so that f is irreducible and
ord(f) = 7. Let α ∈ F43 , α 6= 0 and set s0 = α, s1 = s2 = 0. Then the
linear recurring sequence with initial state vector (α, 0, 0) and characteristic
polynomial f consists of only two distinct elements and 2 < min{4, 7}.

We do note, however, that from Theorem 2.1 equality holds when m = n,
i.e. when the initial state vector consists of a basis. We now consider another
special case in which equality holds in Theorem 3.1.

Theorem 3.2. Let f be a primitive polynomial of degree n over Fq.
Let s0, s1, . . . , sn−1 ∈ Fqn and let m < n be the largest number of lin-
early independent elements among s0, s1, . . . , sn−1. If N is the number of
distinct elements in the linear recurring sequence with initial state vector
(s0, s1, . . . , sn−1) and characteristic polynomial f , then N = qm.
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P r o o f. If S denotes the sequence and its least period is r, then
r | ord(f). Consider any basis {t0, t1, . . . , tn−1} of Fqn over Fq. Let T be
the linear recurring sequence with initial state vector t0, t1, . . . , tn−1 and
characteristic polynomial f . Then T has least period ord(f) = qn − 1 and
the elements t0, t1, . . . , tqn−2 are distinct by Theorem 2.1. Hence {ti | 0 ≤
i ≤ qn − 2} = F∗qn .

Let σ be the linear transformation of Fqn into itself defined by σ(ti) = si,
0 ≤ i ≤ n− 1. Let T be the sequence so that for each i ≥ 0, the ith term ti
of T is ti = σ(ti). We will show that the sequences T and S are identical.

From the construction of T , ti = si for 0 ≤ i ≤ n− 1. Write

f(x) = xn −
n−1∑
i=0

aix
i .

For any k ≥ 0, tk+n = an−1tk+n−1 + . . . + a0tk so that for any k ≥ 0

tk+n = σ(tk+n) = an−1σ(tk+n−1) + . . . + a0σ(tk)
= an−1tk+n−1 + . . . + a0tk .

Hence f is a characteristic polynomial of T . Since T and S have the same
initial state vector and the same characteristic polynomial, T and S are
identical.

We have shown that si = σ(ti) for i ≥ 0. Since {ti | 0 ≤ i ≤ qn − 2} =
F∗qn , {si | 0 ≤ i ≤ qn − 2} = σ(F∗qn). Since σ(F∗qn) is a subspace of Fqn of
dimension m over Fq, {si | 0 ≤ i ≤ qn − 2} consists of exactly qm distinct
elements. This completes the proof.

R e m a r k. We would like to thank Harald Niederreiter for the following
argument which provides, in the m = 1 case, a sufficient condition in order
that N = q. The condition is that r ord(f) > (q − 1)2qn where r is the
least period length of the sequence. If f(x) is the minimal polynomial of the
sequence so that r = ord(f), the condition simplifies to ord(f) > (q−1)qn/2.
By [3, Thm. 8.82] we have∣∣∣∣Z(b)− r

q

∣∣∣∣ ≤ (
1− 1

q

)(
r

ord(f)

)1/2

qn/2 ,

where Z(b) denotes the number of n with 0 ≤ n < r, with sn = b. Thus

Z(b) ≥ r

q
−

(
1− 1

q

)(
r

ord(f)

)1/2

qn/2 > 0

for all b ∈ Fq so that every b ∈ Fq occurs in the sequence and hence N = q.

A periodic sequence is said to be weakly equidistributed in Fq if every
element of F∗q appears equally often in a period of the sequence. Since we
can embed Fqk as a subspace of Fqn over Fq if k ≤ n, then from the proof of
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Theorem 3.2 each nonzero element of Fqk appears exactly qn−k times and
so we may state

Corollary 3.3. Let f be a primitive polynomial of degree n over Fq. Let
s0, s1, . . . , sn−1 ∈ Fqk , where 1 ≤ k ≤ n. Let s0, s1, . . . be the linear recurring
sequence on Fqk with initial state vector (s0, s1, . . . , sn−1) and characteristic
polynomial f(x). Then the sequence is weakly equidistributed on Fqk if and
only if the subspace of Fqk generated by s0, s1, . . . , sn−1 over Fq equals Fqk ,
or equivalently , there are exactly k linearly independent elements over Fq

among s0, s1, . . . , sn−1.

The result of Corollary 3.3 is related to [4, Cor. 1]. We close this section
with the following:

Problem. Find an exact formula for the number N of distinct elements
given in Theorem 3.1 where the elements of the initial state vector generate
a subspace of dimension m ≤ n and f is any monic polynomial of degree n
over Fq with f(0) 6= 0.

4. An application. In [1], parts 2 and 3 of Corollary 2 are incorrectly
stated. The modulus should be pn−1 rather than pn. This error also occurs
in the proof of Proposition 4 of [1]. For a corrected and generalized version
over Fq we prove

Corollary 4.1. Let f(x) = xn−
∑n−1

i=0 aix
i with a0 6= 0 be a polynomial

of degree n over Fq. Let s0, s1, . . . , sn−1 ∈ Fqn be a basis of Fqn over Fq.
Let s0, s1, . . . be the linear recurring sequence with initial state vector S0 =
(s0, s1, . . . , sn−1) and characteristic polynomial f(x). Then for any k and j

(1) sk, sk+1, . . . , sk+n−1 is a basis of Fqn .
(2) sk = sk+j if and only if j ≡ 0 (mod ord(f)).
(3) Let f(x) = (f1(x))e1 . . . (fr(x))er where f1(x), . . . , fr(x) ∈ Fq[x] are

irreducible and e1, . . . , er ≥ 1. Then {sj − sk, sj+1 − sk+1, . . . , sj+n−1 −
sk+n−1} is a basis of Fqn over Fq if and only if j 6≡ k (mod ord fi(x)) for
all 1 ≤ i ≤ r.

P r o o f. Let A be the companion matrix of f(x). Then (1) holds since
a0 6= 0 and the companion matrix of f is nonsingular, (2) follows from
Theorem 2.1, and for (3)

(sj − sk, sj+1 − sk+1, . . . , sj+n−1 − sk+n−1)
= Sj − Sk = S0A

j − S0A
k = S0A

k(Aj−k − I) .

So {sj − sk, sj+1 − sk+1, . . . , sj+n−1 − sk+n−1} is a basis of Fqn over Fq if
and only if Aj−k−I is nonsingular. The last statement is equivalent to that
1 is not an eigenvalue of Aj−k, or equivalently, j 6≡ k (mod ord fi(x)), for
all 1 ≤ i ≤ r.
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Let W ⊆ Fqn . By an m-spread of W is meant a collection {Ui}k
i=1 of

m-dimensional subspaces of Fqn satisfying Ui ∩ Uj = {0} for i 6= j and
W =

⋃
Ui. While we can consider W a subset of Fqn , we will restrict our

attention to the case when W is a subspace of Fqn over Fq.

Theorem 4.2. Let W be a subspace of Fqn over Fq with dim W = k.
Let m be a positive integer. Then W has an m-spread if and only if m | k.
Furthermore, if m | k, and if {w1, . . . , wk} is a basis of W over Fq, then
we can find an m-spread of W in the following way : Fix a primitive poly-
nomial f(x) ∈ Fq[x] of degree m. Write k = mh for some positive inte-
ger h. For 1 ≤ i ≤ h, let Si,j be the j-th state vector of the linear re-
curring sequence which has characteristic polynomial f(x) and initial state
vector Si,1 = (w(i−1)m+1, . . . , wim). Moreover , let Si,0 = (0, . . . , 0) for all
1 ≤ i ≤ h. Then the collection of all subspaces of W spanned by all possible
sums Si,1 + Si−1,j1 + . . . + S1,ji−1 , where 1 ≤ i ≤ h and 0 ≤ jt ≤ qm − 1 for
each 1 ≤ t ≤ i− 1, is an m-spread of W .

P r o o f. For necessity, we have (qm − 1) | (qk − 1) from the definition
of m-spread and so m | k. For sufficiency, we just need to prove the second
assertion.

Take any two distinct vectors Si,1 + Si−1,r1 + . . . + S1,ri−1 and Sj,1 +
Sj−1,t1 + . . . + S1,tj−1 . Let U, V be subspaces of W spanned by these two
vectors, respectively. If i 6= j, it is easy to see U ∩ V = {0}. So, consider
i = j. Let a ∈ U ∩ V . There are two column vectors B1, B2 ∈ Fqm so that
(Si,1 +Si−1,r1 + . . .+S1,ri−1)B1 = a = (Si,1 +Si−1,t1 + . . .+S1,ti−1)B2. So,
Si,1B1 = Si,1B2. Since all elements in Si,1 are linearly independent we have
B1 = B2 = B. Let c be the smallest integer so that rc 6= tc. Without loss of
generality, let rc < tc. Since 0 ≤ rc < tc ≤ qm− 1 and Sc,0 = 0, all elements
in Si−c,tc − Si−c,rc are linearly independent by Corollary 4.1(3). So,

(Si−c,tc − Si−c,rc)B
= [(Si−c−1,rc+1 − Si−c−1,tc+1) + . . . + (S1,ri−1 − S1,ti−1)]B = 0

implies that B is the zero vector. So a = 0 and thus U ∩ V = {0}.
Note that there are exactly q(h−1)m + . . . + qm + 1 vectors of the form

Si,1 + Si−1,j1 + . . . + S1,ji−1 . From the second paragraph, the total number
of distinct elements in the union of subspaces of W spanned by all such
vectors Si,1 +Si−1,j1 + . . .+Si,ji−1 is (qm− 1)(q(h−1)m + . . .+ qm +1)+1 =
qhm = qk.

Hence W is the union of all such subspaces. This completes the proof.

We note that the first assertion of our theorem was proved by induction
for Fp by Fitzgerald and Yucas [1]. The first assertion is quite well known.
We, however, give a constructive proof using the second assertion.
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5. Optimal n-dimensional generating patterns. In [2] for each
pn < 1050 with p ≤ 97, Hansen and Mullen have obtained a primitive
polynomial of degree n over Fp. Moreover, the given polynomial has minimal
weight, i.e. the minimal number of nonzero coefficients among all primitive
polynomials of degree n over Fp. From their tables, with the exception of
234 values of pn in the above range, there is always a primitive trinomial
of degree n over Fp and hence always an optimal n-dimensional generating
pattern with weight two. Of the exceptions, 90 occur in the p = 2 case and
144 occur for odd p. Tables of primitive polynomials from [2] are available
upon request from the second author.
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