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1. Introduction. In [1] Fitzgerald and Yucas defined the notion of
an n-dimensional generating pattern over F,. In particular an n-tuple
(ag,...,an—1) with a; € F), was called an n-dimensional generating pat-
tern over IF), if for every n-dimensional vector space V' over F, and every
basis v1,...,v, of V, the recursive sequence {sy} defined by

1 ) vk ifk<n,
( ) k= Z?:_()laiskfyuri ifk>n,

consists of all nonzero elements of V for k =1,...,p"™ — 1. Such generating
patterns are of interest because they provide simple algorithms for generat-
ing the linear span of independent subsets of vector spaces over [F,, (see [1]
for details).

In this paper we generalize a number of the results from [1] by working
over F, where F, is the finite field of order ¢ and by showing that if ay # 0,
(ag,...,an—1) is an n-dimensional generating pattern over F, if and only
if f(x) =a" — Z?:_ol a;z’ is a primitive polynomial over F,. More gener-
ally, we show that the number of distinct elements generated by a linear
recurring sequence is related to the order of its characteristic polynomial.
For ¢ = p™ < 10°° with p < 97, we indicate when one can find an optimal
n-dimensional generating pattern over [F, with weight two, i.e. with two
nonzero a;’s (in [1] the length is defined to be the number of nonzero a;’s
but a more natural term is Hamming weight).

If V' is an n-dimensional vector space over F, then V is isomorphic to
F,» as a vector space over F,. Consequently, instead of considering vectors
in V as in [1], we may assume that the elements of the sequence are in Fyn.
We will make this identification throughout the remainder of the paper.

* This author would like to thank the National Security Agency for partial support
under grant agreement #MDA904-87-H-2023.
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From (1) it is easily seen that the recursive sequence {sy} is really a linear
recurring sequence. If n is a positive integer and ag,a1,...,a,—1 € Fy, a
sequence s, 51, . . . of elements of F, satisfying the relation

(2) Skin = Up—1Sk+n—1+ Gpn—2Sktin—2+ ... +aosx for k=0,1,...
is called a linear recurring sequence in F,. The vectors

Si = (SiySit1se-+ySitn—1), 1=0,1,...,
are called the i-th state vectors. If ag # 0 in (2) then the sequence {sy} is
periodic (see [3, Thm. 8.11]). The polynomial f(z) = " — Y1 a;z" is a
characteristic polynomial for the sequence {sj} defined by (2). Hence we
note that if sg, s1,...,5,—1 is a basis of Fy» over F, and f is a monic poly-

nomial of degree n with f(0) # 0, then f corresponds to an n-dimensional
generating pattern if and only if the linear recurring sequence with initial

state vector Sp = (so,...,Sn—1) and characteristic polynomial f(x) is uni-
formly distributed over Fy..
Let

0 0 O 0 ag

1 0 0 ... 0 ai
(3) A=10 1 0 ... 0 as

0 0 0 ... 1 anp_
be the companion matrix of f(x). Then we have Sy = SoA*, for k > 0.
Moreover, if ag # 0 and sg, s1,...,5,—1 are linearly independent over I,
then for any k, s, Sg+1,-..,Sk+n—1 1S a basis since A is nonsingular. We

also note that if ag = 0 then the sequence is ultimately periodic with a
preperiod of length h where f(z) = 2"g(x) with g(0) # 0. We shall hence
consider only linear recurring sequences for which ag # 0. For further de-
tails and many other properties of linear recurring sequences over Fy, see [3,
Ch. §].

If f(x) is a polynomial over F, with f(0) # O then the order of f, denoted
by ord(f), is the least positive integer e for which f(z) divides z¢ — 1. We
note that if f is irreducible of degree n over I, then ord(f) divides ¢" — 1
(see [3, Cor. 3.4]). If f is reducible, such a result does not hold in general
but Theorems 3.8 and 3.11 of [3] provide a method for the calculation of
orders. For numerous other details concerning polynomials and their orders
over Fy, see [3, Ch. 3, Sec. 1].

2. Basic properties. The following result generalizes Proposition 1
of [1].

THEOREM 2.1. Let f(z) = 2™ — Z?;ol a;x* with ag # 0 be a polynomial
of degree n over F,. Let sg,51,...,5n-1 € Fgn be a basis of Fyn over Fy.
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Let sq, s1,... be the linear recurring sequence with initial state vector Sy =
(80,81, -+ 8n—1) and characteristic polynomial f(x). If ord(f) = e then the
elements sg, 81,...,8._1 are distinct and the least period of this sequence
15 €.

Proof. If Ais the companion matrix of f(x) from (3) then S; = SyA® for
i > 0and {s;, Sit1,...,Sitn—1} is a basis of Fyn over F,. Let ¢ be the smallest
positive integer so that s; = s; forsome 0 < i <t—1. Wenotethatn <t <e
and without loss of generality, we can assume s; = sg for otherwise, if
s; = s; we may consider the sequence s;,8;11,... Now S; = SgA? and since
{s0,81,...,8n—1} is a basis of Fyn over F, and A € GL(n,q), the general
linear group of all nonsingular n x n matrices over F,, the first column of
A! has entry 1 in the (1, 1) position and 0 elsewhere.

1
Note that A% = A*A" also has first column of the form | .
0
Let 1 < k <n —1. From the definition of A, it is easy to see that the
1
0
(k + 1)-st columns of both A*~* and A%~* are of the form | .
0
Let A* = (a;;) for 1 <i,j < n. Since A%~F = At~k At
a1, k+1 1
AtF . = O
On,k+1 ()

Let B be the (n — 1) x (n — 1) matrix obtained from A‘~* by deleting the
first row and (k + 1)-st column. Then we have

a1,k+1 0
a
B k,k+1 _
Qf42,k+1
Qn, k41 0

Since A'~* is nonsingular, B is nonsingular and so a; 41 = 0 for i #
kE+1.
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Hence
0
: 1
Atk | Gkt+LE+1 [ 0
0 :
: 0
0

Since the first row of A~ has entry 1 at the (k + 1)-st place, we have
ar+1,k+1 = 1. Hence for 1 <k <n —1,

o :{1 if i =k+1,
bkt 0 otherwise.
1
0
Combining this with the fact that A’ has first column of the form - s
0

we have A' = I,,, the n x n identity matrix.

Since the order of A € GL(n, q) is equal to ord(f) = e, we have e |t but
since n <t < e, we have t = e. Thus sg, $1,...,S._1 are distinct and so the
least period of this sequence is e since S, = SgA¢ = Sol,, = Sp.

The following corollary generalizes Proposition 1 of [1].

COROLLARY 2.2. Let sg,S1,...,5n,—1 be a basis of Fgn over F,. The
monic polynomial f(x) of degree n over F, with f(0) # 0 corresponds to an
n-dimensional generating pattern if and only if f(x) is a primitive polyno-
mial.

Proof. If f(z) is a primitive polynomial then ord(f) = ¢" — 1. It
follows from the theorem that the linear recurring sequence with initial state
vector (sg, 81, -, Sp—1) and characteristic polynomial f(x) has period ¢ —1
and sg, S1,...,8qn—2 are distinct so f(x) corresponds to an n-dimensional
generating pattern.

Conversely, if f(x) corresponds to an n-dimensional generating pattern,
the linear recurring sequence with initial vector (sg, s1,...,8,—1) and char-
acteristic polynomial f(x) has least period ¢ — 1. Since f is monic and
f(0) # 0, f is primitive by [3, Thm. 3.16].

Since the number of primitive polynomials of degree n over F, is known
to be ¢(¢"™ — 1)/n where ¢ is Euler’s function (see [3, Thm. 3.5]), we have

COROLLARY 2.3. The number of distinct n-dimensional generating pat-
terns (ao, . .., an—1) over Fq with ag # 0 is ¢(¢" — 1) /n.
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Theorem 2.1 explains why the 5-tuple (1, 1,0,0,0) over Fy from [1, p. 55]
is not a 5-dimensional generating pattern over Fo but instead the corre-
sponding sequence has exactly 21 distinct elements. We have 2° + 2 + 1 =
(22 4+ +1)(2® + 2%+ 1) and the order is 3 -7 = 21 corresponding to the 21
distinct elements.

3. A more general setting. In this section we relax the condition
that the initial state vector Sy = (sg,S1,...,Sn—1) consists of a basis and
instead assume that the subspace of Fy» generated by sg, s1,...,s,-1 has
dimension m < n. Our first result is

THEOREM 3.1. Let f(z) = a™ — Z?:_OI a;z’ be a monic polynomial of
degree n over Fy with f(0) # 0. Assume that the subspace generated by
S0,81,--+5Sn—1 has dimension 0 < m < n. Consider the linear recurring
sequence which has initial state vector Sy = (S0, 51, .. .,Sn—1) and character-

istic polynomial f. Let N be the number of distinct elements in the sequence.
Then N < min{q™,ord(f)}.

Proof. From [3, Thm. 8.27] the least period of the sequence is at
most ord(f) and so N < ord(f). We will show that the subspace V} of
Fyn generated by si,Sg41,...,8k4n—1 is the same as the subspace Vi1
generated by Sp+1,Sk+2,. .- Sk4n. SiNCE Sk4y is a linear combination of
Sky+ -+ Sk4n—1, we have V11 C Vi. Let T be the subspace of F;» generated
by Sk41,...,8k+n—1 over Fo. If T = V), then s, € T and so Sgqp, € T
and thus Vi1 =T = Vi. If T # Vi then s, ¢ T. Since a9 # 0 and
Sktn = An—1Sk+n—1~+...+aoSk, Sx € T implies sy, € T. Hence T' G Vji1,
dimViyy1 =14+ dimT = dim Vi. But Vi1 C Vi and so Vi = Vi,

We have shown that for any k, Vi = Vj, the subspace generated by
80,81,+++,5n—1. Every element of the sequence is in V{, so that N < ¢™.

Since N < ord(f) we have N < min{¢™,ord(f)}.

The following example shows that equality may not hold in Theorem 3.1.
Let f(z) = 23 + 2 + 1 be a polynomial over F4 so that f is irreducible and
ord(f) = 7. Let o € Fys, @ # 0 and set sg = a, s1 = s3 = 0. Then the
linear recurring sequence with initial state vector («,0,0) and characteristic
polynomial f consists of only two distinct elements and 2 < min{4, 7}.

We do note, however, that from Theorem 2.1 equality holds when m = n,
i.e. when the initial state vector consists of a basis. We now consider another
special case in which equality holds in Theorem 3.1.

THEOREM 3.2. Let f be a primitive polynomial of degree n over F,.
Let s0,51,...,8p—1 € Fgn and let m < n be the largest number of lin-
early independent elements among sg, S1,...,5n—1. If N is the number of
distinct elements in the linear recurring sequence with initial state vector
(80,81, --8n—1) and characteristic polynomial f, then N = ¢™.
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Proof. If S denotes the sequence and its least period is r, then
r| ord(f). Consider any basis {to,t1,...,t,—1} of Fgn over F,. Let T" be
the linear recurring sequence with initial state vector tg,%1,...,t,—1 and
characteristic polynomial f. Then T has least period ord(f) = ¢" — 1 and
the elements to,t1,...,t4n_2 are distinct by Theorem 2.1. Hence {¢; | 0 <
i <q" -2} =T,

Let o be the linear transformation of Fy» into itself defined by o(t;) = s,
0 <i<n—1. Let T be the sequence so that for each i > 0, the ith term £;
of T is t; = o(t;). We will show that the sequences T and S are identical.

From the construction of T, t; = s; for 0 < i < n — 1. Write

n—1
flz)=2a" — Z a;z’ .
i=0

For any k > 0, ty4n = @n—1tk4n—1 + ... + aotx so that for any k& > 0

Uiy = 0(thyn) = an-10(trgn—1) + ...+ ago(ty)
= ap—1tk4n—1+ ...+ aoly.

Hence f is a characteristic polynomial of T. Since T' and S have the same
initial state vector and the same characteristic polynomial, T and S are
identical.

We have shown that s; = o(t;) for i > 0. Since {t; |0 <1i < ¢" —2} =
Fyn, {8: ] 0 <i < ¢" =2} = o(F;.). Since o(F;.) is a subspace of Fyn of
dimension m over Fy,{s; | 0 < i < ¢" — 2} consists of exactly ¢ distinct

elements. This completes the proof.

Remark. We would like to thank Harald Niederreiter for the following
argument which provides, in the m = 1 case, a sufficient condition in order
that N = q. The condition is that rord(f) > (¢ — 1)2¢™ where r is the
least period length of the sequence. If f(z) is the minimal polynomial of the
sequence so that r = ord(f), the condition simplifies to ord(f) > (¢—1)¢™/?.

Z(b) — -

By [3, Thm. 8.82] we have
1/2
(-2 (ai) e
q q) \ord(f)

where Z(b) denotes the number of n with 0 < n < r, with s,, = b. Thus

0> (1-3) (i) 0

for all b € IF, so that every b € F, occurs in the sequence and hence N = q.

’ r

A periodic sequence is said to be weakly equidistributed in I, if every
element of F appears equally often in a period of the sequence. Since we
can embed F » as a subspace of Fyn over F, if k& < n, then from the proof of
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Theorem 3.2 each nonzero element of F » appears exactly ¢"* times and
SO we may state

COROLLARY 3.3. Let f be a primitive polynomial of degree n over F,. Let
50,815 ++>8n—1 € For, where1 < k < n. Let sq, 81, ... be the linear recurring
sequence on K x with initial state vector (80,81, --,8n—1) and characteristic
polynomial f(x). Then the sequence is weakly equidistributed on F . if and
only if the subspace of F . generated by so, s1,...,5,—1 over Fy equals F,
or equivalently, there are exactly k linearly independent elements over F,
among Sg, S1,-- - Sn—1-

The result of Corollary 3.3 is related to [4, Cor. 1]. We close this section
with the following:

PrROBLEM. Find an exact formula for the number N of distinct elements
given in Theorem 3.1 where the elements of the initial state vector generate
a subspace of dimension m < n and f is any monic polynomial of degree n
over F, with f(0) # 0.

4. An application. In [1], parts 2 and 3 of Corollary 2 are incorrectly
stated. The modulus should be p™ —1 rather than p™. This error also occurs
in the proof of Proposition 4 of [1]. For a corrected and generalized version
over F, we prove

COROLLARY 4.1. Let f(z) = a™ —Z;:Ol a;z" with ag # 0 be a polynomial
of degree n over F,. Let sg,51,...,5,-1 € Fgn be a basis of Fyn over Fy.
Let sq, s1,... be the linear recurring sequence with initial state vector Sy =
(80,81, --8n—1) and characteristic polynomial f(z). Then for any k and j

(1) Sk, Sk+1,- - Sktn—1 5 a basis of Fyn.

(2) sk = Sk+; if and only if 7 =0 (mod ord(f)).

(3) Let f(x) = (fi(x))e* ... (fr(x)) where fi(x),..., fr(x) € Fylx] are
irreducible and e1,...,e, > 1. Then {S; — Sk, Sj41 — Skt1s---»Sj4n—1 —
Sktn—1} 15 a basis of Fgn over F, if and only if j # k (mod ord f;(x)) for
alll <1 <r.

Proof. Let A be the companion matrix of f(x). Then (1) holds since
ap # 0 and the companion matrix of f is nonsingular, (2) follows from
Theorem 2.1, and for (3)

(87 = Sk Sj1 — Sktlr---sSjtn—1 — Sktn—1)
=5; — Sp = SpA’ — So Ak = Sy Ak(AT=k — 1),
S0 {S; — Sk, Sj41 — Skt1s--+»Sj4n—1 — Sktn—1} is a basis of Fgn over F, if

and only if A77% — I is nonsingular. The last statement is equivalent to that
1 is not an eigenvalue of A7=F or equivalently, j # k (mod ord f;(x)), for
all 1 <3 < r.
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Let W C Fyn. By an m-spread of W is meant a collection {U;}¥_; of
m-dimensional subspaces of Fyn satisfying U; N U; = {0} for i # j and
W = |JU;. While we can consider W a subset of Fyn, we will restrict our
attention to the case when W is a subspace of F,» over F,.

THEOREM 4.2. Let W be a subspace of Fyn over Fy with dimW = k.
Let m be a positive integer. Then W has an m-spread if and only if m|k.
Furthermore, if m |k, and if {wi,...,wy} is a basis of W over F,, then
we can find an m-spread of W in the following way: Fix a primitive poly-
nomial f(x) € Fylz] of degree m. Write k = mh for some positive inte-
ger h. For 1 <1 < h, let S;; be the j-th state vector of the linear re-
curring sequence which has characteristic polynomial f(x) and initial state
vector Si1 = (W(i—1)ym41,-- -, Wim). Moreover, let S;o = (0,...,0) for all
1 < i < h. Then the collection of all subspaces of W spanned by all possible
sums Si 1+ Si—1j, +...+ 51,5, where 1 <t < hand 0 < j, < q¢™ —1 for
each 1 <t <i—1, is an m-spread of W.

Proof. For necessity, we have (¢™ — 1)|(¢* — 1) from the definition
of m-spread and so m | k. For sufficiency, we just need to prove the second
assertion.

Take any two distinct vectors S;1 + Si—1,p, +... 4+ S1,,_, and S;1 +
Sj-1,4, +...+ S1,¢;_,- Let U,V be subspaces of W spanned by these two
vectors, respectively. If i # j, it is easy to see U NV = {0}. So, consider
t=7j. Let a € UNV. There are two column vectors By, By € Fym so that
(Sia+Sici + 4+ 51,0 )Br=a=(Si1+Si—14, +-..+S14,_,)B2. So,
Si1B1 = 5;1B2. Since all elements in S; ; are linearly independent we have
By = By = B. Let ¢ be the smallest integer so that r. # t.. Without loss of
generality, let r. < t.. Since 0 <r. <t. < ¢™ —1and S.o =0, all elements
in S;_ct, — Si—c,r, are linearly independent by Corollary 4.1(3). So,

(Sifc,tc - Sifc,rc)B
= [(Si—c—lﬂ“c“ - Si—C—l,tc+1) +...+ (Sl,’fq‘,fl - Sl,ti71)]B =0

implies that B is the zero vector. So a = 0 and thus U NV = {0}.

Note that there are exactly ¢*~ ™ 4 ... + ¢™ + 1 vectors of the form
Si1+Si—1,j +...+51,_,. From the second paragraph, the total number
of distinct elements in the union of subspaces of W spanned by all such
vectors S;1+Si14, +---+Sij_, is (@M=D) I 4 g+ 1)+ 1 =

hm k
¢"" = q".
Hence W is the union of all such subspaces. This completes the proof.
We note that the first assertion of our theorem was proved by induction

for F,, by Fitzgerald and Yucas [1]. The first assertion is quite well known.
We, however, give a constructive proof using the second assertion.
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5. Optimal n-dimensional generating patterns. In [2] for each
p" < 10°° with p < 97, Hansen and Mullen have obtained a primitive
polynomial of degree n over F,,. Moreover, the given polynomial has minimal
weight, i.e. the minimal number of nonzero coefficients among all primitive
polynomials of degree n over F,. From their tables, with the exception of
234 values of p™ in the above range, there is always a primitive trinomial
of degree n over IF, and hence always an optimal n-dimensional generating
pattern with weight two. Of the exceptions, 90 occur in the p = 2 case and
144 occur for odd p. Tables of primitive polynomials from [2] are available
upon request from the second author.
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