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Abstract. A k-spanner of a connected (undirected unweighted) graph G = (V,E) is a subgraph
G′ consisting of all the vertices of V and a subset of the edges, with the additional property that
the distance between any two vertices in G′ is larger than that distance in G by no more than a
factor of k. This paper is concerned with approximating the problem of finding a 2-spanner in a
given graph, with minimum maximum degree. We first show that the problem is at least as hard to
approximate as set cover. Then a randomized approximation algorithm is provided for this problem,
with approximation ratio of Õ(∆1/4). We then present a probabilistic algorithm that is more efficient
for sparse graphs. Our algorithms are converted into deterministic ones using derandomization.
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1. Introduction. The concept of graph spanners has been studied in several
recent papers in the context of communication networks, distributed computing,
robotics, and computational geometry [ADDJ90, Cai91, Che86, DFS87, DJ89, LL89,
PS89, PU89, LR94, CDNS92]. Consider a connected simple (unweighted) graph
G = (V,E), with |V | = n vertices. A subgraph G′ = (V,E′) of G is a k-spanner
if for every u, v ∈ V ,

dist(u, v,G′)

dist(u, v,G)
≤ k,

where dist(u, v,G′) denotes the distance from u to v in G′, i.e., the minimum number
of edges in a path connecting them in G′. We refer to k as the stretch factor of G′.

In the Euclidean setting, spanners were studied in [Cai91, DFS87, DJ89, LL89,
Soa92]. Spanners for general graphs were first introduced in [PU89], where it was
shown that for every n-vertex hypercube there exists a 3-spanner with no more than
7n edges and then studied further in [PS89, LR94, ADDJ90, CDNS92]. Spanners were
used in [PU89] to construct a new type of synchronizer for an asynchronous network.

The usual criteria for the quality of the spanner are its stretch and its sparsity.
Namely, a good spanner is one with low stretch and as few edges as possible. For
the problem of finding a 2-spanner which is as sparse as possible, a logarithmic-ratio
approximation is given in [KP94].

However, another parameter of significance when selecting a good spanner is the
maximum degree of the spanner. In terms of applications, a high degree might mean
a high local load on a single vertex, increasing the cost of its local management. For
instance, in the application of using a spanner for implementing a δ-synchronizer in a
distributed network [PU89], or when using a spanner for efficient broadcast [ABP91],
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the degree of each node in the spanner directly translates into memory requirements
at the node, and high local degrees mean higher workload on the involved nodes.

It is clear that focusing on optimizing the sparsity measure alone may result in a
spanner with high vertex degrees. For example, if there is a vertex v in the graph that
is connected to all the rest of the vertices, then its edges form a 2-spanner and, there-
fore, a k-spanner for any k ≥ 2. However, in such a choice the local load of v might be
too high to handle, while the local load of any other vertex w may be much less than
what w can handle. In fact, the algorithm proposed in [KP94] will pick the vertex
v and is therefore unsuitable for selecting “balanced load” spanners. It is therefore
natural to try to design an algorithm that will perform a more “balanced” selection of
the edges. In particular, letting ∆(G′) denote the maximum vertex degree in a span-
ner G′, we consider the question of choosing a k-spanner G′ with minimum ∆(G′) for
some parameter k. We call this “low degree” variant of the problem LD-kSP. The
problem of designing low degree spanners is addressed in [LR94, LS93b, LS93a] for
some special graph classes such as pyramids and grids. The problem of designing small
degree spanners for Euclidean and geometric graphs is studied in [CDNS92, Soa92].
The distance is measured therein by the appropriate norm defined in the vector space.

This paper treats LD-2SP in general graphs. We first show that the problem
is at least as hard to approximate as set cover (up to constants). This implies the
following results. There is no lnn/5-ratio approximation algorithm for LD-2SP unless
NP ⊂ DTIME(npolylog(n)). Also, no approximation algorithm with constant ratio
exists for the problem unless P = NP . We next give a probabilistic algorithm that
outputs a 2-spanner G′ such that with high probability ∆(G′) is no more than Õ(∆1/4)
times the optimum. In other words, our algorithm has an approximation ratio of
Õ(∆1/4) with high probability. (Õ is a relaxed variant of the usual O notation that
ignores polylogarithmic factors.) The algorithm is then turned into a deterministic
one using derandomization.

The technique used in [KP94] to approximate the sparsest 2-spanner problem is
the “greedy” method that constructs the spanner gradually, attempting to 2-span
a large number of edges in every iteration. (An edge e = (u, v) is 2-spanned once
either itself or two other edges lying on a triangle with it, say (u, x) and (x, v), are
added to the spanner.) The LD-2SP problem seems to be harder to approximate.
In particular, the greedy approach seems to fail (i.e., be inefficient) for it. Hence
a different (and more involved) approach is required. The technique used in this
paper for the LD-2SP problem is a variant of the “randomized rounding” technique
of [RT87].

Our algorithm is composed of two different procedures. The first procedure is
designed to 2-span edges lying on “many” triangles. The second procedure deals with
the yet unspanned edges, i.e., edges that lie on a “small” number of triangles. We
describe the “2-spanning” problem for these edges as a linear program, solve it in
the fractional setting, and randomly round the fractional solutions. We note that
in the rounding process, we use only a subset of the variables. We also note that
every variable is rounded with probability considerably exceeding its fractional value.
These higher rounding probabilities seem to be needed in order to overcome some
“quadratic” behavior of the linear program.

We also present an additional probabilistic algorithm that is efficient for sparse
graphs. This algorithm can also be transformed into a deterministic one using deran-
domization.

Finally we deal with the problem of 2-spanning only the edges adjacent to a
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small subset Vk, |Vk| = k of the vertices. We give an O(k · log n)-ratio approximation
algorithm for this problem. For fixed k, our hardness result implies that unless NP ⊂
DTIME(nlog log n) this is the best ratio possible (asymptotically).

2. Preliminaries. We start by introducing some definitions. In the sequel, let
G = (V,E) be the underlying n-vertex graph. We sometimes use E also to denote
the size of the set E, i.e., the number of edges. Let U ⊆ V be a subset of the vertices.
The graph induced by U is denoted by G(U). The set of edges in G(U) is denoted by
E(U). For a vertex v we denote by E(v) the set of edges adjacent to v in G. Similarly,
we denote by N(v) the set of neighbors of v in G, i.e.,

N(v) = {u | (u, v) ∈ E}.

We denote the degree of a vertex v by deg(v) = |N(v)|. The maximum degree in a
subgraph G′ = (V ′, E′), where V ′ ⊂ V and E′ ⊆ E, is denoted by ∆(G′). We denote
by ∆(E′) the largest degree in the subgraph (V,E′). We sometimes write ∆ for ∆(G).

We make use of an alternative characterization of k-spanners given in the following
simple lemma of [PS89].

Lemma 2.1 (see [PS89]). The subgraph G′ = (V,E′) is a k-spanner of the graph
G = (V,E) iff dist(u, v,G′) ≤ k for every (v, u) ∈ E.

Thus the LD-2SP problem can be restated as follows: we look for a subset of
edges E′ ⊂ E such that every edge e that does not belong to E′ lies on a triangle
with two edges that do belong to E′ and such that ∆(E′) is minimum.

Given an edge e ∈ E, let Tri(e) denote the set of triangles e lies on in the graph
G. Namely,

Tri(e) = {{e, e1, e2} | e, e1 and e2 form a triangle in G} .

Let D(e) be the set of vertices that lie on a triangle with e but do not touch e. (Note
that |D(e)| = |Tri(e)|, as each vertex in D(e) corresponds to exactly one triangle in
Tri(e).) We say that a vertex v ∈ D(e) (sharing a triangle T with e) 2-helps e in the
spanner H if the two edges incident to v on T are chosen into H.

In the sequel we estimate the probability of the deviation of some random variables
from their expectation, using the Chernoff bound [Che52].

Lemma 2.2 (see [Che52]). Let X1, X2, . . . , Xm be independent Bernoulli trials
with P(Xi = 1) = pi. Let X =

∑m
i=1 Xi and µ =

∑m
i=1 pi. Then

P(X > (1 + δ)µ) <

[

eδ

(1 + δ)(1+δ)

]µ

.

In the sequel we assume that ∆(G) ≥ Ω(log2 n). If this is not the case, then taking
the entire graph as our spanner results in a polylogarithmic-ratio approximation.

Unless stated otherwise, all logarithms in this paper are taken to the base 2.

3. Basic properties.

3.1. Low degree spanners for general graphs and special graph families.
The problem of designing low degree spanners is addressed in [LR94] for the special
case where the underlying graph is the pyramid. In particular, it is proven therein that
this graph enjoys a 2-spanner (respectively, 3, 7) with maximum degree 6 (respectively,
4, 3). The problem of designing small degree spanners for Euclidean and geometric
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graphs is studied in [CDNS92, Soa92]. There, however, the distance is measured by
the appropriate norm defined in the vector space.

We now establish some basic properties concerning the degrees of 2-spanners.
The next lemma indicates that for a graph with large ∆, the minimum degree in a
2-spanner must also be large. We prove this by showing that even for the sake of
2-spanning the edges of a single vertex v with degree ∆, it is necessary to have a
vertex in the spanner with degree at least

√
∆.

Lemma 3.1. Let v be a vertex of degree d in G. Let H = (V,E(H)) be a 2-spanner
of G. Then in H either v or some vertex in N(v) has degree at least

√
d.

Proof. Let t denote the maximum degree of any vertex from N(v) in H. Then
the number of vertices reachable from v in two steps over H edges is at most t2. Since
all d edges incident to v must be 2-spanned in H, necessarily t2 ≥ d.

As an immediate conclusion we have the following.
Lemma 3.2. Let H∗ = (V,E∗) be a 2-spanner for G with minimum maximum

degree. Then

∆(H∗) ≥
√

∆(G).

Let us remark that a similar result holds for k-spanners H∗ of minimum maximum
degree for any k ≥ 2, namely, ∆(H∗) is Ω(∆(G)1/k) (the proof is also similar).

Note that there are graphs G for which ∆(H) = ∆(G) for any 2-spanner H of
G. One particular such graph is the star of n− 1 vertices. However, there are dense
graphs, where the lower bound

√
∆ can be achieved (up to constants). The clique

(complete graph) Kn of n vertices admits low degree 2-spanners. In order to prove
this, we use the notion of a projective plane of order q for prime q. The existence
of projective planes of order q for every prime q is well known. A projective plane
P = (P,L) of order q is composed of a collection P = {p1, . . . , pm} of points and a
collection L = {l1, . . . , lm} of lines where m = q2 + q + 1. Every line li is a subset of
P containing exactly d = q + 1 points and every point is contained in exactly d lines.
Every two lines intersect in exactly one point and every two points share exactly one
line.

Consider now Kn = (V, V ×V ) where V = {v1, . . . , vn}. Let q be a prime number
such that ⌊√n⌋ ≤ q ≤ 2⌊√n⌋. (Such a prime exists by Bertrand’s postulate; cf.
[HW56].) Thus, n < q2 + q + 1 < 5n. Let P = (P,L) be a projective plane of order
q. Define the following spanning subgraph H = (V,E′) of Kn. Add the edge (vi, vj)
to E′ iff there exist t and r that satisfy t ≡ i mod n and r ≡ j mod n such that either
pt ∈ lr or pr ∈ lt.

We now proceed to prove that H is a low degree 2-spanner for Kn. First we note
the following claim.

Claim 3.3. The subgraph H is a 2-spanner for Kn.
Proof. Let e = (vi, vj) be an arbitrary edge of Kn. The lines li and lj share some

point ps ∈ li ∩ lj . Let f be the integer satisfying 1 ≤ f ≤ n, f ≡ s mod n. If f = i or
f = j (i.e., the case is, for example, that pj ∈ li ∩ lj) then by definition (vi, vj) ∈ E′.
Otherwise, again by definition, both (vi, vf ) ∈ E′ and (vj , vf ) ∈ E′, and the edge e is
spanned.

We now estimate the degree of the vertices in H ′. Note that the degree of a vertex
vi ∈ H is only increased due to vertices in the set Si = {lj | j ≡ i mod n} ∪ {pj |
j ≡ i mod n}, and |Si| ≤ 10. Each vertex in Si increases the degree of vi by at most
d = q + 1, and thus the degree of vi in H is bounded by O(d) = O(

√
n).

In conclusion, we have established the following claim.
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Lemma 3.4. The complete graph Kn admits a 2-spanner H with ∆(H) =
O(

√

∆(Kn)).

4. A hardness result for approximating LD-2SP. In this section we es-
tablish that the LD-2SP problem is (up to a constant factor) at least as hard to
approximate as the set cover problem. Formally, the set cover problem is defined as
follows. Given a bipartite graph G(V1, V2, E) with |V1| = |V2| = n, find a minimum
cardinality subset S of V1, that covers V2, i.e., such that every vertex in V2 has a
neighbor in S.

It is known that this problem is hard to approximate. In particular, the following
theorem is proved in [LY93, Fei96].

Theorem 4.1 (see [Fei96]). The set cover problem cannot be approximated with
ratio lnn− ǫ, for any fixed ǫ > 0, unless NP ⊂ DTIME(nlog log n).

Also, the following theorem is proven in [BGLR93].

Theorem 4.2 (see [BGLR93]). The set cover problem cannot be approximated
with any constant ratio c, unless P = NP .

For our purpose, we need a slightly different version of the set cover problem.
Define the

√
n-set cover problem as a variant of the set cover problem in which d(v) ≤√

n for each vertex v ∈ V1 ∪ V2. The usual greedy algorithm approximates this
problem with ratio ln

√
n + 1 = lnn/2 + 1 [Joh74, Lov75]. On the other hand, a

simple observation gives the following fact.

Fact 4.3. The
√
n-set cover problem cannot be approximated with ratio better

than lnn/2, unless NP ⊂ DTIME(nlog log n).

Proof. Assume the existence of an approximation algorithm A for the
√
n-set

cover problem, with ratio lnn/2 or better. Let G(V1, V2, E) be an instance of the
set cover problem. Let G̃ be a graph consisting of n (separate) copies of G. The
graph G̃ contains n2 vertices on each side, and the maximum degree in G̃ is bounded
by n. Thus, G̃ is amenable to approximation by algorithm A, and, consequently,
the set cover instance represented by G̃ can be approximated with ratio better than
ln(n2)/2 = lnn. Since any cover in G̃ is composed of n separate covers of V2, we
get by a straightforward averaging argument that one of these covers approximates
the optimum cover of V2 by a ratio better than lnn. By Theorem 4.1, this implies
NP ⊂ DTIME(nlog log n).

In the remainder of this section, we consider the
√
n-set cover problem, with

|V1| = |V2| = n. We show that the LD-2SP problem is at least as hard to approximate
as this problem. Throughout, we denote by t∗ the size of the optimum cover of V2 in
G. Let ℓ = ⌈√n ⌉. Note that

t∗ ≥ ℓ.(1)

4.1. The construction. We use an auxiliary graph Ḡ constructed from G as
follows. The vertices of Ḡ are

V1 ∪ V2 ∪ {s} ∪ {c(v1) | v1 ∈ V1} ∪ {u1, . . . , uℓ}.

Divide the vertices of V1 arbitrarily into ℓ disjoint sets V i
1 , where each V i

1 contains
no more than

√
n vertices. The edge set of Ḡ is given by defining a number of edge
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classes as follows. Let

E1 = E(G),

E2 = {(s, v1) | v1 ∈ V1},
E3 = {(s, v2) | v2 ∈ V2},
E4 = {(c(v1), v1) | v1 ∈ V1} ∪ {(c(v1), v2) | (v1, v2) ∈ E(G)},
E5 = {(ui, v1) | v1 ∈ V i

1 , 1 ≤ i ≤ ℓ},
E6 = {(s, ui) | 1 ≤ i ≤ ℓ},

and set

E(Ḡ) = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6.

Let us make a few remarks on this construction. As the maximum degree in Ḡ is
more than 2n, the best 2-spanner H of G has maximum degree at least

√
2n. We note

that for the sake of choosing a good spanner, one can “afford” the edges of classes E1,
E4, E5, and E6, since it easily follows from the construction that these edges induce
a subgraph with maximum degree bounded by ℓ. This observation relies on the fact
that the degrees of the vertices of V1 and V2 in G are bounded by

√
n.

Consequently, the edges from which a “good” spanner may need to omit are the
edges of classes E2 and E3. These edges give s its degree in Ḡ, which is higher than
2n. The heart of our proof lies in 2-spanning the edges of E3. Such an edge e must
either be included in the spanner or be 2-helped by some vertex v1 ∈ D(e). In order
to keep the degree of s low, one has to choose a small subset of V1 that covers V2.

4.2. The main claim. We prove the main result of this section using the fol-
lowing two lemmas.

Lemma 4.4. If G contains a cover of size t∗ then Ḡ contains a 2-spanner with
maximum degree bounded by 2t∗.

Proof. Assume a graph G(V1, V2, E) with a t∗-cover C = {v1, . . . , vt∗} ⊆ V1 of
V2. For every vertex v2 ∈ V2 choose a vertex R(v2) ∈ C connected to v2. Create a
spanner H consisting of the following two edge sets:

H1 = {(v2, R(v2)) | v2 ∈ V2} ∪ {(s, v1) | v1 ∈ C},
H2 = E4 ∪ E5 ∪ E6,

and set E(H) = H1 ∪H2.
(Remark. The above construction can be slightly improved. For example, it is not

necessary to put in H edges (c(v1), u) if v1 is the vertex chosen to cover u. We note,
nevertheless, that the maximum degree is not decreased by these improvements.)

We need the following observations.
Claim 4.5. The maximum degree in H is bounded by 2t∗.
Proof. As explained before, the edges of classes E4, E5, and E6 induce a graph

with maximum degree bounded by ℓ. Specifically, s, the c(vi) vertices and the vertices
of V2 have degree bounded by ℓ and the vertices of V1 have degree bounded by 2 (i.e.,
a vertex v1 is connected to its ui and to c(v1).)

Now consider the edges of H1. The degree of each vertex in C is increased by no
more than

√
n+1 due to these edges (these edges connect a vertex v1 to its neighbors

in V2 and to s). Note, however, that t∗ new edges are added to s (connecting s to the
vertices of C), thus making its degree no more than t∗ + ℓ ≤ 2t∗ by inequality (1).
Hence the maximum degree is as stated.
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Next we establish the following claim.
Claim 4.6. The graph H is a 2-spanner of Ḡ.
Proof. The edges of classes E4, E5, and E6 are in the spanner. We must show that

the edges of classes E1, E2, and E3 are 2-spanned by H.
An edge (v1, v2) ∈ E1 is 2-spanned in the spanner by the edges (c(v1), v1) and

(c(v1), v2), since both are in E4.
Next consider an edge (v1, s) ∈ E2. The node v1 must belong to some set V i

1 .
Therefore this edge is 2-spanned in H by the edges (ui, v1) and (ui, s), which are in
E5 and E6, respectively.

Finally, an edge (v2, s) ∈ E3 is 2-spanned in H by the edges (v2, R(v2)) and
(R(v2), s), which are in H1.

The second central lemma in this section is the following.
Lemma 4.7. Given a 2-spanner H of Ḡ, it is possible to find a cover of V2 in G

with cardinality bounded by ∆(H).
Proof. Consider a 2-spanner H. Partition the edges of class E3 into two disjoint

sets

EA
3 = E3 ∩ E(H) and EB

3 = E3 \ E(H).

Note that each of the edges of EB
3 is 2-spanned in H by a 2-helping vertex.

Construct a cover of V2 in G as follows. First, for every edge (v2, s) ∈ EA
3 , choose

an arbitrary vertex v1 connected to v2 in G, and let D1 be the set of selected vertices.
Second, for every edge (s, v2) in EB

3 , choose an arbitrary vertex v1 ∈ V1 such that
both (s, v1) and (v2, v1) are in E(H). (A single vertex of V1 may be chosen several
times, as it may cover many edges in EB

3 .) Let D2 be the set of vertices chosen by
this process.

Clearly, the set D1 ∪ D2 forms a cover of V2 in G. It remains to bound its
cardinality. First note that |D1| ≤ |EA

3 | (at worst, a different vertex v1 is chosen to
D1 for every vertex of EA

3 ). Now, every edge in EA
3 adds 1 to the degree of s in H.

Also, every vertex in D2 is connected to s in H and thus adds 1 to its degree. Hence
|D1| + |D2| ≤ ∆(H). This proves the claim.

The following corollary is now immediate.
Corollary 4.8. The LD-2SP problem cannot be approximated with ratio better

than lnn/5, unless NP ⊂ DTIME(nlog log n).
Proof. Assume the existence of an approximation algorithm A for the LD-2SP

problem, with ratio better than lnn/5. Take an input G of the
√
n-set cover problem.

Let t∗ be the size of a minimum cover of V2 in G. Construct Ḡ as explained before
(this can clearly be done in polynomial time). By Lemma 4.4 the graph Ḡ contains a
2-spanner with maximum degree bounded by 2t∗. Note that the number of vertices
in Ḡ is less than 4n. By the assumption, it is possible to use algorithm A and find a
2-spanner with maximum degree bounded by

2t∗(ln |Ḡ|)/5 ≤ 2t∗(lnn + 4)/5 < t∗(lnn/2 − 1)

(the last inequality holds for sufficiently large n). By Lemma 4.7 this implies that it
is possible to find in polynomial time a cover of V2 in G with cardinality bounded by
t∗(lnn/2 − 1). By Fact 4.3, this implies NP ⊂ DTIME(nlog log n).

The following corollary also follows easily.
Corollary 4.9. The LD-2SP problem cannot be approximated with ratio c, for

any constant c, unless P = NP .
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5. The approximation algorithm for LD-2SP. Let us first explain the idea
behind our approximation algorithm for the LD-2SP problem. We separate the edge
set of our graph into two disjoint classes. The class E− is the class of edges that
lies on a small number of triangles, and the class E+ contains the rest of the edges,
namely,

E− = {e ∈ E | Tri(e) <
√

∆}, E+ = {e ∈ E | Tri(e) ≥
√

∆}.

(Recall that Tri(e) is the set {e, e1, e2} of triangles containing e.) We 2-span these two
classes of edges, using two separate procedures. Our general approach for handling
E− is to use the “randomized rounding” scheme of Raghavan and Thompson [RT87].
This scheme is based on the following idea. Let ∆∗ be the maximum degree in the best
2-spanner. (We shall soon see that it is possible, without loss of generality, to assume
that ∆∗ is known.) We then formulate the problem as the integer linear program
(P1) below.

The program (P1). Given are some subset Eu ⊆ E of “unspanned” edges
and a (possibly empty) set Er of edges that have already been added to the spanner.
Create for every edge ek ∈ Eu and vertex vi ∈ D(ek) a variable ŷi,k. (Recall that
D(e) is the set of vertices that lies on a triangle with e but does not touch it.) For
every two vertices vi, vj ∈ V, i < j, such that (vi, vj) ∈ E, create a variable x̂i,j . (We
shall freely use both x̂i,j and x̂j,i to denote this unique variable.) The program is
composed of the following sets of inequalities:

∑

vj∈N(vi),(vi,vj)/∈Er

x̂i,j ≤ ∆∗ for all vi ∈ V,(2)

x̂l,t +
∑

vi∈D(ek)

ŷi,k ≥ 1 for all ek = (vl, vt) ∈ Eu,(3)

ŷi,k ≤ x̂i,l, x̂i,t for all ek = (vl, vt) ∈ Eu and vi ∈ D(ek),(4)

x̂ij = 1 for all e = (vi, vj) ∈ Er,(5)

x̂i,j , ŷi,k ∈ {0, 1} for all i, j, k.(6)

The intuitive meaning of the program is as follows. Every x̂i,j variable indicates
if the edge (vi, vj) is in the chosen spanner. Thus constraint (2) says that every vertex
vi has no more than ∆∗ new spanner edges. It is important to note that here we do
not count the edges of Er (those edges are counted separately in the analysis). The
variable ŷi,k, associated with a vertex vi and an edge ek = (vl, vt), indicates if vi
2-helps ek in the chosen spanner. This is enforced by constraint (4), which says that
vi 2-helps ek only if both the edges (vi, vl) and (vi, vt) are included in the spanner.
Constraint (3) says that in a feasible 2-spanner, every edge is either in the spanner or
is 2-helped by some vertex.

After writing the program, we solve the fractional relaxation of (P1) using the
well-known polynomial-time algorithms of [Kha80, Kar84]. Having the fractional
values of the variables, we round each variable to be 1 with probability proportional
to its fractional value.

When using this program for 2-spanning E−, we get a good result; i.e., the ran-
domized process gives a 2-spanner whose maximum degree is “close” to the “fractional
degree” of the fractional solution. However, using this method we are not expected
to 2-span all the edges of E+. To see this, consider an edge e lying in Ω(n) triangles.
The fractional program may give all (the variables of) the edges in these triangles a
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value in Θ(1/n). In this way constraints (2) and (3) are easily satisfied. However,
the probability of a triangle to “survive the randomized rounding” (i.e., to have both
its edges set to 1) is Θ(1/n2). Since there are only Θ(n) triangles, the edge is not
expected to be 2-spanned. (This phenomenon captures the unfortunate “quadratic”
behavior of our linear program.)

We therefore 2-span the edges of E+ using a different procedure. We draw every
edge e ∈ E randomly to the spanner, with some fixed (small) probability. We then
show that the edges of E+, i.e., edges that belong to sufficiently many triangles, are
likely to be 2-spanned in the resulting subgraph (namely are likely to lie on a triangle
whose two other edges were selected by the randomized choice). We also show that
with high probability the degree that is added to each vertex in this procedure is
“small.”

In the remainder of this section we present our approximation algorithm, and in
the next section we give its analysis. Throughout the algorithm, we denote by Eu the
set of edges yet to be 2-spanned.

Algorithm 5.1.
Input: A graph G = (V,E) of maximum degree ∆.

1. Let

p =
2 · √log n

∆1/4
, M = 2 · ∆1/4 ·

√

log n

and set E1
r , E

2
r ← ∅.

2. For every edge e ∈ E, draw e randomly and independently to be in the spanner
with probability p. Let E1

r denote the set of edges selected into the spanner by
the randomized process.

3. Set Eu = {e ∈ E | e /∈ E1
r and no two edges e1, e2 ∈ E1

r form a triangle with e}.
4. Solve the fractional relaxation of the program (P1) corresponding to Eu, E

1
r ,

and ∆∗.
5. Let {xi,j , yi,k} be the optimal (fractional) solutions corresponding to (P1).

For every variable x̂i,j create a respective random variable x̄i,j.
6. Randomly and uniformly set x̄i,j to be 1 with probability min{1,M · xi,j}.
7. If x̄i,j is set to 1, then add the edge (vi, vj) to E2

r .
8. Let Eu be the set of edges that are still unspanned by E1

r ∪ E2
r .

Set Er = E1
r ∪ E2

r ∪ Eu.
9. Output Er.

6. Analysis. First we explain how to overcome the assumption that ∆∗ is
known. Let ∆∗

f be the smallest value for which (P1) has a feasible (fractional) solution.
We call ∆∗

f the smallest fractional degree of the best fractional 2-spanner. Indeed, we
only have to know (and run (P1) with) ∆∗

f for our scheme to work. Clearly, ∆∗ ≥ ∆∗
f .

This follows from the following simple claim.
Lemma 6.1. If we run the program (P1) with L replacing ∆∗, and (P1) has no

fractional feasible solution, then ∆∗ > L.
The value ∆∗

f is found through binary search, by running (P1) with values taken

from the (discrete) interval [⌈
√

∆ ⌉,∆]. The search ends with some specific L such
that the program succeed with L+ 1 but fails with L. By Lemma 6.1, ∆∗ ≥ ∆∗

f > L.
On the other hand, we have a fractional feasible solution for L+1. Thus, we found the
best fractional ∆∗

f (up to a difference of 1). For proving the desired approximation
ratio, we show how to construct an (integer) spanner with maximum degree “close”
to L + 1 and therefore close to ∆∗(> L).
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We now observe that the output is indeed a 2-spanner: the set of edges Er forms
a 2-spanner of G, since every edge not in Er lies on a triangle with two edges of Er.

Denote the optimum low-degree 2-spanner for G by H∗. Let us now proceed to
bound from above the ratio between ∆(Er) and ∆(H∗).

Throughout the subsequent analysis, we set p = 2
√

log n/∆1/4 and M = 4∆1/4 ·√
log n.

6.1. Handling E+. Our first aim is to show that edges in E+, i.e., edges with
large |Tri(e)|, are likely to be 2-spanned in step 2 of our algorithm.

Lemma 6.2. With probability at least 1 − 1/n2, every edge e ∈ E+ is 2-spanned
in step 2 of Algorithm 5.1.

Proof. Denote m = |Tri(e)| and assume that m ≥
√

∆. Let Tri(e) = {T1, T2, . . . ,
Tm} with Ti = {ei1, ei2, e}; i.e., the three edges of Ti form a triangle in G. The
probability that a triangle Ti does not 2-span e, namely, that neither ei1 nor ei2 are
selected into the spanner in step 2, is 1 − p2. The probability that neither of the
triangles 2-span e is

(1 − p2)m ≤ (1 − p2)
√

∆ =
(

(

1 − p2
)1/p2

)4 log n

<
1

n4
.

(The last inequality follows from the fact that (1−x)1/x ≤ 1/e for x ≤ 1.) Therefore,
the probability that there exists one such an edge which is not 2-spanned is bounded
by

|E|
n4

≤ 1

n2
.

Next we estimate the maximum degree ∆(E1
r ) in the graph induced by E1

r by
proving the following lemma.

Lemma 6.3. With probability at least 1 − 1/n2, ∆(E1
r ) ≤ 4 · ∆3/4 · √log n.

Proof. For vertices v such that deg(v) < ∆3/4 ·√log n, the claim follows vacuously.
Hence we need to prove a degree bound only for vertices v such that deg(v) > ∆3/4 ·√

log n. Let sp1(e) be the random variable indicating if e was drawn to be in E1
r ;

namely,

sp1(e) =

{

1, e ∈ E1
r ,

0 otherwise.

Let d1
r(v) denote the random variable that equals the degree of v in the graph induced

by E1
r . Thus,

d1
r(v) =

∑

e∈E(v)

sp1(e).

Clearly, E(sp1(e)) = p and therefore

E(d1
r(v)) =

∑

e∈E(v)

E(sp1(e)) = p · deg(v).

(Recall the assumption that d(v) ≥ √
log n∆3/4.) By the definition of p we get that

the expected degree of v, µ(v) is bounded below by 2 logn
√

∆. Since d1
r(v) is a sum
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of independent Bernoulli trials, we can apply Lemma 2.2 to it with δ = 1 and deduce
that

P
(

d1
r(v) > 2 · µ(v)

)

≤
(e

4

)µ(v)

<
1

n3
.

(For the last inequality, recall that one may assume that ∆ = Ω(log2 n). Indeed, here
we only need ∆ to be bounded below by some constant.)

Therefore, with probability at least 1 − 1/n3,

d1
r(v) ≤ 4 · ∆3/4 ·

√

log n.

By summing up the probabilities over all the vertices, the lemma follows.
(We note that as in [Rag88] slightly better results are attainable; i.e., it is possible

to show a degree bound of 2 · √log n∆3/4 + o(∆3/4). However, we give the simpler
bound here, since in our case we already have an approximation ratio of ∆1/4 and
therefore the improvement can only (slightly) affect the constants. A similar situation
holds, later, with regards to Lemma 6.4.)

6.2. Handling E−. We would next like to show that the maximum degree in
the subgraph selected by our linear program algorithm is small. Define the variable
d2
r(v) to be the degree of v in the random choices made in steps 6 and 7 of Algorithm

5.1.
Lemma 6.4. With probability at least 1−1/n2, d2

r(v) < 2M ·∆∗ for every v ∈ V .
Proof. In order to establish an upper bound on the maximum degree, we must

prove that in the random choices of steps 6 and 7 of Algorithm 5.1, the expected
number of edges chosen for every vertex is “small.” Let vi ∈ V be an arbitrary
vertex, and let u1, . . . , um be its neighbors. Let ej = (vi, uj), j = 1, . . . ,m. We denote
by sp2(ej) the random indicator variable for the inclusion of ej in the spanner, in
steps 6 and 7; namely,

sp2(ej) =

{

1, ej is chosen to be in the spanner in steps 6 and 7,
0 otherwise

and thus

d2
r(vi) =

m
∑

i=1

sp2(ej).

The expected value of d2
r(vi) satisfies

E(d2
r(vi)) =

m
∑

j=1

E(sp2(ej)) =

m
∑

j=1

min{1,Mxij} ≤ M ·
m
∑

j=1

xi,j .

By (2) we have

E(d2
r(vi)) ≤ M · ∆∗.

Since d2
r(vi) is the sum of independent Bernoulli trials, it follows from Lemma 2.2

with δ = 1 that

P
(

d2
r(vi) > 2 ·M · ∆∗) <

(e

4

)M∆∗

≤ 1

n3
.
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(The last inequality follows from the assumption that ∆ ≥ Ω(log2 n) and from
the definition of M .) Summing up the probabilities for all the vertices, the claim
follows.

In order to bound the number of edges added to each vertex v in step 8 of the
algorithm (i.e., when Eu is added to Er), we have to estimate how many edges are
2-spanned in steps 6 and 7. We show that with high probability, Eu is empty after
step 7, and therefore Eu does not change ∆(Er).

Lemma 6.5. The probability that an edge ek = (vl, vt) of E− is 2-spanned in
steps 6 and 7 is at least 1 − 1/n4.

Proof. For the sake of proving the lemma we need the following technical lemma
(cf. Chapter 8 of [AS92]).

Lemma 6.6. Let {Ai}mi=1 be m independent events and let P(Ai) = pi and
∑m

i=1 pi ≥ d. Then P(
⋃m

i=1 Ai) ≥ 1 − 1/ed.

Let ek = (vl, vt) ∈ E− and let D(e) = {v1, . . . , vd}, d = |Tri(ek)| ≤
√

∆. The
inequality of the program (P1) corresponding to ek is

xl,t +
∑

vi∈D(ek)

yi,k ≥ 1.

Let Ai be the event that vi 2-helps ek in the chosen spanner. Let Ik be the event that
ek is included in the spanner. We now estimate the probability that Ai occurs. This
probability equals the probability that both (vi, vl) and (vi, vt) are selected to the
spanner. Clearly, we have only to consider the case that min{M · xi,t,M · xi,l} < 1,
for if this is not the case, P(Ai) = 1. In the case both M · xi,t < 1 and M · xi,l < 1,
P(Ai) = M2 · xi,t · xi,l. In the case that, say M · xi,t ≥ 1 and M · xi,l < 1, we have
P(Ai) = M · xi,l > M2 · x2

i,l. In either case, by (4) of the linear program we have

P(Ai) ≥ M2 · y2
i,k.(7)

The event Cov(ek) =“ek is 2-spanned” is the union Cov(ek) =
⋃

i Ai ∪ Ik; namely, ek
is 2-spanned iff it is in the spanner or is 2-helped by some vertex. We now estimate
the sum of probabilities of the Ai and Ik.

Claim 6.7. P(Ik) +
∑d

i=1 P(Ai) ≥ 3 · log n.
Proof. We may assume that xl,t < 1/M since otherwise the edge ek is taken

into the spanner with probability 1 and hence is 2-spanned. We therefore have
∑

vi∈D(ek) yi,k > 1 − 1/M .

We now have by (7)

d
∑

i=1

P(Ai) ≥
d

∑

i=1

M2y2
i,k = M2

d
∑

i=1

y2
i,k.

By the Cauchy–Schwartz inequality (cf. [Fla85]) we have

d
∑

i=1

P(Ai) ≥ M2 · (
∑d

i=1 yi,k)
2

d
≥ M2 (

∑d
i=1 yi,k)

2

√
∆

= 4 log n

(

d
∑

i=1

yi,k

)2

≥ 4 log n(1 − 1/M)2 > 3 log n.

(The last inequality holds for n ≥ 2, in which case M ≥ 4.) Therefore, this proves
our claim.



1450 GUY KORTSARZ AND DAVID PELEG

Note that the events Ik, Ai are all independent, since Ik and Ai all concern dif-
ferent edges. Thus we may apply Lemma 6.6 and get

P(Cov(ek)) ≥ 1 − 1

e3 log n
> 1 − 1

n4
,

proving the lemma.

Thus, with probability at least 1 − 1/n2, all the edges are 2-spanned in step 7.
Therefore, with probability at least 1 − 1/n2, Eu = ∅, in which case Eu does not
increase the maximum degree. In summary, Lemmas 6.2, 6.3, 6.4 and 3.2, combined
with the above discussion, yield the following theorem.

Theorem 6.8. With probability at least 1 − 1/n, the algorithm produces a 2-
spanner with maximum degree bounded by O(

√
log n∆1/4∆∗).

Corollary 6.9. Algorithm 5.1 produces a 2-spanner that with probability at least
1 − 1/n is an O(

√
log n · ∆1/4) approximation for the LD-2SP problem.

Note that the error probability can be reduced to 1/nc for any (constant) c, losing
only constants in the approximation ratio.

7. Derandomization. In this section, we show how to transform our random-
ized algorithm into a deterministic one. We use the well-known “method of condi-
tional probabilities” (cf. [Spe87]) and its generalization, the method of “pessimistic
estimators” [Rag88].

7.1. The method of pessimistic estimators. Let us first describe the method
of pessimistic estimators in a form which is convenient for our purpose. Let q1, . . . , ql
be random Boolean variables, set to 0 or 1 with some probabilities, and consider the
probability space Q = {(q1, . . . , ql) | qi ∈ {0, 1}, 1 ≤ i ≤ l} of 2l points. Let X1, . . . , Xs

be a collection of “bad” events over Q, and suppose that P(Xi) = pi and that
∑s

i=1 pi < 1. Thus the event
⋂

i X̄i has positive probability. We therefore have a
point (q̂1, . . . , q̂l) in the probability space Q for which

⋂

i X̄i holds. Suppose that for
each event Xi and for each 0 ≤ j ≤ l we have a function f i

j(q1, . . . , qj) for which the
following holds.

(1)
∑s

i=1 f
i
j−1(q1, . . . , qj−1) ≥ min{∑s

i=1 f
i
j(q1, . . . , qj−1, 0),

∑s
i=1 f

i
j(q1, . . . , qj−1, 1)}

for all 1 ≤ i ≤ s, 0 ≤ j ≤ l.

(2) f i
j(q1, . . . , qj) ≥ P(Xi | q1, . . . , qj).

(3)
∑s

i=1 f
i
0 < 1.

(4) The function f i
j(q1, . . . , qj) can be computed in polynomial time in l for every i

and j and (q1, . . . , qj) ∈ {0, 1}j . Also, the number of events, s, is polynomial in l.

In this case one can transform the probabilistic existence proof into a polynomial
algorithm (in terms of l). This is done by fixing the value of qi to be 0 or 1 iter-
atively, one by one. In the jth step, having determined the values of q1, . . . , qj−1,
we decide upon the value qj (setting it either to 0 or to 1) so as to minimize the
sum

∑s
i=1 f

i
j(q1, . . . , qj). It easily follows from the above conditions that the sum

∑s
i=1 f

i
j(q1, . . . , qj) never increases and, consequently (it follows from properties 2

and 3 that), at the end of the procedure we remain with a point (q̂1, . . . , q̂l) in the
sample space for which the event

⋂

i X̄i holds. Also by property (4) above, this de-
randomization procedure can be executed in time polynomial in l.

The functions f i
j are called pessimistic estimators for the actual conditional proba-

bilities. The method of conditional probabilities is the special case where f i
j(q1, . . . , qj) =

P(Xi | q1, . . . , qj) and property 3 holds, i.e., the case where in addition to property 3
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the conditional probabilities can be computed efficiently, so no estimators are needed.
When this is the case, the remaining properties 1 and 2 follow immediately.

7.2. Derandomizing the 2-spanner algorithm. In the case of the 2-spanner
problem we have a two-stage randomized procedure. Let us first focus on the harder
task of derandomizing the second stage, where we 2-span the edges of E− using
randomized rounding. We draw the edges with different probabilities (that depend
upon the values of the corresponding variables in the linear program). Our qi variables,
therefore, correspond to the edges, where every edge has some probability to be 1. We
will identify the edge ek with its corresponding random variable. (We will therefore
say “ek was set to 1” meaning that ek was added to the spanner.)

We now describe the “bad events” in the second stage. The event D(vi) is the
event where the degree of vi is greater than 2 ·M · ∆∗. The event U(ej) is the event
that an edge ej ∈ E− is unspanned at the end of Algorithm 5.1.

Throughout the sequel, we assume that we have already decided upon the values
of e1, . . . , ej−1, setting them either to 1 or 0, and we want to decide the value of ej .
We denote by p(ek) the probability by which ek is drawn in the randomized rounding.
(This probability equals M times the value of ek in the linear program.) We use the
following notation (that depends upon previous decisions). The number ẽk is defined
as

ẽk =







1, ek was previously set to 1,
0, ek was previously set to 0,
p(ek), the value of ek was not yet determined.

We next define the pessimistic estimator for the event U(ej). Given some edge
ek = (vs, vt) say that ek lies on tk = |Tri(ek)| triangles and denote Tri(ek) =
{(e1

i , e
2
i , ek)}tki=1. We then set the pessimistic estimators for U(ek) to be

hk
j (e1, . . . , ej) = Πtk

i=1(1 − ẽ1
i · ẽ2

i ).

We note that the above expression, exactly equals the probability that ek is unspanned
by either of its triangles (given the previous decisions). Note that ek may be 2-spanned
also if ek itself is drawn into the spanner. This observation proves property 2 for the
functions U(ek) and hk

j (e1, . . . , ej). Property 4 follows trivially.

We now turn our attention to the event D(vi), meaning that the degree of vi
exceeds 2 ·M ·∆∗. For these events, the conditional probabilities can be calculated in
polynomial time using dynamic programming. However, this is relatively time consum-
ing, as O(d(v)∆∗) time is required in order to calculate each conditional probability
associated with every vertex. It is therefore convenient to introduce the following pes-
simistic estimators, which are a special case of some estimators introduced in [Rag88].
Suppose that the edges of vi are ei1, e

i
2, . . . , e

i
di

(where di is the degree of vi). For D(vi)
define the following pessimistic estimator. Set

gij(e1, . . . , ej) =
Πdi

r=1

(

ẽir + 1
)

4M ·∆∗
.

The required property 2 follows in a way similar to the proof of the Chernoff bound,
as in [Rag88]. Property 4 also follows trivially.
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We now prove property 3. Note that since (as in [Rag88])

gi0 =
Πdi

k=1 (p(ek) + 1)

4M ·∆∗
≤ Πdi

k=1e
p(ek)

4M ·∆∗
=

e
∑

di

k=1
p(ek)

4M ·∆∗

≤
(e

4

)M ·∆∗

≤ 1

n3
,

property 3 follows from Lemmas 6.4 and 6.5. (In fact, the sum of the pessimistic
estimators of the bad events is not only smaller than 1 but is also smaller than 1/n.
Nevertheless, the degrees of the vertices can only be reduced by a constant factor.)

Finally, we have to check property 1. We have

S =

n
∑

i=1

gij−1 +

m
∑

k=1

hk
j−1 =

n
∑

i=1

Πdi

r=1

(

ẽir + 1
)

4M ·∆∗
+

m
∑

k=1

Πtk
i=1(1 − ẽ1

i · ẽ2
i ).

We can write S as the sum S = S1(ej) + S2(ej) + S3 where

S1(ej) = (1 + p(ej)) · Π1, S2(ej) =
∑

l

(1 − p(ej) · ẽl) · Πl
2,

and the expressions Π1, Πl
2, and S3 do not contain ẽj . When setting ej to 1, the

difference between the terms in the first summand is S1(1)−S1(ej) = (1−p(ej)) ·Π1,
and the difference in the second summand is S2(1)−S2(ej) = −∑

l ẽl(1− p(ej)) ·Πl
2.

So if
∑

l ẽl · Πl
2 ≥ Π1 we are done. Otherwise, when setting ej to 0, the difference

in the first summand is S1(0) − S1(ej) = −p(ej) · Π1 and in the second summand,
S2(0) − S2(ej) =

∑

l p(ej) · ẽl · Πl
2 < p(ej) · Π1. Thus the required property follows.

Now we have to consider the first (and easier to derandomize) stage of the algo-
rithm, where we handle the edges of E+. In the first stage, we draw all the edges
independently and uniformly with probability p = 2 · √log n/∆1/4. The bad event
here is similar. We have the event D(vi) which is the bad event that the degree of vi
exceeds 4 · ∆3/4 · √log n. The event U(ek) is the event that an edge e ∈ E+ is not
2-spanned at the end of Algorithm 5.1.

Thus, the derandomization of this first stage is a special case of the derandom-
ization of the second stage.

We have therefore established the following result.
Corollary 7.1. Algorithm 5.1, together with a derandomization procedure,

produces a 2-spanner that is an O(
√

log n · ∆1/4) approximation for the LD-2SP
problem.

8. An algorithm for sparse graphs. In this section we present a relatively
simple algorithm Sparse1 that performs better than Algorithm 5.1 in the case where
the underlying graph is sparse. In this case, algorithm Sparse1 yields a 2

√
E additive

approximation. (By “α additive approximation” we mean that the resulting degree is
∆∗ + α.) Thus, if the number of edges is up to n3/2, we get an additive term of less
than n3/4 (or, alternatively, a very low multiplicative factor). For the range n3/2 ≤
E ≤ n7/4 we have a different algorithm Sparse2 that slightly improves Algorithm 5.1
in the worst case. This algorithm is considerably more complicated and is therefore
omitted. The interested reader is referred to [KP93].

8.1. Algorithm Sparse1. Algorithm Sparse1 divides the vertex set into “heavy”
and “light” vertices. The set Heavy consists of vertices with degrees at least

√
E, and
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the set Light consists of vertices whose degrees are less than
√
E. Then the set of all

edges with both endpoints in Heavy, E(Heavy), and all edges with both endpoints
in Light, E(Light), are taken into the spanner. The cut edges, with one endpoint in
Heavy and the other in Light, are 2-spanned using a linear programming formula-
tion. The output edge set is denoted Er. Again we may assume that ∆∗ (or, more
accurately, ∆∗

f ) is known in advance.

Algorithm 8.1. Algorithm Sparse1

Input: A graph G = (V,E).

1. Let Heavy = {v ∈ V | deg(v) ≥
√
E}, Light = {v ∈ V | deg(v) <

√
E}.

2. Add E(Heavy) ∪ E(Light) into Er.
3. Let Eu be the set of cut edges having one endpoint in Heavy and one in

Light.
4. Solve the fractional relaxation of the program (P1) corresponding to Eu, Er,

and ∆∗.
5. Let {xi,j , yi,k} be the optimum (fractional) solutions corresponding to (P1).

For every variable x̂i,j create a respective random variable x̄i,j.
6. Randomly and uniformly set x̄i,j to be 1 with probability min{1, 4 log n ·xi,j}.
7. If x̄i,j is set to 1, then add the edge (vi, vj) to Er.
8. Add all the remaining non 2-spanned edges to Er and output Er.

8.2. Analysis. We now prove that Algorithm 8.1 yields a 2
√
E additive approx-

imation. We first note the following simple fact.

Fact 8.2. In step 2 of Algorithm 8.1, we add to Er no more than 2
√
E edges

adjacent to any vertex.

Proof. The claim is clear for vertices v in Light, since such a vertex has at
most

√
E adjacent edges. Also note that |Heavy| ≤ 2 ·

√
E, and thus for a vertex

v ∈ Heavy at most 2 ·
√
E edges are candidates for addition to Er in this step. The

claim follows.

We now note the following simple yet crucial fact.

Fact 8.3. In every triangle corresponding to a cut edge e in the set Eu defined in
step 3 of Algorithm 5.1, exactly one of its edges was already added to Er in Step 2.

Proof. Every such triangle contains an edge e′ that is not a cut edge. Thus, either
both vertices of e′ belong to Heavy or they both belong to Light. In either case e′

was added to Er in step 2.

Given some cut edge ek = (vl, vt), let yi,k be a variable corresponding to vi ∈
D(ek) and ek. Without loss of generality, let (vi, vl) be the other cut edge in the
triangle. Thus, the probability that vi 2-helps ek exactly equals min{1, 4 log n ·xi,l} ≥
min{1, 4 log n · yi,k}. Thus a proof along the lines of that in Lemma 6.5 (but simpler,
due to the fact that here we can avoid the “squaring” effect) gives the next corollary.
The main point is that the sum of the probabilities that the triangles of ek survive
is roughly 4 logn

∑

i yik = Ω(log n). (The squaring effect is avoided, since in any
triangle we need only one edge to survive and not two edges together, because the
other edge of every triangle was already chosen to the spanner.)

Corollary 8.4. With probability at least 1 − 1/n2 all the edges in Eu are 2-
spanned by the end of step 7 of Algorithm 8.1.

We note that the expectation of the degree of a vertex (and thus, using Lemma 2.2,
the expectation of the maximum degree) is bounded by 2

√
E+O(log n ·∆∗). Thus up

to logarithmic factors, this approximation is 2
√
E additive. By using derandomization

(as explained in the previous section) and Lemma 3.2 we have the following.
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Corollary 8.5. There is an Õ(
√

E/∆) approximation algorithm for the LD-2SP
problem.

Note that if E ≤ ∆
√

∆ then Algorithm 8.1 performs better than Algorithm 5.1.
Let us consider the approximation ratio in terms of n. Algorithm 5.1 gives a worst-
case ratio of Õ(n1/4). This happens when ∆ is very large, i.e., ∆ = Θ(n). On the
other hand, if ∆ is very large, we may have

√

|E|/∆ small. This implies that the
ratio is improved whenever |E| < n3/2 by doing the following. Considering a graph
with n3/2−ǫ edges, if ∆ ≤ n1−2ǫ/3 then apply Algorithm 5.1, else apply Algorithm
8.1. This gives the following bound.

Corollary 8.6. For every 0 ≤ ǫ ≤ 1/2, there exists an Õ(n1/4−ǫ/6) approxima-
tion algorithm for the LD-2SP problem on graphs G with E = O(n3/2−ǫ).

This result improves the ratio in “absolute terms” (i.e., in terms of n). For
example, if E = O(n) then the combined algorithm has an O(n1/6) approximation
ratio (whereas Algorithm 5.1 would give an O(n1/4) ratio in the worst case).

8.3. The case of n3/2 < E ≤ n7/4. In [KP93] we present Algorithm 8.1
which outperforms Algorithm 5.1 in the range n3/2 < E ≤ n7/4. That is, we assume
a graph with O(n7/4−ǫ) edges, where 0 ≤ ǫ ≤ 1/4, and show an Õ(n1/4−ǫ/11)-ratio
approximation algorithm, improving over the n1/4-ratio of Algorithm 5.1.

Theorem 8.7 (see [KP93]). Given a graph G = (V,E) with n7/4−ǫ edges, Al-
gorithm 8.1 combined with a derandomization procedure has an Õ(n1/4−ǫ/11) approx-
imation ratio.

9. Spanning the edges of a single vertex. In this section we consider the
weaker problem of spanning the edges adjacent to a single vertex and present an
O(log n) approximation for it. This construction can easily be applied to span the
edges adjacent to a small subset of the vertices.

Say that we are given a specific vertex v (presumably with high degree) and we
want to 2-span its edges (and do not care about the edges not touching v). Thus our
aim is to select some subset E′ ⊆ E inducing low degrees such that every missing
edge of v is 2-spanned by a triangle. Denote this problem by SLD-2SP.

First we note that the lower bound on approximability for the LD-2SP problem
applies to the SLD-2SP problem as well. Given an instance of the set cover problem,
we may construct Ḡ as in section 4, and consider the problem of spanning the edges
of s. A similar proof as in section 4 shows that unless NP ⊂ DTIME(nlog log n),
the ratio of any approximation algorithm for the SLD-2SP problem is no better
than lnn/5. On the other hand, in this section we match this result, showing a
logarithmic-ratio approximation algorithm for SLD-2SP. We use a known greedy
approximation for a (slightly) more involved version of the set cover problem. This
essentially shows that this weaker problem SLD-2SP is equivalent to set cover, with
respect to approximation.

The bounded-load set cover problem is a variant of the set cover problem that
deals with assigning specific covering vertices to the covered vertices. Namely, along
with finding a cover C of V2, it is required to provide a function ϕ : V2 → C, assigning
each vertex v2 in V2 a neighbor ϕ(v2) in C. The load of a vertex v1 ∈ V1 is defined as
the number of covered vertices it is assigned to, i.e., L(v1) = |{v2 ∈ V2 | ϕ(v2) = v1}|.
The problem is now defined as follows. Given a bipartite graph G(V1, V2, E) and an
integer L ≤ |V2|, find a cover C ⊂ V1 of V2 and an assignment ϕ with maximum load
bounded by L (i.e., such that no vertex in V1 is assigned to more than L vertices of
V2).

We recall the following theorem of [Wol82].
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Theorem 9.1 (see [W82]). The bounded load set cover problem can be approxi-
mated with ratio O(log |V2|).

Given an instance of the SLD-2SP problem, where our aim is to 2-span the edges
of v, we reduce it to an instance of the bounded load set cover problem. We use a
reformulation of the SLD-2SP problem as follows. Model the neighbors N(v) of v
and the edges E(v) of v in a bipartite graph Bip = (N(v), E(v), A) where a vertex
u ∈ N(v) is connected to an edge e = (v, w) ∈ E(v), iff (u,w) ∈ E. (Namely,
(u, e) ∈ A iff u belongs to D(e) and can 2-help e = (v, w) ∈ E(G) in the spanner by
the edges (u,w) and (u, v).)

The aim is to find a small-sized cover C of E(v) (in Bip), with small maximum
load. The merit of this construction is explained by the following observation.

Claim 9.2. Given a small set C covering E(v) with maximum load L, it is
possible to construct a 2-spanner of the edges of v with maximum degree bounded by
max{|C|, L + 1}.

Proof. Construct the 2-spanner as follows. Define the bipartite graph Bip, and
let C = {w1, . . . , wk} ⊆ N(v). Let {ei1, . . . , eini

} be the edges incident to v that are
covered in Bip by wi (where ni ≤ L). Let eij = (v, zij). Add the edges {(v, wi)}ki=1 to

the spanner. Also, add the edges (wi, z
i
j). Clearly, we have added |C| edges adjacent

to v (since one edge is added to v for each vertex of C). We have also added no more
than L + 1 edges adjacent to wi for every i, since wi covers no more than L edges
ej = (wi, z

i
j) in the spanner and also the edge (v, wi). Thus the SLD-2SP problem

is equivalent to finding a cover C and some assignment with load L, minimizing
max{|C|, L + 1}.

It easily follows from Theorem 9.1 that the problem of finding a cover with a load
assignment minimizing max{|C|, L + 1} also enjoys a logarithmic approximation. In
turn, this gives a logarithmic approximation ratio for the problem of spanning the
edges of v.

Corollary 9.3. The problem of spanning the edges of v with low degree has a
polynomial time approximation algorithm with ratio O(log n). Conversely, the problem
cannot be approximated with ratio better than lnn/5, unless NP ⊂ DTIME(nlog log n)
holds.

As an additional by-product, if we are required to 2-span only the edges of a
collection of k of the graph vertices, for small k, we can 2-span the edges of every
vertex in the set one by one and get an O(k log n) approximation for this problem.

Corollary 9.4. The problem of 2-spanning the edges of a subset V ′ ⊂ V of k
vertices with minimum maximum degree can be approximated within an O(log n · k)
ratio.
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