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We introduce a mechanism for generating higher order rogue waves (HRWs) of the nonlinear
Schrödinger(NLS) equation: the progressive fusion and fission of n degenerate breathers associated
with a critical eigenvalue λ0 creates an order-n HRW. By adjusting the relative phase of the breathers
in the interacting area, it is possible to obtain different types of HRWs. The value λ0 is a zero point
of an eigenfunction of the Lax pair of the NLS equation and it corresponds to the limit of the
period of the breather tending to infinity. By employing this mechanism we prove two conjectures
regarding the total number of peaks, as well as a decomposition rule in the circular pattern of an
order-n HRW.
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Introduction. Rogue waves(RWs) in the ocean are
catastrophic natural phenomena with a long history and
fascinating mariner stories [1]. Detailed studies of RWs
have occurred only during the past five decades [2–5]. A
prototype one dimensional rogue wave is the so-called
Peregrine soliton [6]; this soliton exhibits the two re-
markable characteristics of first-order RWs: (a) localized
behavior in both space and time, (b) the existence of
one dominant peak. RWs have been observed in several
fields, including optics [7–9], superfluid helium [10], Bose-
Einstein condensates [11], plasmas [12, 13], microwaves
[14], capillary phenomena[15], telecommunication data
streams [16], and inhomogeneous media [17].
A typical modeling equation for RWs in fiber optics

is the celebrated nonlinear Schrödinger (NLS) equation
[18],

iqt + qxx + 2|q|2q = 0. (1)

Here q = q(x, t) is a complex smooth function of x and
t, and the subscripts denote partial derivatives. The
Peregrine soliton [6], which is the first-order RW [19] of
the NLS equation, has been observed experimentally in
fibers [20], in a water tank [21], and in multi-component
plasmas [22]. Recently, a super rogue wave [23], i.e.,
a second order RW, has also been observed in a water
tank. In addition to the NLS equation, the Hirota equa-
tion [24, 25], the first-type derivative NLS(DNLS) equa-
tion [26], the third type DNLS equation [27], the NLS-
Maxwell-Bloch equations [28], the discrete NLS equa-
tion [29], the two-component NLS equations [30–32], and
the Davey-Stewartson equation [33, 34], also admit RWs.
These results show that RWs may be generic phenomena
in nonlinear systems.
The Peregrine soliton [6, 19] of the NLS equation is

expressed in terms of a simple rational formula; it cor-
responds to a simple profile and can be obtained from
a breather solution via the simple limit of the period
of modulation approaching infinity. However, higher or-
der rogue waves(HRWs) [35–38] are expressed in terms
of complicated formulas and their profiles exhibit several
different interesting patterns [39–43]. These patterns in-
clude a fundamental pattern consisting of a simple central
highest peak surrounded by several gradually decreasing
peaks [see Figs. 2(a) and 3 in Ref.[43]], an equal-height
triangular pattern [see Fig. 2(b) in Ref. [43] and Fig.2

in Ref. [40]], and circular pattern [see Fig.4 in Ref. [43]].
Taking into consideration the complexity of the rele-

vant formulas [44, 45], as well as the plethora of different
possible patterns, it is a challenging problem to elucidate
the mechanism of HRW generation. There exist two im-
portant conjectures regarding HRWs.

• In the case of a single fundamental pattern, an
order-n RW has n(n+1)−1 non-uniform peaks [43];
in the case when there exist several patterns, an
order-n RW has n(n+1)/2 uniform peaks [36, 37].

• In the case when an order-n RW displays a ring
structure, the outer ring has 2n− 1 uniform peaks,
and the inner structure is an order-(n− 2) RW[43].

In this work, we present a generating mechanism for
HRWs of the NLS equation, and using this mechanism,
we prove the above two conjectures. Furthermore, we
discuss several new interesting patterns of HRWs.
A Degenerate n-fold DT and inverse DT. In order
to study the breather and the RW solutions of the NLS
equation, we shall use the determinant representation of
the Darboux transformation (DT) introduced in [46–48].
Furthermore, we shall use the notations and the main
results of these references regarding the n-fold DT (the-
orem 1 in [48]) and the related functions (q[n], r[n], φ[n])
generated by the n-fold DT(corollary 1 in [48]). In order
to satisfy the reduction requirement q[n] = −(r[n])∗,we
choose f2k = (−f∗2k−1 2, f

∗

2k−1 1)
T , k = 1, 2, · · · , n, where

T denotes matrix transposition and the asterisk denotes
complex conjugation. Under this reduction, q[n] is a so-
lution of the NLS equation generated by an n-fold DT
starting with the seed solution q. In the following we
always use this reduction condition.
Theorem 1 and corollary 1 cited above imply that an n-

fold DT Tn of the NLS equation annihilates its indepen-
dent generating functions, which are the eigenfunctions
fi(i = 1, 3, 5 · · · , 2n−1) associated with n distinct eigen-
values λ1, λ3, λ5, · · · , λ2n−1. This means that if we fix
the given set of eigenvalues, we cannot apply DTs more
than once. Recall that the formulas for the eigenfunc-
tions fi(i = 1, 3, 5 · · · , 2n−1) differ only by the fact that
they involve different eigenvalues λi. However, in order to
obtain a HRW for a critical eigenvalue λ0, we must apply
repeated DTs. This difficulty can be overcome by not-
ing that the annihilated eigenfunctions can be re-created
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by taking the limit λi → λ1 of the eigenvalues used in

the DT [40]. We set fi = φ(λi) and f
[n]
i = φ[n]|λ=λi

. We
shall use the determinant representation of the n-fold DT
[see Eq. (14) of [48]] to illustrate the relevant construc-

tion. It is straightforward to verify that f
[1]
1 = 0, and

hence we cannot apply the DT again with the eigenvalue
λ1. Let λ3 = λ1 + ǫ; then

f
[1]
3 =f

[1]
3 (λ1 + ǫ) = f

[1]
1 (λ1 + ǫ)

=f
[1]
1 (λ1) + (

∂f
[1]
1 (λ1 + ǫ)

∂ǫ
|ǫ=0 )ǫ+O(ǫ).

Hence, the limit

lim
ǫ→0

1

ǫ
f
[1]
3 =

∂f
[1]
1 (λ1 + ǫ)

∂ǫ
|ǫ=0 , f

[1]
1

yields a transformed eigenfunction associated with λ1,
which can be used to generate a new DT so that we
can apply this DT with the given eigenvalue λ1 for a sec-
ond time. Similarly, set the second degenerate eigenvalue

λ5 = λ1 + ǫ in f
[2]
5 ; the limit

lim
ǫ→0

1

ǫ2
f
[2]
5 =

∂2f
[2]
1 (λ1 + ǫ)

∂ǫ2
|ǫ=0 , f

[2]
1

re-creates a transformed eigenfunction associated with λ1
of the two-fold DT. Note that the zero order and the first
order terms of ǫ in f

[2]
5 yield zero contributions. In gen-

eral, for an n-fold DT, we can use the following theorem
on φ[n](λ) and q[n] using the degenerate limit λi → λ1
by a similar analysis, based on the determinant represen-
tation given by Theorem 1 and Corollary 1 of [48]. The
following notations, including matrix elements [(t1)12]ij
and (W2n)ij , are given in [48].
Theorem 1 An n-fold DT with a given eigenvalue λ1 is
realized by the degenerate limit λi → λ1. This degener-
ate n-fold DT yields the transformed eigenfunction φ[n]

of λ,where

φ[n] =
1

|W ′

2n|
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, (2)

as well as a new solution q[n] of the NLS equation starting
with the seed solution q,where

q[n](x, t;λ1) = q − 2i
|Q′

2n|
|W ′

2n|
, (3)

with

W ′

2n =

(

∂ni−1

∂εni−1

∣

∣

∣

∣

ε=0

(W2n)ij(λ1 + ǫ)

)

2n×2n

,

ξ̂′2n−1 =

(

∂ni−1

∂εni−1

∣

∣

∣

∣

ε=0

ξ̂2n−1,i(λ1 + ǫ)

)

2n×1

,

ξ̂′2n =

(

∂ni−1

∂εni−1

∣

∣

∣

∣

ε=0

ξ̂2n,i(λ1 + ǫ)

)

2n×1

,

Q′

2n =

(

∂ni−1

∂εni−1

∣

∣

∣

∣

ε=0

(Q2n)ij(λ1 + ǫ)

)

2n×2n

,

ni = [ i+1
2 ], [i] denotes the floor function of i, Q2n is the

determinant in the numerator of (t1)12[48].
Starting with different seed solutions q, Eq. (3) yields dif-
ferent degenerate solitons and breathers. Furthermore,
by choosing a special eigenvalue λ1 = λ0 associated with
φ(λ0) = 0 , Eq. (3) yields an order n RW. In the latter
case, all orders of derivatives with respect to ǫ in φ[n]

and q[n](x, t;λ1) are increased by 1 because φ(λ0) = 0.
The main idea of the above procedure for constructing
rogue wave is the following: According to the determi-
nant representation in Theorem 1 and Corollary 1 of [48],
there are two degenerate cases in T2k, i.e., λi → λ1 and
fi = φ(λi) = 0(i = 1, 3, · · · , 2k − 1). It is easy to rec-
ognize that q[2k] generated by T2k is given by an inde-

terminate form
0

0
in the above degenerate cases. Thus,

whether λi = λ1 + ǫ or λi = λ0 + ǫ , smooth solutions
can be obtained by higher-order Taylor expansion in de-
terminants with respect to ǫ as in Theorem 1.
In order to get an order-(n − 2) RW from an order-n

RW by a simple limit, it is necessary to use an inverse
DT. For a general eigenvalue λ, the x part of the Lax pair
of the NLS equation admits the solution φ(λ), as well
as the linearly independent solution ψ(λ) = (ψ1, ψ2)

T .
Furthermore ψ[n] = Tnψ and φ[n] = Tnφ are linearly
independent because Tn is a linear transformation of ψ
and φ. Let gk , (gk1, gk2)

T = ψ(λk); then the Wronskian
determinant W (fi, gi) = fi1gi2 − fi2gi1 of fi and gi is a
non-zero constant. Using the determinant representation
of the one-fold DT, T (λ; f1, f2), generated by f1 and f2,
we find the transformed functions

g
[1]
1 =

(λ1 − λ2)W (f1, g1)

|W2|

(

f21
f22

)

,

g
[1]
2 =

(λ1 − λ2)W (f2, g2)

|W2|

(

f11
f12

)

,

which are not zero in contrast to f
[1]
1 = 0 and f

[2]
2 = 0.

Hence, we can use g
[1]
1 and g

[1]
2 to generate the second fold

DT T (λ; g
[1]
1 , g

[2]
2 ). Using a straightforward calculation

with the help of Theorem 1 in [48], it can be shown that
the two-fold DT is given by

T2 = T (λ; g
[1]
1 , g

[1]
2 )T (λ; f1, f2) = (λ− λ1)(λ− λ2)I, (4)

where I is the unit matrix of size 2. Here we present only
the calculation of the element (T2)11. First note that

|W4(g1, g2, f1, f2)| = −(λ2 − λ1)
2W (f1, g1)W (f2, g2);

(T̃2)11=− (λ−λ1)(λ−λ2)(λ2 −λ1)2W (f1, g1)W (f2, g2).

Hence,

(T2)11=
(T̃2)11

|W4(g1, g2, f1, f2)|
= (λ− λ1)(λ− λ2).

Thus T (λ; g
[1]
1 , g

[1]
2 ) is the inverse DT of T (λ; f1, f2).

In general, for an (n − 2)-fold DT Tn−2 generated by
f1, f2, . . . , f2n−5, f2n−4, we can find a one-fold inverse

DT as follows(note that g
[n−2]
2n−3 = Tn−2g2n−3 or g

[n−2]
2n−2 =

Tn−2g2n−2 and f
[n−2]
2n−3 or f

[n−2]
2n−2 are linearly independent):

Theorem 2 Let the (n − 1)-th fold DT be

T (λ; f
[n−2]
2n−3 , f

[n−2]
2n−2 ) after an (n-2)-fold DT Tn−2,
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and g
[n−1]
2n−3 = T (λ; f

[n−2]
2n−3 , f

[n−2]
2n−2 )g

[n−2]
2n−3 , g

[n−1]
2n−2 =

T (λ; f
[n−2]
2n−3 , f

[n−2]
2n−2 )g

[n−2]
2n−2 . Then the n-th fold DT

T (λ; g
[n−1]
2n−3 , g

[n−1]
2n−2 ) is the inverse of the (n − 1)-th fold

DT.
In other words, the n-th fold DT T (λ; g

[n−1]
2n−3 , g

[n−1]
2n−2 ) maps

q[n−1] to q[n−2]. This gives an important connection be-
tween RWs of order (n− 1) and order (n− 2).
Higher order breathers and rogue waves The first-
order breather of the NLS equation is a periodic traveling
wave. This solution, via the limit of the period approach-
ing infinity, gives the first-order RW [6, 19]. However,
it is still not clear how to generate HRWs from multi-
breathers, even for second-order RWs [41]. Moreover,
the collision of three breathers [49] does not provide a
satisfactory explanation for the appearance of different
patterns of order-3 RWs.
On the (x, t) plane, because of the conservation of the

number of breathers, there exist n separate peaks in each
row before and after the interaction of n breathers. The
interaction area is localized near the origin of the plane
between the two closest rows (or periods) possessing n
separate peaks. When the breathers are in the interac-
tion area, their peaks get closer. Based on the detailed
investigation of the interaction of breathers, we claim the
following mechanism for the generation of HRWs: the
progressive fusion and fission of n degenerate breathers
associated with a critical eigenvalue λ0 creates an order-
n HRW. Furthermore, by adjusting the relative phase of
the breathers in the interacting area, it is possible to ob-
tain different patterns of HRWs. Here λ0 is a zero point
of the eigenfunction φ(λ), i.e., φ(λ0) = 0, which corre-
sponds to the limit of the period of the breathers becom-
ing infinitely large. The relative phase can be adjusted
via the tuning of the parameters si in the eigenfunctions
fi.
In this work, we shall take a periodic seed q = ceiρ with

ρ = ax + (2c2 − a2)t. The corresponding eigenfunctions
φ(λ) = (φ1, φ2)

T are given by

φ(λ)=

(

cei(
ρ

2
+d(λ))+ i(a2 + c1(λ)+λ)e

−i(− ρ

2
+d(λ))

ce−i( ρ

2
+d(λ))+ i(a2 + c1(λ)+λ)e

i(− ρ

2
+d(λ))

)

. (5)

Here c1(λ) =
√

c2 + (λ+ a/2)2, d(λ) = c1(λ)(x + (2λ −
a)t + s0 + Φ),Φ =

∑n−1
k=1 skǫ

2k[40], n denotes the num-
ber of steps of the multi-fold DT, λ0 = −a/2 + ic is a
zero point of the eigenfunction φ(λ), ǫ denotes a small
parameter when we consider the degeneracy of the eigen-
values,i.e., λ = λ0+ǫ, and si are complex constants. The
functions fi = φ(λi) have the same form except for the
occurrence of different values of the eigenvalues which is
necessary to generate HRWs via the process of eigenvalue
degeneration λi 7→ λ1 (see Theorem 1). In the following
examples we set a = 0. Also, in order to adjust the
relative phase of the breathers in the interaction area ac-
cording to Theorem 1 and Corollary 1 of Ref. [48], we set
si = 0(i ≥ 1), but s0 has different values in different fi.
There exist three types of relative phases of n breathers
in the interaction area: synchronous, anti-synchronous,
and quasi-synchronous.
In the interaction area of n synchronous breathers,

there exist progressively increasing fusion via n− 1 steps
from the n lower peaks to the central maximum peak,

and then progressively decreasing fission via n− 1 steps
from the central maximum peak to the n lower peaks.
Here, each step of fusion annihilates one peak and hence
the height of the peaks increases; similarly, each step of
fission creates one new peak and hence the height of the
peaks decreases. These peaks are arranged as two tri-
angles with one joint vertex along their perpendicular
bisector. Thus, the total number of non-uniform peaks
in the interaction area is n(n+1)− 1. It is interesting to
note that the outermost row of the interaction area has
n lower peaks, which are close to each other. Hence, the
peaks are much lower than the ones in the nearest row of
the non-interaction area. This phenomenon provides ev-
idence for the strong interaction of the breathers. When
the eigenvalue used in the breathers approaches the crit-
ical value λ0,i.e. λi 7→ λ0, the periods of all breathers go
to infinity simultaneously, so that only one profile in the
interaction area survives, and this gives the fundamental
pattern of a HRW. Therefore, this pattern of an order-n
HRW, has n(n+ 1)− 1 non-uniform peaks. The central
profile of the three breathers in Fig. 1 is very similar with
the fundamental pattern of an order-3 RW [see Fig. 3(a)
in Ref. [43]] of the NLS equation. The three breathers
are plotted according to Theorem 1 and Corollary 1 of
[48] with a = 0.01,c = 0.5, s0 = 0,and λ1 = −0.2 + 0.54i
in f1, λ3 = 0.1 + 0.55i in f3 and λ5 = 0.03 + 0.56i in f5.

The interaction of n anti-synchronous breathers is sim-
pler, although there also exists the fusion or fission of
peaks. In the interaction area, the peaks are closer to
each other. By suitable adjustment of the relative phases
of the breathers, n synchronous breathers become n anti-
synchronous breathers, and the corresponding peaks in
the triangle disappear, so that only peaks in one trian-
gle survive. Specifically, by suitably changing the rela-
tive phase, we observe the disappearance of the lowest
peak in the outermost row of the interaction area, fol-
lowed by the disappearance of the two nearest peaks,
and so on. This chain reaction continues until the co-
alescence of the two triangles. The collapse of this tri-
angle is stimulated by the loss of the nearest-neighbor
interactions. Thus, there are n(n + 1)/2 peaks in the
interaction area, which are allocated on the remaining
triangle. If we set λi 7→ λ0 simultaneously, then the
profile in the interaction area of the order n breather
yields a triangular pattern of a HRW. Therefore, there
are n(n+ 1)/2 equal-height peaks in the triangular pat-
tern of an order-n HRW. A triangular structure of the
three anti-synchronous breathers is plotted in Fig. 2 by
using Theorem 1 of [48] with a = 0.01, c = 0.5, and
λ1 = 0.05 + 0.531i and s0 = 16 in f1, λ3 = 0.55i and
s0 = −20i in f3, and λ5 = −0.05 + 0.551i and s0 = −16
in f5. By suitably choosing different values of the pa-
rameters in n anti-synchronous breathers, so that the
relative positions of the peaks are changed but the total
number of peaks is preserved, we obtain a ring struc-
ture associated with the n(n + 1)/2 peaks in the inter-
action area, which gives rise to a circular pattern of an
order n RW in the above limit possessing n(n + 1)/2
peaks. Figure 3 confirms the ring structure of three
anti-synchronous breathers with a = 0.01, c = 0.5, and
λ1 = 0.05 + 0.54i and s0 = 1 + i in f1, λ3 = 0.55i and
s0 = 0 in f3, and λ5 = −0.05 + 0.56i and s0 = 1 + i
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in f5. There exist many other patterns appearing in the
interaction area of n anti-synchronous breathers, which
give rise to several types of HRWs such as two polygons
(Fig. 4 for an order-5 RW given by Theorem 1 with
λ0 = ic, a = 0, c = 1/

√
2, s0 = 0, s1 = 0, s2 = 106,

s3 = 10 for a pentagon or s3 = (1 + I) × 5 × 105 for a
heptagon, and s4 = 0) and a triangle in a circle (Fig. 5
for an order-5 RW given by Theorem 1 with λ0 = ic, a =
0, c = 1/

√
2, s0 = 0, s1 = 15, s2 = 0, s3 = 0, s4 = 107).

By suitably choosing the values of the parameters in
fi, we observe n quasi-synchronous breathers from Theo-
rem 1 and Corollary 1 in [48]. There exist many different
patterns in the interaction area, which implies many in-
teresting types of HRWs when λi 7→ λ0. For example,
one can find the following interesting decomposition of
an order-n HRW: an order -(n − 2) RW surrounded by
2n − 1 peaks [43]. The first nontrivial example of this
decomposition is given by the interaction of four quasi
synchronous breathers. Unfortunately, we are not able
to plot the profile in the interaction area in this case, due
to the complexity of order-4 breathers. However, we find
two complete decompositions of the circular pattern: an
order-5 RW in Fig. 6 with λ0 = ic, a = 0, c = 1/

√
2, s0 =

s1 = s2 = 0, s3 = 8 × 104, s4 = 2 × 107, and an order-6
RW in Fig. 7 with λ0 = ic, a = 0, c = 1/

√
2, s0 = s1 =

s2 = 0, s3 = 3× 104, s4 = 0, s5 = 108.
The inverse DT provides a technique enabling us to

prove the above interesting decomposition rule of an
order-n RW. For simplicity we set a = 0 in the seed solu-
tion, and then we set λ0 = ic. Expanding φ(λ0 + ǫ) with
respect to ǫ, we find that the coefficient of the first-order
term in ǫ is given by

f0 =

(

eic
2t(2icx− 4c2t+ 2ics0 + i)

−e−ic2t(2icx− 4c2t+ 2ics0 − i)

)

,

which is an eigenfunction associated with q and λ0. There
exist another eigenfunction

g0 =

(

eic
2t

−e−ic2t

)

of λ0. Note that f0 and g0 are two linearly independent
eigenfunctions of λ0. According to Theorem 1, an order-n
RW is generated by a degenerate n-fold DT with the crit-
ical eigenvalue λ0 from the periodic seed q = ce2ic

2

. Let
Tn−1 be an (n− 1)-fold degenerate DT with λ0, so that

g
[n−1]
0 and f

[n−1]
0 are given by eq.(2), and are linearly in-

dependent. By a tedious asymptotic analysis we find that

f
[n−1]
0 = f̃0 + sn−1g

[n−1]
0 , where f̃0 is a smooth bounded

function. According to Theorem 2, the n-th fold DT de-

fined by T (λ; g
[n−1]
0 ) is the inverse of the (n − 1)-th DT

defined by T (λ; f
[n−2]
0 ). Thus, by the limit sn−1 7→ ∞,

the n-th fold DT T (λ; f
[n−1]
0 ) = T (λ; g

[n−1]
0 ), gives an

inverse transform of the (n − 1)-th fold DT. Therefore,
under this limit, an order-n RW q[n] is reduced to an
order-(n − 2) RW, q[n−2]. By taking sn−1 to be large
(but finite), an order n RW is decomposed into an order-
(n− 2) RW and 2n− 1 peaks located on an outer circle
such that the total number n(n + 1)/2 of peaks can be
realized either in a triangular pattern or in a circular pat-
tern. The inner order-(n− 2) RW can take any of these

forms by choosing si(i = 0, 1, · · · , n− 3). This decompo-
sition rule of HRWs was conjectured by Akhmediev and
co-workers [43]. Figures 5 and 6 show different patterns
of the inner lower order RW decomposed from an order-5
RW. The fundamental pattern of the inner order-3 RW
reduced from an order-5 RW is shown in Fig. 4(c) of
[43]. According to this decomposition rule, Figs. 6 and 7
provide the first two non-trivial examples of a complete
decomposition associated with three levels.

In order to show the applicability of the generating
mechanism, we present new types of decomposition of
the seventh order, eighth order and ninth order RWs in
Figs. 8-13. In these figures, λ0 = ic, a = 0, c = 1/

√
2,

and the other non-zero parameters are s6 = 1010c0 in
Fig. 8; s6 = 1010c0, s4 = 105c0, s2 = 10c0 in Fig. 9;
s7 = 1010c0 in Fig. 10; s7 = 1010c0, s5 = 106c0 in Fig.
11; s8 = 1012c0 in Fig. 12; s8 = 1012c0, s6 = 105c0 in
Fig. 13, where c0 = 5 + 5i. In particular, Figs. 9 and 11
provide the first two non-trivial examples of a complete
decomposition associated with four levels.

Conclusion The central theme of this paper is an at-
tempt to elucidate how normal waves can evolve into a
rogue wave. It is well known that when a classical en-
velope soliton interacts with a background plane wave,
then a breather is formed [4]. Thus, there exist different
types of breathers, depending on the various combina-
tions of envelope solitons and background plane waves.
It has been predicted that the maximum wave field gen-
erated due to the interaction of an envelope soliton with
a background plane wave, depends on the linear super-
position between the amplitudes of the soliton and the
background plane wave. The problem of early detection
of rogue waves is a challenging task. Indeed, since the
NLS breathers are homoclinic orbits, even the slightest
perturbation resulting from roundoff errors during nu-
merical simulation, can trigger a false rogue like behav-
ior. Akhmediev et al. [50] have devised a model for early
detection of rogue waves in a chaotic field, which would
help marine travel in stormy conditions, as it would pro-
vide an early warning system for rogue waves. Just before
the appearance of the high-peak wave in real space, the
spectra of unit patches of the chaotic wave fields show
a specific triangular feature. Thus, the analysis of the
formation of such specific features could help the early
detection of rogue waves.

The two conjectures described in this article eluci-
date the formation of higher-order rogue waves. By un-
derstanding the generating mechanism for higher order
rogue waves as a result of the fission and the fusion
of n degenerate breathers, the formation of the desired
triangular pattern (and of a new class of circular pat-
tern reported in this paper) is a basic features of rogue
waves, which may have an important impact on their
early detection. The constructions of specific triangular
and circular patterns provide simple implementations of
the generic results presented in this paper.
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Fig. 1: (Color online) The fusion and fission of three
synchronous breathers on the (x, t) plane. The lower
panel is a local profile in the interaction area of the

upper panel

Fig. 2: (Color online) The fusion and fission of three
anti-synchronous breathers on the (x, t) plane. The

lower panel is a local triangle pattern in the interaction
area of the upper panel.
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Fig. 3: (Color online) The fusion and fission of three
anti-synchronous breathers on the (x, t) plane. The

lower panel is a local circular pattern in the interaction
area of the upper panel.

Fig. 4: (Color online) The polygon pattern of an order-5
RW. The upper pentagon has three concentric circles,
and each of them has five peaks. The lower heptagon
has two concentric circles, and each of them has seven

peaks.
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Fig. 5: (Color online) A triangle pattern in a circle for
an order-5 RW. The lower panel is a local central profile

of the upper panel.

Fig. 6: (Color online) Decomposition of an order-5 RW.
The lower panel is a local central profile of the upper

panel.
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Fig. 7: (Color online) Decomposition of an order-6 RW.
The lower panel is a local central profile of the upper

panel.

Fig. 8: (Color online) Decomposition of an order-7 RW.
The lower panel is a local central profile of the upper

panel.
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Fig. 9: (Color online) Decomposition of an order-7 RW.
The lower panel is a local central profile of the upper

panel.

Fig. 10: (Color online) Decomposition of an order-8
RW. The lower panel is a local central profile of the

upper panel.
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Fig. 11: (Color online) Decomposition of an order-8
RW. The lower panel is a local central profile of the

upper panel.

Fig. 12: (Color online) Decomposition of an order-9
RW. The lower panel is a local central profile of the

upper panel.
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Fig. 13: (Color online) Decomposition of an order-9
RW. The lower panel is a local central profile of the

upper panel.
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