
Generating Models of Infinite-State

Communication Protocols Using Regular
Inference with Abstraction�

Fides Aarts1,��, Bengt Jonsson2, and Johan Uijen1

1 Inst. f. Comp. and Inf. Sciences, Radboud University, Nijmegen, The Netherlands
{f.aarts,j.uijen}@cs.ru.nl

2 Department of Computer Systems, Uppsala University, Sweden
bengt@it.uu.se

Abstract. In order to facilitate model-based verification and valida-
tion, effort is underway to develop techniques for generating models of
communication system components from observations of their external
behavior. Most previous such work has employed regular inference tech-
niques which generate modest-size finite-state models. They typically
suppress parameters of messages, although these have a significant im-
pact on control flow in many communication protocols. We present a
framework, which adapts regular inference to include data parameters
in messages and states for generating components with large or infinite
message alphabets. A main idea is to adapt the framework of predicate
abstraction, successfully used in formal verification. Since we are in a
black-box setting, the abstraction must be supplied externally, using in-
formation about how the component manages data parameters. We have
implemented our techniques by connecting the LearnLib tool for regular
inference with the protocol simulator ns-2, and generated a model of the
SIP component as implemented in ns-2.

1 Introduction

Model-based techniques for verification and validation of communication proto-
cols and reactive systems, including model checking and model-based testing [7]
have witnessed drastic advances in the last decades, and are being applied in in-
dustrial settings (e.g., [20]). They require formal models that specify the intended
behavior of system components, which ideally should be developed during spec-
ification and design. However, the construction of models typically requires sig-
nificant manual effort, implying that in practice often models are not available,
or become outdated as the system evolves. Automated support for construct-
ing models of the behavior of implemented components would therefore be ex-
tremely useful, e.g., for regression testing, for replacing manual testing by model
based testing, for producing models of standardized protocols, for analyzing
whether an existing system is vulnerable to attacks, etc. Techniques, developed

� Supported in part by EC Proj. 231167 (CONNECT).
�� Supported in part by the EC Progr. No. 214755 (QUASIMODO).

A. Petrenko, A. Simão, and J.C. Maldonado (Eds.): ICTSS 2010, LNCS 6435, pp. 188–204, 2010.
c© IFIP International Federation for Information Processing 2010



Generating Models of Infinite-State Communication Protocols 189

for program analysis, that construct models from source code (e.g., [4,19]) are
often of limited use, due to the presence of library modules, third-party com-
ponents, etc., that make analysis of source code difficult. We therefore consider
techniques for constructing models from observations of their external behavior.

The construction of models from observations of component behavior can be
performed using regular inference (aka automata learning) techniques [3,11,22,31].
This class of techniques is now receiving increasing attention in the testing and
verification community, e.g., for regression testing of telecommunication sys-
tems [18,21], for integration testing [17,23], security protocol testing [33], and for
combining conformance testing and model checking [28,16]. One of the most used
algorithms for regular inference, L∗, poses a sequence of membership queries,
each of which observes the component’s output in response to a certain input
string, and produces a minimal deterministic finite-state machine which con-
forms to the observations. If the sequence of membership queries is sufficiently
large, the produced machine will be a model of the observed component.

Since regular inference techniques are designed for finite-state models, previ-
ous applications to model generation have been limited to generating a moderate-
size finite-state view of the system behavior, implying that the alphabet must
be made finite, e.g., by suppressing parameters of messages. However, param-
eters have a significant impact on control flow in typical protocols: they can be
sequence numbers, configuration parameters, agent and session identifiers, etc.
The influence of data on control flow is taken into account by model-based test
generation tools, such as ConformiQ Qtronic [20]. It is therefore important to
extend inference techniques to handle message alphabets and state-spaces with
structures containing data parameters with large domains.

In this paper, we present a general framework for generating models of pro-
tocol components with large or infinite structured message alphabets and state
spaces. The framework is inspired by predicate abstraction [24,9], which has
been successful for extending finite-state model checking to large and infinite
state spaces. In contrast to that work, however, we are now in a black-box set-
ting, where an abstraction cannot be defined based on the source code or model
of a component, since it is not accessible. Instead, we must construct an exter-
nally supplied abstraction, which translates between a large message alphabet of
the component to be modeled and a small finite alphabet of the regular inference
algorithm. Via regular inference, a finite-state model of the abstracted interface
is inferred. The abstraction can then be reversed to generate a faithful model of
the component.

We describe how to construct a suitable abstraction, utilizing pre-existing
knowledge about which operators are sufficient to express guards and opera-
tions on data in a faithful model of the component. We have implemented our
techniques by connecting the LearnLib tool for regular inference with the pro-
tocol simulator ns-2, which provides implementations of standard protocols. We
have used it to generate models of ns-2 protocol implementations.

Related Work. Regular inference techniques have been used for several tasks in
verification and test generation, e.g., to create models of environment constraints



190 F. Aarts, B. Jonsson, and J. Uijen

with respect to which a component should be verified [10], for regression testing
to create a specification and test suite [18,21], to perform model checking with-
out access to source code or formal models [16,28], for program analysis [2], and
for formal specification and verification [10]. Groz, Li, and Shahbaz [23,32,17]
extend regular inference to Mealy machines with data values, for use in integra-
tion testing. They use only a finite set of the data values in the obtained model,
and do not infer internal state variables. Shu and Lee [33] learns the behavior
of security protocol implementations for a finite subset of input symbols, which
can be extended in response to new information obtained in counterexamples.
Lorenzoli, Mariani, and Pezzé infer models of software components that con-
sider both sequence of method invocations and their associated data parameters
[25,26]. They use a passive learning approach where the model is inferred from
a given sample of traces. They infer a finite control structure capturing possible
sequences of method invocations, by an extension of the k-tails algorithm, and
using Daikon [8] to infer guards and relations on method parameters. In con-
trast to their passive learning, we use an active learning approach where new
queries may be supplied to the system; this is an added requirement but allows
to generate a more informative sample.

In previous work, we have considered extensions of regular inference to handle
data parameters. In [5], we show how guards on boolean parameters can be
refined lazily. This technique for maintaining guards have inspired the more
general notion of abstractions on input symbols presented in the current paper.
We have also proposed techniques to handle infinite-state systems, in which
parameters of messages and state variables are from an unbounded domain, e.g.,
for identifiers [6], and timers [13,12]. These extensions are specialized towards
a particular data domain, and their worst-case complexities do not immediate
suggest an efficient implementation. This paper proposes a general framework for
incorporating a range of such data domains, into which techniques specialized for
different data domains can be incorporated, and which we have also evaluated
on realistic protocol models.

Organization. In the next section, we give basic definitions of Mealy machines.
We present our inference and abstraction techniques in Section 3. The application
to SIP is reported in Section 4. Section 5 contains conclusions and directions for
future work.

2 Mealy Machines

Basic Definitions. We will use Mealy machines to model communication protocol
entities. A Mealy machine is a tuple M = 〈ΣI , ΣO, Q, q0, δ, λ〉 where ΣI is a
nonempty set of input symbols, ΣO is a nonempty set of output symbols, Q is
a nonempty set of states, q0 ∈ Q is the initial state, δ : Q × ΣI → Q is the
transition function, and λ : Q × ΣI → ΣO is the output function. The sets of
states and symbols can be finite or infinite: if they are all finite we say that the
Mealy machine is finite. Elements of Σ∗

I are called input strings, and elements



Generating Models of Infinite-State Communication Protocols 191

of Σ∗
O are called output strings. We extend the transition and output functions

to input strings in the standard way, by defining:

δ(q, ε) = q λ(q, ε) = ε
δ(q, ua) = δ(δ(q, u), a) λ(q, ua) = λ(q, u)λ(δ(q, u), a)

where u ∈ Σ∗
I . We define λM(u) = λ(q0, u) for u ∈ Σ∗

I . Two Mealy machines M
and M′ with the same set of input symbols are equivalent if λM(u) = λM′(u)
for all input strings u.

Intuitively, a Mealy machine behaves as follows. At any point in time, the
machine is in some state q ∈ Q. When supplied with an input symbol a ∈ ΣI ,
it responds by producing an output symbol λ(q, a) and transforms itself to a

new state δ(q, a). We use the notation q
a/b−→ q′ to denote that δ(q, a) = q′ and

λ(q, a) = b; in this case q
a/b−→ q′ is called a transition of M.

The Mealy machines that we consider are deterministic, meaning that for
each state q and input symbol a exactly one next state δ(q, a) and output string
λ(q, a) is possible.

Symbolic Representation. In order to conveniently model entities of communica-
tion protocols, we should be able to describe messages as consisting of a message
type with a number of parameters, and states as consisting of a control location
and values of a set of state variables. We therefore introduce a symbolic repre-
sentation of Mealy machines, similar to Extended Finite State Machines [29].

So, assume a set of action types. Each action type α has a certain arity, which
is a tuple of domains (a domain is a set of allowed data values) Dα,1, . . . ,Dα,n

(where n depends on α). For a set I of action types, let ΣI be the set of terms
of form α(d1, . . . , dn), where di ∈ Dα,i is a data value in the appropriate domain
for each i with 1 ≤ i ≤ n. Assume a set of formal parameters, ranged over by
p1, p2, . . ., to be used as placeholders for parameters of symbols.

Also, assume a set of state variables. Each state variable v has a domain of
possible values, and a unique initial value. For a set V of state variables, let a
V -valuation σ be a partial mapping from V to data values in their respective
domains, and let σV

0 be the V -valuation which maps each variable in V to its
initial value. We extend V -valuations to expressions over state variables in the
natural way; for instance, if σ(v3) = 8, then σ(2 ∗ v3 + 4) = 20.

Definition 1. A Symbolic Mealy machine is a tuple SM = 〈I, O, L, l0, V,−→〉,
where I and O are disjoint finite sets of actions (input actions and output actions),
where L is a finite set of locations, where l0 ∈ L is the initial location, where V is
a finite set of state variables, and where −→ is a finite set of symbolic transitions,
each of form

�l �l′�α(p1, . . . , pn) when g / v1, . . . , vk := e1, . . . , ek ; β(eout
1, . . . , e

out
m)

in which l and l′ are locations, α ∈ I and β ∈ O are actions, p1, . . . , pn are dis-
tinct formal parameters, v1, . . . , vk are distinct state variables in V , in which g (the
guard) is a boolean expression over p1, . . . , pn and V , and in which e1, . . . , ek and



192 F. Aarts, B. Jonsson, and J. Uijen

eout
1, . . . , e

out
m are expressions over p1, . . . , pn and V . We assume that the arities

of α and β and the domains of v1, . . . , vk are respected. For each input action α ∈ I,
each location l ∈ L, and each V -valuation σ, the set −→ must contain exactly
one symbolic transition of the above form for which σ(g[d1, . . . , dn/p1, . . . , pn]) is
true. �	
In the following, we will use p for p1, . . . , pn and d for d1, . . . , dn.

Intuitively, a symbolic transition of the above form denotes that whenever a
Symbolic Mealy machine (SMM for short) SM is in location l and some input
symbol of form α(d) is received, such that the guard g is satisfied when the formal
parameters p are bound to the data values d, then the state variables among
v1, . . . , vk are simultaneously assigned new values, an output symbol obtained
by evaluating β(eout

1, . . . , e
out

m), is generated, and SM moves to location l′.
The meaning of a SMM SM = 〈I, O, L, l0, V,−→〉 is defined by its denotation,

which is the Mealy machine MSM = 〈ΣI , ΣO, Q, q0, δ, λ〉, where ΣI is obtained
from I as described earlier, and similarly for ΣO, where Q is the set of pairs 〈l, σ〉
consisting of a location l ∈ L and a V -valuation σ, where q0 is the pair 〈l0, σV

0 〉,
and where δ and λ are such that for any symbolic transition in −→ of form

�l �l′�α(p1, . . . , pn) when g / v1, . . . , vk := e1, . . . , ek ; β(eout
1, . . . , e

out
m)

for any V -valuation σ and data values d with σ(g[d/p]) being true, it holds that

– δ(〈l, σ〉, α(d)) = 〈l′, σ′〉, where σ′ is the V -valuation such that σ′(vi) =
σ(ei[d/p]) for 1 ≤ i ≤ k, and σ′(v) = σ(v) if v is not among v1, . . . , vk,

– λ(〈l, σ〉, α(d)) = β(σ′(eout
1 [d/p]), . . . , σ′(eout

m [d/p])).

We use λSM to denote λMSM , and say that SM and SM′ are equivalent if
λSM(u) = λSM′(u) for all input strings u. We can similarly say that an SMM
is equivalent to a Mealy machine.

Example. We consider a simplistic SMM, which models a component that ser-
vices requests to set up a connection. Its sets of input and output actions are
I = {REQ,CONF} and O = {REPL,ACK,REJ}. The arity of REJ is the empty
tuple (i.e., it has no parameters), and the arity of the other actions is the pair
IN, IN i.e., input symbols are of form REQ(id, sn) and CONF(id, sn) where id

�
�l0

�

REQ(id, sn) when cur id = cur sn = ⊥ /
cur id, cur sn := id, sn; REPL(cur id, cur sn);

�l1

�
CONF(id, sn) when (id = cur id + 1 ∧

sn = cur sn + 1) /
ACK(cur id, cur sn + 1) ;�l2

�

�

�

�

REQ(id, sn) when (id = cur id ∧ sn = cur sn) /
REPL(cur id, cur sn) ;

Fig. 1. Symbolic transitions of SMM in Example



Generating Models of Infinite-State Communication Protocols 193

and sn are natural numbers, and analogously for output symbols. There are
two state variables, cur id and cur id, both ranging over IN ∪ ⊥, with ⊥ (a dis-
tinguished symbol denoting “undefined”) as initial values. The set of locations
({l0, l1, l2}) and symbolic transitions are shown in Figure 1. We have suppressed
symbolic transitions where the machine replies with the output symbol REJ and
lead to a terminal error state (also not shown). For each location and input ac-
tion, there is one such symbolic transition, guarded by the negation of the guard
on the transition from the same location with the same input action. �	

3 Inference of Symbolic Mealy Machines

3.1 The Setting of Inference

The problem considered in this paper is the following: Given an SMM SM,
how can a component, called the Learner, which communicates with SM, infer
an SMM equivalent to SM by observing how SM responds to a set of input
strings. We use the same setting as Angluin’s L∗ algorithm [3]. There the Learner
initially knows the static interface of SM, i.e., the sets I and O of input and
output actions together with their arities. It may then ask a sequence of member-
ship queries; each one supplying a chosen input string u ∈ (ΣI)∗ and observing
the response λSM(u). After a “sufficient” number of membership membership
queries the Learner can build a “stable” hypothesis H from the obtained infor-
mation. The hypothesis H should of course agree with SM on the performed
membership queries (i.e., λSM(u) = λH(u) whenever u was supplied in a mem-
bership query), but must make suitable generalizations for other input strings.
In order to increase confidence in the hypothesis H, one can subject SM to
thorough conformance testing or longer-term monitoring in order to search for
input strings on which SM disagrees with H. In the setting of L∗, this is ide-
alized as an equivalence query, which asks whether H is equivalent to SM, and
which is replied with either yes, meaning that H is indeed equivalent to SM,
or with no and a counterexample, which is an input string u ∈ Σ∗

I such that
λSM(u) �= λH(u).

For finite Mealy machines the above problem is well understood. The L∗ al-
gorithm, which has been adapted to Mealy machines by Niese [27], generates hy-
potheses H that are the minimal Mealy machines that agree with the performed
membership queries. It is implemented in the LearnLib tool [30], which also real-
izes approximate equivalence queries by test suites of user-controllable size.

3.2 Inference Using Abstraction

The L∗ algorithm works only for finite Mealy machines. In order to use it for
inferring models of large or infinite-state SMMs, we adapt ideas from predicate
abstraction [24,9], which has been successful for extending finite-state model
checking to large and infinite state spaces.

In the following, consider an SMM SM = 〈I, O, L, l0, V,−→〉 with
MSM = 〈ΣI , ΣO, Q, q0, δ, λ〉, in which ΣI , ΣO, and Q may be large or infinite.



194 F. Aarts, B. Jonsson, and J. Uijen

To apply regular inference to SM, we should define an abstraction from ΣI and
ΣO to (small) finite sets of abstract input and output symbols. For instance,
in the SMM in Figure 1, symbols of form REQ(id, sn) can be abstracted to
symbols of form REQ(ID, SN), where ID and SN are from a small domain.
Let us abstract a parameter value id by CUR if id is the “current” session
identifier, and by OTHER otherwise. By the “current” session identifier,
we mean the value of id received in the first symbol of form REQ(id, sn).
We abstract the parameter sn in a similar way. In this way, the input string
REQ(25, 4) REQ(25, 7) is abstracted to REQ(CUR,CUR) REQ(CUR,OTHER),
whereas the input string REQ(42, 4) REQ(25, 7) is abstracted to
REQ(CUR,CUR) REQ(OTHER,OTHER). Thus, the abstraction of a symbol,
such as REQ(25, 7), in general depends on the previous history of symbols. In
model checking using abstraction [24,9], this dependency is taken into account
by letting the abstraction depend on internal state variables, such as cur id
and cur sn in the SMM of Figure 1. However, we are now in a black-box
setting where the state variables of the SMM are not accessible. Therefore,
the abstraction must maintain a set of additional state variables that record
relevant history information. In our example, they can be abs id and abs sn,
where abs id is assigned the value of the id parameter in the first input symbol
of form REQ(id, sn), and is thereafter used to decide whether id-parameters
should be mapped to CUR or OTHER. Let us formalize.

Definition 2. Let I and O be disjoint finite sets of (input and output) actions.
An 〈I, O〉-abstraction is a tuple A = 〈ΣA

I , ΣA
O , R, r0, abstrI , abstrO, δR〉, where

– ΣA
I and ΣA

O are finite sets of abstract input and output symbols,
– R is a (possibly infinite) set of local states,
– r0 ∈ R is an initial local state,
– abstrI : R × ΣI 
→ ΣA

I maps input symbols to abstract ones,
– abstrO : R × ΣO 
→ ΣA

O maps output symbols to abstract ones, and
– δR : R× (ΣI ∪ΣO) 
→ R updates the local state when a new input or output

symbol occurs. �	
Intuitively, an abstraction A maps input and output symbols to abstract ones,
and updates its local state immediately after the occurrence of each symbol.
We let A be implemented by a Mapper module, as shown in Figure 2. The
Mapper maintains the local state r of the abstraction. Each abstract input symbol
aA supplied by the Learner (such as REQ(CUR,CUR)), is translated by the

Learner Mapper SUT

�REQ(CUR,CUR) �REQ(25, 4)

� REPL(25, 4)� REPL(CUR,CUR)

Fig. 2. Introduction of Mapper module



Generating Models of Infinite-State Communication Protocols 195

Mapper to a concrete input symbol a such that aA = abstrI(r, a), and sent to
SUT. The corresponding reply b by SUT is translated to the abstract symbol
abstrO(δR(r, a), b) and sent back to the Learner. Finally the local state r is
updated to δR(δR(r, a), b). To keep the notation simpler, we will in the following
assume that the local state is updated only in response to input symbols (i.e.,
that δR(r, b) = r for any output symbol b); the extension to the general case
is straight-forward. We extend the transition and input abstraction function to
input strings by:

δR(r, ε) = q abstrI(r, ε) = ε
δR(r, ua) = δR(δR(r, u), a) abstrI(r, ua) = abstrI(r, u)abstrI(δR(r, u), a)

In particular, abstrI(r0, u) is the abstraction of an arbitrary input string u.
The Learner interacts with the combination of the Mapper and the SUT, using

the finite sets ΣA
I and ΣA

O . In general, this combination is not a (determinis-
tic) Mealy machine, but rather some nondeterministic state machine, since each
(abstract) input symbol aA can be translated by the Mapper (in state r) to any
input symbol a with aA = abstrI(r, a): different choices of a can, in general,
cause the SUT to move to different states and subsequently cause different (ab-
stract) output symbols to be generated. The states of this combination, denoted
Q〈SM,A〉, is the set of pairs in Q×R of form 〈δ(q0, u), δR(r0, u)〉 for some input
string u ∈ ΣI

∗.
Although the combination of the Mapper and the SUT is in general nonde-

terministic, a well-designed Mapper will mask this nondeterminism so that the
Learner perceives a deterministic Mealy machine, in the sense that a produced
abstract output symbol is uniquely determined by the preceding sequence of ab-
stract input symbols. We formalize this by defining A to be adequate for SM
if abstrI(r0, ua) = abstrI(r0, u

′a′) implies abstrO(δR(r0, ua), λ(δ(q0, u), a)) =
abstrO(δR(r0, u

′a′), λ(δ(q0, u
′), a′)) for all input strings u, u′ and symbols a, a′.

If A is adequate for SM, then the Learner will perceive that the combination
of the Mapper and the SUT is equivalent to a (deterministic) Mealy machine
(which may or may not be finite-state). This deterministic Mealy machine can
be defined by a (Nerode-like) quotient construction, as follows. Define the equiv-
alence � on Q〈SM,A〉 by 〈q, r〉 � 〈q′, r′〉 if for any input strings u, u′ ∈ ΣI

∗

and input symbols a, a′ ∈ ΣI we have that abstrI(r, ua) = abstrI(r′, u′a′) im-
plies abstrO(δR(r, ua), λ(δ(q, u), a)) = abstrO(δR(r′, u′a′), λ(δ(q′, u′), a′)). Intu-
itively, two elements of Q〈SM,A〉 are equivalent if they cannot be distinguished
by the Learner, i.e., any two subsequent input strings that are identified by
abstrI trigger two subsequent output strings that are identified by abstrO. If
A is adequate for SM, define A〈〈SM〉〉 to be the MM 〈ΣA

I , ΣA
O , Q〈SM,A〉/ �

, [〈q0, r0〉]�, δA, λA〉, where for any a ∈ ΣI with abstrI(r, a) = aA we have

– δA([〈q, r〉]�, aA) = [〈δ(q, a), δR(r, a)〉]�, and
– λA([〈q, r〉]�, aA) = abstrO(δR(r, a), λ(q, a)).

For any aA ∈ ΣA
I for which there is no a ∈ ΣI with abstrI(r, a) = aA, we

let λA([〈q, r〉]�, aA) be a designated error symbol, and let δA([〈q, r〉]�, aA) be



196 F. Aarts, B. Jonsson, and J. Uijen

a designated error state with a self-loop from which only the error symbol is
output. The definition of � can be used to show that A〈〈SM〉〉 is well-defined.

If a finite Mealy machine MA = 〈ΣA
I , ΣA

O , QA, qA0 , δA, λA〉 is produced by the
Learner, then we must finally “reverse” the effect of the abstraction A to obtain
an SMM SM such that A〈〈SM〉〉 is equivalent to MA. In general, we then
run into the problem that an abstract output symbol may correspond to several
concrete output symbols, implying that there is not a unique deterministic SMM
that causes the Learner to produce MA. Therefore, define A to be unambiguous
for MA if for all input symbols a and all 〈qA, r〉 ∈ Q〈SM,A〉, there is at most
one output symbol b which satisfies

abstrO(δR(r, a), b) = λA(qA, abstrI(r, a))

Intuitively, this means that we can deduce which output symbol is produced by
SM by seeing only its abstraction.

If A is unambiguous for MA, then define A−1〈〈MA〉〉 to be the Mealy machine
〈ΣI , ΣO, QA × R, 〈qA0 , r0〉, δ, λ〉, where

– δ(〈qA, r〉, a) = 〈δA(qA, abstrI(r, a)), δR(r, a)〉, and
– λ(〈qA, r〉, a) = b, where b is such that abstrO(δR(r, a), b) =

λA(qA, abstrI(r, a)).

Proposition 1. If A is adequate for SM and unambiguous for MA, and if
A〈〈SM〉〉 is equivalent to MA, then SM is equivalent to A−1〈〈MA〉〉. �	
The equivalence can be proven by observing that a state 〈qA, r〉 of A−1〈〈SM〉〉
is equivalent to a state q of SM if there is a common input string u ∈ ΣI which
drives the state of A−1〈〈MA〉〉 to 〈qA, r〉, and the state of SM to q.

Example. Let us define an abstraction for the SMM in Figure 1. Since the
infiniteness typically stems from the infinite domains of the parameters in sym-
bols, the abstraction maps parameter values to small domains. We map each
symbol form REQ(id, sn) to an abstract symbol of form REQ(ID, SN), where
ID ∈ {CUR,OTHER} and SN ∈ {CUR,CUR + 1,OTHER}. The state of the
abstraction is defined by two local variables that range over IN: abs id, which is
initially “undefined” (denoted ⊥), and thereafter assigned to the id parameter
of the first received REQ message, and abs sn, which is also initially “undefined”
and thereafter assigned to the sn parameter of the first received REQ message.

Table 1. Abstraction mappings for parameters

par CUR CUR + 1 OTHER

id
cur id = ⊥ ∧ mtype = REQ

∨
id = cur id ∧ cur id �= ⊥

id �= cur id
∧ cur id �= ⊥

sn
cur sn = ⊥ ∧ mtype = REQ

∨
sn = cur sn ∧ cur sn �= ⊥

sn = cur sn + 1
∧ cur sn �= ⊥

sn �= cur sn ∧ sn �= cur sn + 1
∧ cur sn �= ⊥



Generating Models of Infinite-State Communication Protocols 197

The input and output abstraction mappings abstrI and abstrO can be defined
by supplying, for each parameter (being either id or sn) and each abstract pa-
rameter value D, a predicate which defines the set of parameter values that are
mapped to D. We can organize these predicates into a table, as in Table 1. We
use mtype to denote the action type of the symbol considered (being either REQ,
CONF, RESP, or ACK). Thus, in total there are 12 abstract input symbols and
13 abstract output symbols (the symbol REJ is mapped to itself).

A possible result by the Learner is the Mealy machine MA in the figure below.

�
�l0

�
REQ(CUR,CUR) / REPL(CUR,CUR)

�l1

�CONF(CUR,CUR + 1) / ACK(CUR,CUR + 1)
�l2

�

	

�

�
REQ(CUR,CUR) / REPL(CUR,CUR)

Each arc is labeled by an abstract input symbol followed by the abstract output
symbol that the Learner observes in response. From the picture, we have ex-
cluded all arcs that contain the output symbol REJ: these all go to the terminal
state l2.

We can construct A−1〈〈MA〉〉 from MA, as an SMM, whose set of locations
is {l0, l1, l2}, whose state variables are the local variables of A, and such that for

each each transition qA
aA/bA−→ rA of MA there is a symbolic transition


qA 
rA�
α(p) when gaA

α / v := e ; β(eout
1 , . . . , eout

m )

where gaA
α is the conjunction of constraints on parameter values p under which

an input symbol α(p) is abstracted to aA, where v := e is the update of local
variables in the abstraction A, and where β(eout

1 , . . . , eout
m ) is composed from the

expressions that cause an output symbol of form β(d1, . . . , dm) to be abstracted
to bA.

When carrying this out on the finite Mealy machine MA obtained by the
Learner, we obtain the SMM of Figure 1, but with location l2 merged with the
terminal error location.

3.3 Systematic Construction of Abstractions

The construction of a suitable abstraction is crucial for successful inference of
an SMM SM. In this subsection, we discuss techniques by which an abstraction
can be constructed more systematically. We assume, as before, that the sets I
and O of input and output actions of SM, together with their arities, are known
a priori. In the running example in the previous subsection, we see that typically
the abstraction mapping for input symbols uses expressions that become guards
in the resulting SMM, and that the abstraction mapping for output symbol uses



198 F. Aarts, B. Jonsson, and J. Uijen

expressions that occur in output expressions of the SMM. We therefore assume
that a set of guards and expressions, which is sufficient to construct a model
of SM, is also known a priori. This set can be seen as describing how state
variables of SM can influence control flow through guards, and how they can be
used in expressions that produce output symbols. We assume that the updates
of state variables in SM do not need operators, i.e., they simply save some of
the data values received in input parameters; operators that occur in updates to
state variables can often be moved (“inlined”) to the expressions in guards and
output symbols where these state variables are used.

Under the above assumptions, we can construct an abstraction which maps
combinations of parameterized input actions and guards in a possible SMM to
abstract input symbols, and maps combinations of expressions in output symbols
of a possible SMM to abstract output symbols, as in the running example. The
updates to state variables will simply consist in assigning some input parameters
to state variables: the problem here is to decide which input parameters will
influence the future behavior of SM, and must be remembered in state variables.
In our experiments, we have made this decision based on observing the response
of SM to selected input strings, i.e., by posing membership queries, and saving
those parameter values that are used to produce future output. For parameter
values on which the only performed operation is a test for equality, such as the
id parameter of the running example, we have made these ideas more precise in
our earlier work [6], as follows:

Consider an input string u, which contains a parameter value d. We observe
the output of M in response to u and to selected continuations of u, and decide
to store d in a state variable if there is some continuation v of u such that d
is used to produce the response to v. More precisely, this happens if there is a
fresh (i.e., previously unused) data value d′ such that the response λ(δ(q0, u), v)
to v and the response λ(δ(q0, u), v[d′/d]) to v[d′/d] (i.e., v where all occurrences
of d have been replaced by d′) satisfy λ(δ(q0, u), v)[d′/d] �= λ(δ(q0, u), v[d′/d]),
i.e., SM does not treat d in the same way as a fresh (previously unused) value
d′. This happens, e.g., if λ(δ(q0, u), v[d′/d]) contains the data value d implying
that d must have been remembered before seeing the subsequent input v[d′/d],
and that d should be stored in a state variable.

4 Experiments

We have implemented and applied our approach to infer models of two imple-
mented standard protocols: the Session Initiation Protocol (SIP) and the Trans-
mission Control Protocol (TCP). Due to space restrictions we were not able to
include the TCP case study in this paper, but the methodology for inferring
TCP is similar to SIP. In this section, we first describe our experimental setup,
thereafter its application to the protocol. In order to have access to a large num-
ber of standard communication protocols, for evaluation of inference techniques,
we use the protocol simulator ns-21, which provides implementations of many
1 http:/www.isi.edu/nsnam/ns/

http:/www.isi.edu/nsnam/ns/


Generating Models of Infinite-State Communication Protocols 199

protocols, to serve as SMM Under Test (SUT). Messages are represented as C++
structures, saving us the trouble of parsing messages represented as bitstrings.
As Learner, we use the LearnLib tool [30], developed at the Technical Univer-
sity Dortmund, which has an efficient implementation of the L∗ algorithm that
can construct both finite automata and Mealy machines. LearnLib provides sev-
eral different realizations of equivalence queries, including random test suites of
user-controlled size.

SIP. SIP is an application layer protocol for creating and managing multimedia
communication sessions. Although a lot of documentation is available, such as
the RFC 3261, no proper reference model, as a state machine, is available. We
aimed to infer the behavior of the SIP Server entity when setting up connections
with a SIP Client. We represent input messages from the SIP Client to the SIP
Server as Method(From, To, Contact, CallId, CSeq, Via), where

– Method defines the type of request, either INVITE, PRACK, or ACK,
– From and To are addresses of the originator and receiver of the request,
– CallId is a unique session identifier,
– CSeq is a sequence number that orders transactions in a session,
– Contact is the address where the Client wants to receive input messages, and
– Via indicates the transport path that is used for the transaction.

We represent output messages from the SIP Server to the SIP Client as
StatusCode(From, To, CallId, CSeq, Contact, Via), where StatusCode is a three
digit status code that indicates the outcome of a previous request from the
Client, and the other parameters are as for a input message.

Abstraction Mapping. We have constructed an abstraction mapping for the SIP
server, which maps each parameter to an abstract value. The parameters From,
To, and Contact must be pre-configured in a session with ns-2, so they are set to
constant values throughout the experiment. The Via parameter is a pair, con-
sisting of a default address and a variable branch. The parameters Via, CallId,
and CSeq are potentially interesting parameters. A priori, they can be handled
as parameters from a large domain, on which test for equality and potentially
incrementation can be performed. Monitoring of membership queries, as de-
scribed in Section 3.3 reveals that for each of these parameters, the ns-2 SIP
implementation remembers the value which is received in the first Invite mes-
sage (presumably, it is interpreted as parameters of the connection that is being
established). The implementation also remembers the value received in the most
recent input message when producing the corresponding reply, but thereafter
forgets it. We therefore equip the abstraction with six state variables. The state
variable firstId stores the CallId parameter of the first Invite message, and lastId
stores the CallId parameter value of the most recently received message. The
state variables firstCSeq and lastCSeq store the analogous values for the CSeq
parameter, and the state variables firstVia and lastVia for the Via parameter.

The abstraction mapping for input symbols is shown in Table 2. Intuitively,
the input parameter CallId is compared with the variable firstId (assigned at the



200 F. Aarts, B. Jonsson, and J. Uijen

Table 2. Mapping table for input messages of SIP Server

par FIRST LAST ANY
CSeq isInteger(CSeq)
V ia V ia.Address = Default

∧isInteger(V ia.Branch)
CallId firstId = ⊥ ∧ mtype = Invite otherwise

∨firstId �= ⊥ ∧ CallId = firstId

Table 3. Mapping table for output messages of SIP Server

par FIRST LAST OTHER
CSeq CSeq = firstCSeq CSeq = lastCSeq Other
V ia V ia = firstVia V ia = lastVia Other
CallId CallId = firstId CallId = lastId Other

occurrence of the first Invite message) to check if it should be mapped to FIRST
or LAST. For the input parameters Via and Cseq, we merged the abstract values
FIRST and LAST into the single value ANY, since we found that these input
parameters are not tested by ns-2: we could also have followed the methodology
of Section 3.3 and kept these two values separate. In output messages, for which
the mapping is shown in Table 3, these three parameters can take the value
received in the first Invite message, or the value in the just received message,
corresponding to the two abstract values FIRST and LAST.

The SIP Server does not always respond to each input message, and sometimes
responds with more than one message. To stay within the Mealy machine formal-
ism, we introduce the nil input symbol which denotes the absense of input, in order
to allow sequences of outputs, and the timeout output symbol, denoting the absence
of output. This could be made more systematic by using techniques in [1].

Results. The inference performed by LearnLib needed about one thousand mem-
bership queries and one equivalence query, and resulted in an abstract model
with 10 locations and 70 transitions. For presentation purposes, we have pruned
the model as follows: (1) removing transitions triggered by abstract symbols
that have no corresponding concrete symbol: the Mapper will immediately re-
ject these, and react with a distinguished error symbol, (2) removing transi-
tions with empty input and output symbol, i.e., with labels nil/timeout, (3)
removing locations which have become unreachable after the previous steps.
In Figure 3, we show the resulting abstract model with 9 locations and 48
transitions. For readability, some transitions with same source location, out-
put symbol and next location (but with different input symbols) are merged:
the original input method types are listed, separated by a bar (|). Due to space
limitations, we have suppressed the (abstract) parameter values. However, the
CallId parameter of the input messages with abstract value FIRST, is depicted
in the model with solid transition lines, the remaining transitions have a dashed
line pattern. We suppressed all other parameters in the figure. A full abstract
model, showing the abstract values of other output parameters can be found
at http://www.it.uu.se/research/group/testing/sip, together with a de-
scription of the corresponding concrete model.

http://www.it.uu.se/research/group/testing/sip


Generating Models of Infinite-State Communication Protocols 201

0
PR
A
C
K
|A
C
K
/ti
m
eo
ut

1IN
V
IT
E/
10
0

3

IN
V
IT
E/
10
0

4

IN
V
IT
E/
10
0

5

PR
A
C
K
/2
00

6

PR
A
C
K
/4
81

A
C
K
/ti
m
eo
ut
A
C
K
/ti
m
eo
ut

ni
l/1
83

IN
V
IT
E/
10
0

IN
V
IT
E/
10
0

PR
A
C
K
/2
00

PR
A
C
K
/4
81

A
C
K
/ti
m
eo
ut

A
C
K
/ti
m
eo
ut

ni
l/4
86

IN
V
IT
E/
10
0

IN
V
IT
E/
10
0

PR
A
C
K
/2
00

PR
A
C
K
/4
81

A
C
K
/ti
m
eo
ut

A
C
K
/ti
m
eo
ut

ni
l/4
86

7

IN
V
IT
E/
10
0

8

IN
V
IT
E/
10
0

9

PR
A
C
K
|A
C
K
/ti
m
eo
ut

PR
A
C
K
|A
C
K
/ti
m
eo
ut

ni
l/1
80

IN
V
IT
E/
10
0

IN
V
IT
E/
10
0

PR
A
C
K
/2
00

PR
A
C
K
/4
81
A
C
K
/ti
m
eo
ut
A
C
K
/ti
m
eo
ut

IN
V
IT
E/
10
0

IN
V
IT
E/
10
0

PR
A
C
K
|A
C
K
/ti
m
eo
ut

PR
A
C
K
|A
C
K
/ti
m
eo
ut

ni
l/4
86

IN
V
IT
E/
10
0

IN
V
IT
E/
10
0

PR
A
C
K
|A
C
K
/ti
m
eo
ut

PR
A
C
K
|A
C
K
/ti
m
eo
ut

ni
l/4
86

IN
V
IT
E/
10
0

IN
V
IT
E/
10
0

PR
A
C
K
|A
C
K
/ti
m
eo
ut
PR
A
C
K
|A
C
K
/ti
m
eo
ut

F
ig

.
3
.
F
u
ll

S
IP

m
o
d
el



202 F. Aarts, B. Jonsson, and J. Uijen

5 Conclusions and Future Work

We have presented an approach to infer models of entities in communication
protocols, which also handles message parameters. The approach adapts ab-
straction, as used in formal verification, to the black-box inference setting. This
necessitates to define an abstraction together with the local state needed to de-
fine it. This makes finding suitable abstractions more challenging, but we have
presented techniques for systematically deriving abstractions under restrictions
on what operations the component may perform on data. We have shown the fea-
sibility of the approach towards inference of realistic communication protocols,
by a feasibility studies on the SIP, as implemented in the protocol simulator ns-2.
Our work shows how regular inference can infer the influence of data parameters
on control flow, and how data parameters are produced. Thus, models generated
using our extension are more useful for thorough model-based test generation,
than are finite-state models where data aspects are suppressed. In future work,
we plan to supply a library of different inference techniques specialized towards
different data domains that are commonly used in communication protocols.

Acknowledgement. We are grateful to Falk Howar from TU Dortmund for his
generous LearnLib support, to Falk Howar and Bernhard Steffen for fruitful
discussions, and to Frits Vaandrager for many indispensable comments.

References

1. Aarts, F., Vaandrager, F.: Learning I/O automata. In: Gastin, P. (ed.) CONCUR
2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010)

2. Ammons, G., Bodik, R., Larus, J.: Mining specifications. In: Proc. 29th ACM
Symp. on Principles of Programming Languages, pp. 4–16 (2002)

3. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

4. Ball, T., Rajamani, S.: The SLAM project: Debugging system software via static
analysis. In: Proc. 29th ACM POPL, pp. 1–3 (2002)

5. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines with param-
eters. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 107–121.
Springer, Heidelberg (2006)

6. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines using do-
mains with equality tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS,
vol. 4961, pp. 317–331. Springer, Heidelberg (2008)

7. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

8. Brun, Y., Ernst, M.: Finding latent code errors via machine learning over program
executions. In: ICSE 2004, pp. 480–490 (May 2004)

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. Journal of the ACM 50(5),
752–794 (2003)

10. Cobleigh, J., Giannakopoulou, D., Pasareanu, C.: Learning assumptions for com-
positional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)



Generating Models of Infinite-State Communication Protocols 203

11. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967)

12. Grinchtein, O.: Learning of Timed Systems. PhD thesis, Dept. of IT, Uppsala
University, Sweden (2008)

13. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata.
In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS,
vol. 3253, pp. 379–396. Springer, Heidelberg (2004)

14. Grinchtein, O., Jonsson, B., Leucker, M.: Inference of timed transition systems.
Electr. Notes Theor. Comput. Sci. 138(3), 87–99 (2005)

15. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata
using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006.
LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006)

16. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 357–370. Springer, Heidelberg
(2002)

17. Groz, R., Li, K., Petrenko, A., Shahbaz, M.: Modular system verification by in-
ference, testing and reachability analysis. In: Suzuki, K., Higashino, T., Ulrich,
A., Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 216–233.
Springer, Heidelberg (2008)

18. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS,
vol. 2306, pp. 80–95. Springer, Heidelberg (2002)

19. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.29th
ACM Symp. on Principles of Programming Languages, pp. 58–70 (2002)

20. Huima, A.: Implementing conformiq qtronic. In: Petrenko, A., Veanes, M., Tret-
mans, J., Grieskamp, W. (eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 1–12.
Springer, Heidelberg (2007)

21. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-
ing. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–
327. Springer, Heidelberg (2003)

22. Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

23. Li, K., Groz, R., Shahbaz, M.: Integration testing of distributed components based
on learning parameterized I/O models. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-
Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 436–450. Springer, Heidel-
berg (2006)

24. Loiseaux, C., Graf, S., Sifakis, J., Boujjani, A., Bensalem, S.: Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design 6(1), 11–44 (1995)

25. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: Proc. ICS 2008, pp. 501–510 (2008)

26. Mariani, L., Pezzé, M.: Dynamic detection of COTS components incompatibility.
IEEE Software 24(5), 76–85 (2007)

27. Niese, O.: An integrated approach to testing complex systems. Technical report,
Dortmund University, Doctoral thesis (2003)

28. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: FORTE/PSTV
1999, Beijing, China, pp. 225–240. Kluwer, Dordrecht (1999)

29. Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM testing.
IEEE Trans. on Software Engineering 30(1), 29–42 (2004)

30. Raffelt, H., Steffen, B., Berg, T.: Learnlib: a library for automata learning and
experimentation. In: FMICS 2005, New York, NY, USA, pp. 62–71 (2005)



204 F. Aarts, B. Jonsson, and J. Uijen

31. Rivest, R., Schapire, R.: Inference of finite automata using homing sequences. In-
formation and Computation 103, 299–347 (1993)

32. Shahbaz, M., Li, K., Groz, R.: Learning and integration of parameterized compo-
nents through testing. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W.
(eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 319–334. Springer, Heidelberg
(2007)

33. Shu, G., Lee, D.: Testing security properties of protocol implementations - a ma-
chine learning based approach. In: Proc. ICDCS 2007. IEEE, Los Alamitos (2007)


	Generating Models of Infinite-State Communication Protocols Using Regular Inference with Abstraction
	Introduction
	Mealy Machines
	Inference of Symbolic Mealy Machines
	The Setting of Inference
	Inference Using Abstraction
	Systematic Construction of Abstractions

	Experiments
	Conclusions and Future Work
	References


