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We present a parallel mesh generator called PMSH that is developed as a wrapper code around the open source sequential Netgen
mesh generator. Parallelization of the mesh generator is carried out in 	ve stages: (i) generation of a coarse volume mesh; (ii)
partitioning of the coarse mesh; (iii) re	nement of coarse surface mesh to produce 	ne surface submeshes; (iv) remeshing of each
	ne surface submesh to get a 	nal 	ne mesh; (v) matching of partition boundary vertices followed by global vertex numbering. A
new integer based barycentric coordinate method is developed for matching distributed partition boundary vertices. �is method
does not have precision related problems of 
oating point coordinate based vertex matching. Test results obtained on an SGI Altix
ICEX systemwith 8192 cores con	rm that our approach does indeed enable us to generatemultibillion elementmeshes in a scalable
way.

1. Introduction

We developed a tool called PMSH for facilitating fast genera-
tion of unstructured multibillion element tetrahedral meshes

(grids) on complex geometries for theOpenFOAMcomputa-
tional 
uid dynamics (CFD) package [1]. PMSH is developed
as a C++ wrapper code around the popular open source
sequential Netgen mesh generator [2]. OpenFOAM provides
a mesh generator called blockMesh for simple geometries.
�e blockMesh utility is a multiblock mesh generator that
generates hexahedral meshes from a text con	guration 	le.
For complex geometries OpenFOAM also provides a mesh
generation utility called snappyHexMesh which generates
hexahedral meshes. �e snappyHexMesh utility works more
like a mesh sculptor rather than a generator. It takes an
existing mesh such as the one produced by blockMesh and
chisels out a mesh on a complex geometry that is given
in STL format. �e snappyHexMesh utility has advanced
features like the ability to run in parallel and being able
to redistribute the mesh so as to perform automatic load
balancing. Both utilities, snappyHexMesh and blockMesh,
are not as advanced as other commercial or open source
mesh generator packages for producing quality tetrahedral

meshes on complex geometries. �erefore, there is a great
need in the OpenFOAM community for tools that will
enable researchers to generate massive tetrahedral meshes on
complex geometries.

Löhner states in [3] that “grid sizes have increased by an
order of magnitude every 5 years and that presently, grids in

of the order of 109 elements are commonly used for leading
edge applications in the aerospace, defense, automotive, naval,
energy and electromagnetics sectors.” Löhner also mentions
that “for applications where remeshing is an integral part of
simulations, for example, problems with moving bodies or
changing topologies, the time required for mesh regeneration
can easily consume a signi�cant percentage of the total time
required to solve the problem.” Geometry and mesh gener-
ation related concerns have also been voiced in a recent
AppliedMathematics for Exascale Report [4] by theUS based
Exascale Mathematics Group.�erefore, as we move towards
exascale computing, the ability to generate massive multibil-
lion tetrahedralmeshes especially on complex geometrieswill
be in more demand in the future.

�is paper is organized as follows: Section 2 reviews the
previous work done in the area of mesh generation and
re	nement. Section 3 presents the details of our algorithms
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(a) Volume re�nement
without geometry info

(b) Volume re�nement
with geometry info

(c) Surface re�nement with
geometry info followed by

remeshing

Figure 1: Given coarse mesh volume re	nements of the mesh without (a) or with (b) geometry information and remeshing a�er surface
re	nement with geometry information (c).

and data structures used. Section 4 lists a few programming
issues and the modi	cations that needed to be done in order
to 	x some bugs in Netgen. Section 5 presents the results
of various parallel mesh generation tests we have carried
out on an SGI Altix ICE X system with 8192 cores. Finally,
conclusions and future work are presented in Section 6.

2. Previous Work

Parallel mesh generation has been addressed in several
reported works: Dawes et al. [5] present bottom up octree
based parallel mesh generation routines. Antonopoulos et al.
[6] parallelize Delaunay based mesh generation on multicore
SMT-based architectures. D3D [7] is an MPI based parallel
mesh generator that employs octree based mesh generation.
MeshSim by Simmetrix Inc. is a commercial multithreaded
and distributed parallel mesh generator [8]. ParTGen [9] is a
parallel mesh generator that uses a geometry decomposition
based approach to decouple the meshing process into par-
allel mesh generation tasks. Performance tests of PartTgen
have demonstrated scalability only up to 32 processors. �e
approach taken in PMSH is similar to that of ParTGen.

�e recent work by Löhner [3] involves geometry decom-
position and the use of advancing front technique onmultiple
subdomains to generate meshes in parallel. It is reported that
a billion-element sized mesh has been generated in roughly
forty minutes on a 512-core SGI ITL machine.

Pamgen [10] is another parallel mesh generation library
within the Trilinos Project that produces hexahedral or
quadrilateral meshes of simple topologies. It is stated in
its FAQ page that the number of elements PAMGEN can
generate is limited to just above two billions (because of 32-bit
integer limitation).

CGAL is a computational geometry algorithms library
developed at INRIA. Pion et al. present 3D parallel Delaunay
triangulation work in [11]. CGAL also provides a parallel
mesh generation capability based on TBB (�reading Build-
ing Blocks) library [12].

Figure 1 illustrates re	nement based approaches that can
be used to generate massive meshes. Uniform mesh re	ne-
ment without the use of geometric information, as shown
in (a), works very fast in parallel, is quite scalable to tens of
thousands of processors, and can be used to produce meshes

with tens of billions of elements.�eworks byHouzeaux et al.
[13] and Kabelikova et al. [14, 15] can be shown as examples
of uniform re	nement. �ese approaches, however, cannot
be used on problems involving complex geometries with
curved boundaries. In such cases, they cannot accurately
approximate the boundary of the geometry. An alternative
method is to do uniform re	nement but also to make use
of geometric information as shown in Figure 1(b). In [16],
mesh multiplication technique with surface correction and
volume node movement is presented. �is approach is also
taken by Yilmaz et al. [17]. In this case, in addition to the
mesh entities, one needs to have access to the geometry.
Such an implementation can be achieved by utilizing mesh
generation libraries as, for example, Netgen which is used
in [17]. One and a half billion element meshes have been
generated in this way in one- to two-minute time on one
thousand cores. Yilmaz et al. also provide results for a
method involving decomposition of geometry in the 
avour
of Figure 1(c), where meshing of decomposed geometry is
performed. However, geometry decomposition into a large
number of subgeometries introduces problems caused by
thinly cut subdomains. Using this method, meshes of about
a few hundred million elements could be accomplished
on up to 64 cores on simple geometries. A preliminary
implementation was also reported in [17], which generates a
surface mesh from a geometry, re	nes the surface mesh, and
generates a 	ne mesh from it in the style of Figure 1(c). �is
implementation had some problems and some preliminary
results involving generation of a few million element meshes
on few tens of cores were reported.

Table 1 summarizes the mesh generation methods and
the degree to which they use the geometric information. In
our current PMSH work, the approach shown in Figure 1(c)
involving generation of a coarse mesh, extraction of a surface
mesh, and remeshing from a re	ned and projected 	ne
surface mesh has been completely redesigned using new
data structures and has been successfully implemented. �e
resulting implementation is robust and enabled us to generate
multibillionmeshes on up to eight thousand processors (note
that 8K processor is not a limitation of our PMSHbut rather it
was the maximum number of cores for the maximum allow-
able memory we could get on the speci	c supercomputer that
we used for our tests). Also, note that both our PMSH and
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Table 1: Comparison of parallel mesh generation approaches.

Approach
Quality of modelling

geometry

Mesh multiplication (uniform
re	nement) [13–15]

Worst

Mesh multiplication with geometry
correction [16, 17]

↑

Geometry partitioning [9] and PMSH ↓
Fully parallel meshing [3, 5–8, 12] Best

Löhner’s [3] work employ a similar approach with Löhner
using his own internal mesh generator and PMSH using the
externalNetgenmesh generator augmentedwith extra PMSH
data structures, routines, and modi	ed Netgen libraries.

Finally, we note that when new mesh entities are created
in parallel, duplicate entities on the partition boundaries
result which need to be matched. A somewhat similar prob-
lem occurs in the OpenFOAM reconstructParMesh utility.
We quote Piscaglia et al. [18] on this problem: “. . .the point,
face and cell processor addressing lists, generated at decompo-
sition time, are no longer valid once topological changes have
occurred. As a consequence, the only way to reconstruct a
parallel case involving dynamic mesh with topological changes
consist of using an algorithm based on geometry instead than
topology. . ..” �is geometric approach, however, operates on

oating point numbers and also requires a speci	ed tolerance.
To resolve this complicated problem, we contribute a new
integer barycentric coordinates based approach for parallel
duplicate entity matching. Our approach is actually a simple
solution whose simplicity makes it even more valuable, since
it drastically reduces the e�ort required for parallel program-
ming of unstructured mesh applications. �is approach is
explained in detail in Section 3.

3. PMSH Parallel Mesh Generation Algorithm

Our mesh generation algorithm proceeds in 	ve main stages:
(i) generation of a coarse volume mesh, (ii) partitioning of
the coarse mesh to get submeshes, each of which will be
processed by a processor, (iii) extraction and re	nement of
coarse surface submeshes to produce 	ne surface submeshes,
(iv) remeshing of each 	ne surface submesh to get the
	nal 	ne volume mesh, and (v) matching of distributed
duplicate partition boundary vertices followed by global
vertex numbering.

Given the list of symbols and their de	nitions in Abbre-
viations, Algorithm 1 presents the detailed steps of our
parallel mesh generation algorithm. Steps (2)–(4) basically
correspond to stage (i) that involves generation of an initial
coarse mesh. Firstly, the geometry description Ω is loaded.
Geometry 	le can be in STL or Netgen’s CSG (.geo) format. A
coarsemesh is then generated from this geometry.�e coarse
mesh basically enables us to subdivide our domain into �
subdomains in a load balanced way.

In step (5), corresponding to stage (ii), version 5.1.0
of METIS [19] partitioner is used to partition the coarse
mesh in a face-connected way. �e coarse volume mesh

and its partitioning are available on all the processors and
hence allow each processor to compute processor adjacen-
cies independently. In our current implementation, we let
each processor generate the coarse volume mesh and its
partitioning redundantly. Even though energy and resources
can be saved if a dynamic malleable job model is used
(i.e., starting with a single processor and increasing the
number of allocated processors a�er step (5)), there are some
complications involving reconstruction of Netgen’s internal
data structures on dynamically spawned processors. �e
malleable job model will be considered in the future.

Steps (6)–(9) correspond to stage (iii), which involves
extraction and re	nement of the coarse surface submesh to
produce a 	ne surface submesh. Faces which are on the geo-
metric boundary and faces which are shared by elements that
are on di�erent processors are extracted and a coarse surface
submesh is formed. �is surface submesh is then re	ned
uniformly � times to form a 	ne submesh. Re	nement is done
by our own code and not by Netgen code. A queue of faces to
be re	ned is maintained. A face to be re	ned is pushed into
this queue. A�er re	nement, if it is to be re	ned again (i.e.,
�−1more times), the newly created faces are also pushed into
the queue. Using Netgen’s library, newly formed vertices are
projected onto the actual geometry boundary as part of step
(9). Currently projection works only when meshing Netgen’s
CSG (.geo) geometry 	les. It does not work properly for STL
geometries because sometimes Netgen’s projection routine
returns incorrect projections for some points.

Since we need to match new surface vertices with their
counterparts on the neighbouring processors later on, we
need to keep track of the addresses of newly created vertices.
Our own re	nement code helps us to do this tracking. We
know the IDs of the coarse mesh vertices, since the same
coarse mesh is present on all processors. �e newly created
vertices, however, have local IDs on each processor and these
are di�erent from their counterparts on other processors.
Even though one can always use �, �, 	 coordinates of these
vertices to match them, such a method uses 
oating point
comparisons and can be sensitive to precision related errors.
�e generation of new vertices is done in di�erent orders on
di�erent processors. Sincemultibillion elementmeshes are to
be generated, precision related problems are more likely to
happen due to very small element sizes. As a result, wewanted
to come up with a new integer based vertex identi	cation
system.

�e new vertex identi	cation system we came up with
makes use of integer barycentric coordinates. All processors
know the IDs of the coarse mesh vertices. Hence, given
a coarse surface mesh face that is de	ned with vertices
having indices 
, �, and �, the address of this face can be
identi	ed easily by employing amap thatmaps the key (
, �, �)
to the corresponding local face address on each processor.
However, when new faces and vertices are created as a result
of re	nement, their orders of creation are di�erent on each
processor.�ere can be di�erent connectivity types as shown
in Figure 2. Vertex connectivity is easy to resolve since the
vertex connectivities of partitions can be established by the
coarse mesh vertices which are known by all processors.
�e newly created vertices on edges and faces introduce
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(1)On all processors 
 = 0 ⋅ ⋅ ⋅ � − 1 do

(2) Load geometry Ω
(3) Generate coarse surface mesh �T forΩ
(4) Generate coarse volume meshT

(5) Partition the coarse volume meshT into � partsT�, 
 = 0 ⋅ ⋅ ⋅ � − 1

(6) Extract coarse surface mesh faces �T�� for all partitions 
 = 0 ⋅ ⋅ ⋅ � − 1

(7) Construct surface mesh �T�� from �T��
(8) Perform �-level re	nement of surface mesh �T�� to get 	ne surface mesh �T��� and record barycentric global IDs of each

newly created vertex
(9) Project new surface vertices in �T��� to the geometric boundaryΩ
(10) Compute partition boundary vertex adjacencies to adjacent processors by using a map that uses barycentric global IDs

as keys
(11) Generate 	ne volume meshT

��
� from the 	ne surface mesh �T���

(12) Compute owners of partition boundary vertices held by adjacent processors (called holders)
(13) Compute global integer IDs of owned vertices
(14) Inform global integer IDs of the owned vertices to the holder processors by using barycentric global IDs as keys

to locate the corresponding vertices on adjacent holder processors
(15) Output 	ne volume meshT

��
� in OpenFOAM format

(16) enddo

Algorithm 1: PMSH parallel mesh generation algorithm.

(a) (b) (c)

Figure 2: Connectivity types: vertex (a), edge (b), and face (c) connectivities.

complications because their orders of creation are di�erent.
Integer based barycentric coordinates help us to address
all three types of connectivities and identify all types of
vertices (coarse or newly created) by a single mechanism.
We de	ne barycentric global IDs as a sorted sequence of
three (V����� 
�, 
������ ���y�����
� �����
����) pairs, that
is, as [(
, �), (�, �), (�, �)]. Here, 
, �, � are either 0 or indices
of vertices from �TV satisfying 
 < � < � and �, �, and � are
integer barycentric coordinates with � + � + � = 2�. Figure 3
shows an example face de	ned by coarse mesh vertices 3, 5,
and 8 and the newly created vertices as a result of 2-level
re	nement.�e table in Figure 3 shows the barycentric global
IDs of some vertices.

Note that even though there are six pieces of information
in a barycentric global ID compared with three pieces of
information in �, �, 	 coordinates, storage-wise barycentric
global IDs are more advantageous. �, �, 	 coordinates require
three doubles (24 bytes). A barycentric coordinate (� or � or
�) can be represented using � + 1 bits. �e initially generated
coarse mesh is small, one or two million at most. A 32-bit
unsigned integer is more than enough to 	t both the �+1 bits
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GlobalVertex

[(0,0), (0,0), (3,4)]
[(0,0), (0,0), (5,4)]
[(0,0), (0,0), (8,4)]
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[(0,0), (3,3), (5,1)]
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Figure 3: Integer based barycentric coordinates and global barycen-
tric IDs when two levels of re	nement are done on coarse mesh face
with vertices 3, 5, and 8.

as well as the vertex ID in the coarse mesh. Since we have
3 pairs, 3 unsigned integers, that is, a total of 12 bytes, are
actually su�cient.
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We also note that, in the literature, applications of bar-
ycentric coordinates can be found in many areas such as
	nite element analysis and computer graphics. Recently, in
particular, in the area of computer graphics, Boubekeur
and Schlick [20, 21] made use of barycentric coordinate
based interpolation in generic and adaptive mesh re	nement
kernels for GPUs. Our use of barycentric global IDs for
distributed vertex matching in PMSH is yet another novel
application of barycentric coordinates.

In order to compute vertex adjacencies of processors,
adjacent processor IDs are inserted into a map whose keys
are barycentric global IDs. �is is done in step (10). A�er
this step, the 	ne volume submesh is generated from the
	ne surface submesh in step (11). OpenFOAM mesh format
uses global vertex IDs. �erefore, we need to assign global
numbers to all vertices. In steps (12)-(13), the global numbers
of partition boundary vertices are generated by 	rst assigning
an owner to one of the processors holding a copy of the vertex.
Given a sorted list � of processors that hold a vertex with
barycentric global ID [(
, �), (�, �), (�, �)] the �th processor
in the list is calculated as follows:

� = (
 + � + � +�+ �+ �) mod |�| . (1)

Here, |�| is the number of holder processors of the ver-
tex. �is method of determining owners is similar to our
earlier approach given in [17]. Once owner processors are
determined, owner processors generate global numbers for
each vertex they own. A prescan operation is carried out
among processors to compute pre	x counts of owned vertices
on each processor. From these counts the starting point of
global numbering on each processor can be determined.
Once global numbers for partition boundary vertices are
determined, the owner processors then send these numbers
to holder processors in step (14). In this way, all integer global
IDs for all vertices (whether they are internal or on partition
boundary) are determined. Finally, in step (15), the mesh is
output in OpenFOAM format using these integer global IDs.

As data structures, Standard Template Library (STL)
maps are used to store various surface mesh data. �e main
ones are for the storage of geometry and partition boundary
faces, global barycentric IDs of partition boundary vertices,
and processor adjacencies.

4. Programming Issues

In this section, we consider programming issues that arose
while developing PMSH. While PMSH runs, each processor
meshes a di�erent subgeometry in parallel during 	ne mesh
generation. Since we are on a distributed memory machine,
each processor has a di�erent address space. �e new 	ne
mesh entities have completely di�erent addresses and di�er-
ent orders of creation. As a result, matching these entities to
their correspondents on other processors is nontrivial. �is
situation does not arise in mesh multiplication approaches,
since in these approaches all tetrahedrons are re	ned uni-
formly and hence one can predict the addresses of newly
created entities. Our barycentric coordinates approach helps
us to resolve this programming issue in a simple way.

On a petascalemachine, onewants tominimize expensive
communication costs. In particular, one wants to reduce the
number of messages. Large numbers of messages put on the
communication network, besides introducing large latency
costs, cause contention on the network (by also interfering
with other users packets). As a result, one of our major
objectives has been to reduce the number of messages. We do
this by performing all levels of re	nement before doing any
communication. �is, however, introduces a complication,
because large numbers of new vertices are created on faces
and edges and their orders of creation and addresses are com-
pletely di�erent onneighboring processors. Again, our simple
barycentric coordinates approach enables us to agglomerate
multiple communication stages of re	nement levels into a
single communication stage, hence reducing the number of
messages by a factor equal to the number of re	nement levels.

4.1. Bug Fixes and Modi�cations Made in Netgen 5.1 Code.
During the development of this project, Netgen 5.1 was the
most recent version. Our modi	cations and 	xes have been
made on this version.Whenwe generated 	ne surfacemeshes
a�er multiple levels of re	nement and passed them to Netgen
for 	ne volume generation (step (11) in the Algorithm 1), we
encountered Netgen crashes on a few processors. �is hap-
pened repeatedly and prevented us from obtaining massive
meshes. We examined Netgen code and traced the bugs. A
number of 	xes as well as some other modi	cations that
let us access some functions within Netgen were made to
Netgen 5.1 code; these are described in the PMSH website at
https://code.google.com/p/pmsh/.

�e modi	cations enabled our tests to run successfully.
A�erwards, we were able to generate multibillion element
meshes. �e bugs we discovered were also reported to the
Netgen developer.

5. Tests and Results

We have meshed Onera M6 wing, sphere, and sha� geome-
tries shown in Figure 4 on NTNU’s Vilje system. Sphere is
a simple geometry whereas Onera M6 wing and sha� are
moderately complex geometries. Vilje is an SGI Altix ICE X
system that has 936 nodes available to academic users. Each
node has 2 Intel Xeon E5-2670 (Sandy Bridge) processors
with a total of 16 cores and 28GB of memory. Table 2 shows
the results of the mesh generation tests we have performed.
On Vilje, due to restrictions, a job can be allocated at most
14.3 TB total memory on up to 512 nodes. �erefore, we
submitted tests that would satisfy this memory limit. If this
limit was higher, we would have been able to run our tests
on higher numbers of cores and generate even bigger meshes
than what is shown in Table 2.

�e columns times taken by coarse mesh T and 	ne
mesh T

�� show the timings of steps (3)-(4) and steps (5)–
(14), respectively. Total timing is the summation of these two
timings. Geometry input and mesh output are not included
in the timings. Note that coarse mesh T is the initial mesh
generated on each processor whereas 	ne mesh T

�� is the
global mesh over all processors (i.e., union of all �T��� ).
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Table 2: Mesh generation results.

Geometry Number of
cores

Allocated job
memory (TB)

Re	nement
levels (�)

Mesh size (M) Time taken by (s) Estimated
e�ciency (%)

Estimated
speedupCoarseT FineT�� CoarseT FineT�� Total

oneram6.stl

1024 7.2 4 0.2 156.1 78.95 96.08 175.03 54.94 563

2048 14.3 4 0.2 174.8 78.93 95.38 174.31 54.74 1121

4096 14.3 4 0.2 183.1 85.67 55.16 140.83 39.18 1605

8192 14.3 4 0.2 189.6 81.97 51.27 133.24 38.49 3153

1024 7.2 5 0.2 1014.7 78.96 715.3 794.26 90.07 922

2048 14.3 5 0.2 1114.3 78.89 521.68 600.57 86.87 1779

4096 14.3 5 0.2 1123.3 82.73 316.04 398.77 79.26 3246

8192 14.3 5 0.2 1152.7 82.14 152.66 234.8 65.02 5327

1024 7.2 4 1.2 929.5 483.15 700.91 1184.06 59.24 607

2048 14.3 4 1.2 970.9 482.69 331.96 814.65 40.78 835

4096 14.3 4 1.2 909.1 537.04 202.96 740 27.44 1124

8192 14.3 4 1.2 1028.9 510.94 152.93 663.87 23.05 1888

2048 14.3 5 1.2 7030.7 483.16 2719.29 3202.45 84.92 1739

4096 14.3 5 1.2 6393.5 538 1831.23 2369.23 77.3 3166

8192 14.3 5 1.2 7209.8 510.59 713.66 1224.25 58.3 4776

sphere.geo

1024 7.2 4 0.2 146.7 43.88 69.72 113.6 61.41 629

2048 14.3 4 0.2 176.7 44.01 32.32 76.33 42.37 868

4096 14.3 4 0.2 198.7 47.02 23.6 70.62 33.43 1369

8192 14.3 4 0.2 217 45.04 10.8 55.84 19.35 1585

1024 7.2 5 0.2 1048.4 43.95 488.25 532.2 91.75 940

2048 14.3 5 0.2 1278.4 44.02 230.87 274.89 83.99 1720

4096 14.3 5 0.2 1367.6 47 138.46 185.46 74.66 3058

8192 14.3 5 0.2 1476.7 46.74 92.01 138.75 66.32 5433

1024 7.2 5 0.3 1625.5 181.18 796.93 978.11 81.49 835

2048 14.3 5 0.3 1773.3 184.42 583.59 768.01 76 1556

4096 14.3 5 0.3 2134.4 242.52 204.96 447.48 45.82 1877

8192 14.3 5 0.3 2163.3 232.15 133.28 365.43 36.48 2988

sphere.stl

1024 7.2 4 0.4 296.4 94.13 114.04 208.17 54.83 561

2048 14.3 4 0.4 301.6 93.81 69.17 162.98 42.47 870

4096 14.3 4 0.4 365.4 97.91 45.35 143.26 31.67 1297

8192 14.3 4 0.4 417.4 96.31 40.41 136.72 29.57 2422

1024 7.2 5 0.4 2120 94 924.97 1018.97 90.78 930

2048 14.3 5 0.4 2131.1 93.76 525.56 619.32 84.87 1738

4096 14.3 5 0.4 2584.5 97.82 287.31 385.13 74.61 3056

8192 14.3 5 0.4 2840.7 96.59 166.04 262.63 63.23 5180

1024 7.2 4 1.4 829.5 286.32 319.88 606.2 52.81 541

2048 14.3 4 1.4 931.4 286.96 201.49 488.45 41.28 845

4096 14.3 4 1.4 900.4 299.03 150.31 449.34 33.47 1371

8192 14.3 4 1.4 1001.5 294.21 105.18 399.39 26.34 2158

1024 7.2 5 1.4 6392.3 286.51 2938.7 3225.21 91.13 933

2048 14.3 5 1.4 6847.5 286.88 2212.16 2499.04 88.53 1813

4096 14.3 5 1.4 6283.1 298.83 912.7 1211.53 75.34 3086

8192 14.3 5 1.4 7053.6 293.56 513.41 806.97 63.63 5212
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Table 2: Continued.

Geometry Number of
cores

Allocated job
memory (TB)

Re	nement
levels (�)

Mesh size (M) Time taken by (s) Estimated
e�ciency (%)

Estimated
speedupCoarseT FineT�� CoarseT FineT�� Total

sha�.geo

1024 7.2 4 0.2 139.6 37.37 52.55 89.92 58.48 599

2048 14.3 4 0.2 166.8 37.4 28.61 66.01 43.37 888

4096 14.3 4 0.2 182.5 39.01 22.11 61.12 36.19 1482

8192 14.3 4 0.2 221.4 38.42 25.73 64.15 40.12 3286

1024 7.2 4 0.4 281.4 75.21 110.85 186.06 59.62 610

2048 14.3 4 0.4 295.6 75.7 55.71 131.41 42.42 869

4096 14.3 4 0.4 351.7 78.87 40.67 119.54 34.04 1394

8192 14.3 4 0.4 382.2 77.74 36.23 113.97 31.8 2605

1024 7.2 5 0.2 948.4 37.38 515.95 553.33 93.25 955

2048 14.3 5 0.2 1139.9 37.47 221.87 259.34 85.56 1752

4096 14.3 5 0.2 1191.5 39 125.79 164.79 76.34 3127

8192 14.3 5 0.2 1340.3 38.42 82.55 120.97 68.24 5591

1024 7.2 5 0.4 1991.3 75.21 920.31 995.52 92.45 947

2048 14.3 5 0.4 2081.9 75.37 486.93 562.3 86.6 1774

4096 14.3 5 0.4 2475.1 78.81 260.88 339.69 76.81 3146

8192 14.3 5 0.4 2568.2 77.84 168.31 246.15 68.38 5602

(a)

(b)

(c)

Figure 4: Test geometries and meshes used: onera-m6.stl (a), sphere.geo (b), and sha�.geo (c). �e top picture is the coarse mesh and the
bottom one is the (one-level re	ned) 	ne mesh.
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Figure 5: Parallel mesh generation timings; for each geometry timings obtained for ranges of (|T|, |T��|) pairs are drawn as separate curves.

When looking at sequential mesh generation times of
the coarse mesh, we see that on average 0.23 million ele-
ments/minute rate is achieved byNetgen. In [3], Löhner states
that “typical speeds for the complete generation of a mesh
(surface, mesh, improvement) on current Intel Xeon chips with
3.2 GHz and su�cient memory are of the order of 0.5–2.0
million elements/minute.” Netgen’s meshing rate on a single
2.6GHz core is lower than this, but still it is a reasonable rate.

When looking at the parallel multibillion element mesh
generation results, we see that within the 1K–8K core range
scalability is achieved. Figure 5 plots mesh generation time
curves for (|T|, |T��|) pairs. |T| and |T��| are the sizes of
initial coarse and the 	nal 	ne mesh, respectively. �e inputs
to our program are the following parameters: (i) maximum
element edge length in the mesh, (ii) mesh grading factor
between 0.0 and 1.0, and (iii) number of levels of re	nement.

Parameters (i)-(ii) dictate the size of the coarse mesh and
(i)–(iii) dictate the size of the 	nal 	ne mesh. We can treat
coarse and 	ne mesh sizes, that is, the pair (|T|, |T��|), as
our problem size. Since, when changing the number of cores
(partitions), the submesh sizes can change (since a newmesh
is generated), we have de	ned ranges on (|T|, |T��|) and plot-
ted mesh generation times for ranges of (|T|, |T��|). Hence,
given a roughly 	xed problem size, that is, a given range of
the pair (|T|, |T��|), we see from Table 2 that execution times
decrease as the number of cores is increased. Of course, as the
ratio |T��|/� gets smaller and smaller, any further increase
in the number of cores will lead to smaller and smaller
reductions in execution time and will approach the time it
takes to generate and partition the coarse mesh. �e plot in
Figure 6 shows the dependence of speedup on the number of
processors and coarse mesh size to 	ne mesh size ratio.
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Figure 6:�e dependence of speedup on number of processors and
coarse mesh size to 	ne mesh size ratio.

Since we are not able to generate massive meshes sequen-
tially (because they do not 	t into the memory of a single
node), we cannot calculate speedup and e�ciency values
based on actual sequential program execution. To get an
idea about these, we estimated sequential running time as
summation of the time taken to generate the coarsemesh plus
the time taken to generate � 	ne meshes on one core; that is,
�seq = time(T) + � ⋅ time(T��). Using �seq, we calculated the
speedup as sequential time divided by total parallel time, that
is, �seq/Total, and e�ciency as �seq/(� ⋅ Total). �e speedup
and e�ciency columns are shown in Table 2.

6. Conclusions

We have developed a wrapper tool called PMSH around the
existing sequential Netgen mesh generator that enabled us
to generate multibillion element tetrahedral meshes for the
OpenFOAM applications. �e mesh generation runs on 1K
through 8K cores with 14.3 TB total memory limit show our
PMSH implementation scales. Seven billion element meshes
that were generated on 8K cores for the Onera M6 wing
and the sphere geometries took about 21 minutes and 14
minutes, respectively. With a sequential rate of 0.23 million
elements/minute, such a mesh would need roughly 21 days
to be generated sequentially. It is also interesting to note that
by choosing smaller initial coarse meshes roughly billion ele-
ment sized meshes can be generated in 2–4 minutes. PMSH
tool code is maintained at https://code.google.com/p/pmsh/.

GUI (graphical user interface) version of Netgen o�ers
some additional capabilities such as speci	cation mesh sizes
on speci	c regions of the geometry (by inputting a mesh size
	le). We have not been able to locate an API in the non-GUI
Netgen library to do this. �erefore, currently this feature is
not supported in our PMSH. When an API is made available
in future versions of Netgen, this will be incorporated
into PMSH. Netgen can generate prismatic boundary layer
consisting of prismatic cells.�is is again available in the GUI
version of Netgen and hence not supported in PMSH. Finally,
anisotropic meshing is not supported.

Our work described in this paper concentrated mainly
on setting up distributed data structures and solving the
entity matching problem in a scalable way without resorting
to 
oating point number comparisons. We believe it is

because of these issues (data structures and entity matching
problems) that massive mesh generation results at tens of
thousands of cores scale are absent in the literature. Our
approach simpli	es our programming and enables us to
generate multibillion element meshes. Having solved these
fundamental problems, we can now concentrate on the next
stage. Our future work will focus on the following:

(i) Development of a malleable parallel mesh generation
system;

(ii) Implementation of more advanced schemes for pro-
jecting vertices on geometric boundaries;

(iii) Support for speci	cation of mesh sizes for speci	c
regions;

(iv) Support for generation of boundary layer;

(v) Support for anisotropic meshing.

Abbreviations

�: Number of processors (subdomains)
Ω: Closed geometric domain to be

meshed
�Ω: Boundary (surface) of geometryΩ
T: Tetrahedral mesh

T
�: Faces of tetrahedral mesh

T
V: Vertices of tetrahedral mesh

�T: Boundary of tetrahedral mesh
T�: Tetrahedral submesh (partitioned

mesh) on processor 

�T�: Boundary of tetrahedral submesh

(partitioned mesh) on processor 

T�: Faces of tetrahedral submesh

(partitioned mesh) on processor 

�: Number of re	nement levels
[(
, �), (�, �), (�, �)]: Integer based global barycentric IDs

where 
, �, � are either 0 or indices of
vertices from �TV with � + � + � = 2�

and 
 < � < �.
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