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Abstract

3D human pose estimation from a monocular image or

2D joints is an ill-posed problem because of depth ambi-

guity and occluded joints. We argue that 3D human pose

estimation from a monocular input is an inverse problem

where multiple feasible solutions can exist. In this paper,

we propose a novel approach to generate multiple feasible

hypotheses of the 3D pose from 2D joints. In contrast to

existing deep learning approaches which minimize a mean

square error based on an unimodal Gaussian distribution,

our method is able to generate multiple feasible hypothe-

ses of 3D pose based on a multimodal mixture density net-

works. Our experiments show that the 3D poses estimated

by our approach from an input of 2D joints are consistent

in 2D reprojections, which supports our argument that mul-

tiple solutions exist for the 2D-to-3D inverse problem. Fur-

thermore, we show state-of-the-art performance on the Hu-

man3.6M dataset in both best hypothesis and multi-view

settings, and we demonstrate the generalization capacity

of our model by testing on the MPII and MPI-INF-3DHP

datasets. Our code is available at the project website1.

1. Introduction

3D human pose estimation from a single RGB image is

an extensively studied problem in computer vision because

of many potential useful real world applications such as

forensic science, sports analysis and surveillance etc. Sig-

nificant progress in 3D human pose estimation has been

made with deep learning in the recent years. One of the

commonly used and effective deep learning based methods

for 3D human pose estimation is the two-stage approach,

where the 2D joints are first detected from the image input

[18, 24] followed by the 3D joint estimations from the de-

tected 2D joints [1, 29, 4, 15, 10, 6, 25, 17]. The advantage

1https://github.com/chaneyddtt/Generating-

Multiple-Hypotheses-for-3D-Human-Pose-

Estimation-with-Mixture-Density-Network
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Figure 1: An example of multiple feasible 3D pose hypothe-

ses generated from our network reprojecting into similar 2D

joint locations. (Best view in color)

of the two-stage approach is that it decouples the harder

problem of 3D depth estimation from the easier 2D pose

estimation. In particular, variations in background scene,

lighting, clothing shape, skin color etc. are removed before

the 3D joint estimation stage. Furthermore, the model can

be trained on different domains, e.g. indoor and outdoor,

with 2D annotations that are readily available.

Despite the significant progress with deep learning, 3D

human pose estimation remains as a very challenging task

due to the ambiguity in recovering 3D information from a

single RGB image. More specifically, recovering 3D infor-

mation from a single RGB image or 2D joint locations is

an inverse problem [3] where multiple solutions may ex-

ist for the depth of a 3D joint along the light ray that re-

projects onto the same 2D joint location, as illustrated in

Figure 1. The problem is further aggravated by the non-

rigidity of the human pose and joint occlusions on the 2D

image. Consequently, there could be many solutions of the

3D pose that satisfy the same 2D pose on an image, even

after eliminating the infeasible 3D pose solutions by en-
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forcing various geometric constraints, e.g. joint limits [1]

and bone ratio [27] etc. In view of the inherent ambiguity

of the 3D human pose estimation problem, we argue that it

is more reasonable to design a model that generates mul-

tiple hypotheses of geometrically feasible 3D human pose

that are consistent with the detected 2D joints from a single

RGB image. In contrast, the widely adopted single estimate

for the inverse problem with inherent ambiguity could lead

to overfitting the model to the training data, and might not

generalize well. This idea of generating multiple 3D pose

hypotheses was first suggested very recently by Jahangiri

and Yuille in [12].

To this end, we introduce the mixture density networks

(MDN) [3, 26] to the 3D joint estimation module of the

two-stage approach. Contrary to most existing works that

generate a single 3D pose by minimizing the negative log-

likelihood of an unimodal Gaussian, i.e. a mean squared er-

ror, we propose to estimate multiple hypotheses of the 3D

pose by minimizing the negative log-likelihood of a mul-

timodal mixture-of-Gaussians. The outputs of our mixture

model is a set of mixing coefficients and parameters of the

Gaussian kernels, i.e. means and variances. The set of 3D

pose hypotheses are given by the means of the Gaussian

kernels, and the mixing coefficient and variances represent

the uncertainties of each 3D pose hypothesis. Specifically

our network consists of a feature extractor to lift the 2D

joints into a feature space, and a hypotheses generator to

generate multiple hypotheses. The whole network is a sim-

ple network made up of several linear layers with different

non-linear activation units.

We show that our network achieves state-of-the-art re-

sults on the Human3.6M dataset [11] in both best hypoth-

esis and multi-view settings. We also report results of our

network on the outdoor MPII [2] dataset and the MPI-INF-

3DHP [16] dataset, where 3D pose labels are not used for

training the network. Furthermore, we show the robustness

of our network by applying it to scenarios where one or two

limb joints are occluded/missing. Our main contributions

are as follows:

• We explore the idea of generating multiple 3D pose

hypotheses to alleviate the ambiguity problem that has

not received much attention in the literature.

• To the best of our knowledge, we are the first to intro-

duce the mixture density model into 3D human pose

estimation, which is more powerful than the single

Gaussian distribution.

• Our network achieves state-of-the art results on Hu-

man3.6M dataset in both best hypothesis and multi-

view settings, and in cases where one or two limb

joints are occluded/missing.

2. Related Work

Existing human 3D pose estimation approaches fall into

two categories according to their training techniques. The

first category is to train deep convolutional neural networks

(CNNs) end-to-end to estimate 3D human poses directly

from the input images [20, 16, 28, 19, 27, 14, 23]. Zhou et

al. [28] use a sparse representation for 3D poses and predict

the 3D pose with an expectation-maximization (EM) algo-

rithm. The 2D poses are regarded as a hidden variable in

the EM algorithm to remove the need of synchronized 2D-

3D data. Park et al. [19] improve conventional CNNs by

concatenating 2D pose estimation as well as information on

relative positions with respect to multiple joints. Pavlakos et

al. [20] use volumetric representation to represent 3D poses

and adopt the stacked hourglass network [18], which is orig-

inally designed for 2D pose estimation, to predict 3D vol-

umetric heatmaps. Mehta et al. [16] use transfer learning

to transfer the knowledge learned for 2D pose estimation to

the task of 3D pose estimation. Similarly, Zhou et al. [27]

propose a weakly-supervised transfer learning method that

uses mixed 2D and 3D labels. The 2D pose estimation

sub-network and 3D depth regression sub-network share the

same features such that the 3D pose labels for indoor envi-

ronments can be transferred to in-the-wild images. The di-

rect approach benefits from the rich information contained

in images, e.g. the front-back orientation of limbs. How-

ever, it will also be affected by a number of factors such as

background, lighting, clothing etc. A network trained on

one dataset can not be generalized well to the other datasets

with different environment, for example from indoor and

outdoor environment.

The second category [1, 29, 4, 15, 10, 6, 25, 17] de-

couples 3D pose estimation into the well-studied 2D joint

detection [18, 24] and 3D pose estimation from the de-

tected 2D joints. Akhter et al. [1] propose a multi-stage

approach to estimate the 3D pose from 2D joints using an

over-complete dictionary of poses. Bogo et al. [4] estimate

3D pose by first fitting a statistical body shape model to the

2D joints, and then minimizing the error between the repro-

jected 3D model and detected 2D joints. Chen [6] and Yasin

[25] regard 3D pose estimation as a matching between the

estimated 2D pose and the 3D pose from a large pose li-

brary. Martinez et al. [15] design a simple fully connected

residual network to regress 3D pose from 2D joint detec-

tions. The decoupled approach can make use of both in-

door and in-the-wild images to train the 2D pose estimators.

More importantly, this approach is domain invariant since

the input of the second stage is the 2D joints. However,

estimating 3D pose from 2D joints is more challenging be-

cause 2D pose data contains less information than images,

thus there are more ambiguities.

To solve the ill-posed problem of estimating 3D pose

from 2D joints, Jahangiri and Yuille [12] first proposed
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Figure 2: Our network consists of a feature extractor and a 3D pose hypotheses generator, it generates multiple pose hypothe-

ses from the 2D joints detected by 2D pose estimator.

to generate multiple diverse pose hypotheses. They first

learned a 3D Gaussian mixture model (GMM) model [22]

from a uniformly sampled set of Human3.6M poses, and

then use conditional sampling to get samples of the 3D

poses with reprojected joints errors that are within a thresh-

old. Inspired by their work, we solve the ambiguity prob-

lem by generating multiple hypotheses. Instead of using the

traditional GMM approach, we introduce the MDN which

was first proposed in [3]. The MDN can represent arbitrary

conditional distributions by combining a conventional neu-

ral network with a mixture density model. Ye et al. [26]

used a hierarchical MDN to solve the occlusion problem in

hand pose estimation. Inspired by the work of Ye et al., we

use the MDN to solve the depth ambiguity and occlusion

problem in 3D human pose estimation.

3. Our Mixture Density Network

Figure 2 shows the illustration of our deep network to

generate multiple hypotheses for 3D human pose estima-

tion. Our network follows the commonly used two-stage

approach that first estimates the 2D joints from the input

images followed by the 3D pose estimation from the esti-

mated 2D joints. We adopt the state-of-the-art stacked hour-

glass [18] network as the 2D joint estimation module, and

use our MDN which consists of a feature extractor and a

hypotheses generator to generate the multiple 3D pose hy-

potheses. Given the 2D joint detections x ∈ R
2N , where

N is the number of joints in one pose, our goal is to learn

a function f : x 7→ Θ which maps x into a set of output

parameters Θ = {µ,σ,α} for our mixture model. µ =
{µ1, ..., µM | µi ∈ R

3N}, σ = {σ1, ..., σM | σi ∈ R}
and α = {α1, ..., αM | 0 ≤ αi ≤ 1,

∑

i αi = 1} are

the means, variances and mixing coefficients of the mixture

model. M is the number of Gaussian kernels. The mean of

each Guassian kernel µi ∈ µ represents one 3D pose hy-

pothesis, and the number of Gaussian kennels M decides

the number of hypotheses generated by our model.

3.1. Model Representation

The probability density of the 3D pose y ∈ R
3N given

the 2D joints x ∈ R
2N is represented as a linear combina-

tion of Gaussian kernel functions

p(y | x) =

M∑

i=1

αi(x)φi(y | x), (1)

where M is the number of Gaussian kernels, i.e. the number

of hypotheses. αi(x) is the mixing coefficients, which can

be regarded as a prior probability of a 3D pose data y being

generated from the ith Gaussian kernel given the input 2D

joints x. Here αi(x) must satisfy the constraint

0 ≤ αi(x) ≤ 1,

M∑

i=1

αi(x) = 1. (2)

φi(y | x) is the conditional density of the 3D pose y for the

ith kernel, which can be expressed as a Gaussian distribu-

tion

φi(y | x) =
1

(2π)d/2σi(x)d
exp−

‖y − µi(x)‖
2

2σi(x)2
. (3)

µi(x) and σi(x) denote the mean and variance of the ith ker-

nel, respectively. d is the dimension of the output 3D pose

y. All the parameters of the mixture model, including the

mixing coefficients αi(x), the mean µi(x) and the variance

σi(x) are functions of the input 2D pose x.

Note that the mixture model degenerates to a single

Gaussion distribution when the means and variances of all

Gaussian kernels are similar, i.e. µi(x) ≈ µ(x), σi(x) ≈
σ(x) for i = 1, ...,M . Hence,

p(y | x) =
M∑

i=1

αi(x)φi(y | x)

≈
M∑

i=1

αi(x)N (µ(x), σ(x)) (4)

= N (µ(x), σ(x)).
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Specifically in our case, the 3D pose hypotheses generated

by the MDN will collapse into approximately a single Gaus-

sian when the given 2D pose is simple and less ambiguous,

e.g. no occlusions and/or missing joints.

3.2. Network Architecture

From Eqn. (1), (2) and (3), we can see that all param-

eters Θ(x) = {µ(x),σ(x),α(x)} of the Gaussian mixture

distribution of y are functional form of x. Hence, we learn

this function f : x 7→ Θ using a deep network which can be

expressed as

Θ = f(x;w), (5)

where w is the set of learnable weights in the deep network.

The probability density in Eqn. (1) can be rewritten to in-

clude the learnable weights w of the deep network, i.e.,

p(y | x,w) =

M∑

i=1

αi(x,w)φi(y | x,w), (6)

where

φi(y | x,w) =
1

(2π)d/2σi(x,w)d
exp−

‖y − µi(x,w)‖2

2σi(x,w)2
.

(7)

The parameters Θ(x,w) = {µ(x,w),σ(x,w),α(x,w)} are

now dependent on the learnable weights w of the deep net-

work f(x;w).

We modify the 3D pose estimation module in [15] to

form our deep network f(x;w). More specifically, our ap-

proach is a simple multilayer neural network. Given an in-

put of 2D joints x ∈ R
2N , we use one linear layer to map the

input into an 1024 dimensional feature space, followed by

two residual blocks which respectively consists of a linear

layer, batch normalization , dropout , and Rectified Linear

Units. And there are residual connections between the in-

put and output of each residual block. Different from [15]

which adds another linear layer to directly regress the 3D

pose y ∈ R
3N from the feature space, our network estimates

the parameters Θ of the mixture model. In particular, we use

different activation functions to satisfy the constraints of the

three parameters Θ(x,w) = {µ(x,w),σ(x,w),α(x,w)}.

Specifically, we use a normal linear layer for parameter

µ(x,w), a softmax function for the mixture coefficient

α(x,w) so that it lies in the range of [0, 1] and sums up

to 1, and a modified ELU function [7] defined as:

h(t) =

{

t+ 1, if t ≥ 0

γ(exp(t)− 1) + 1, otherwise
(8)

for the variance σ(x,w) to keep it positive. Here, γ is a

scale for negative factor.

3.3. Optimization

Given a training dataset with K pairs of ground truth la-

bels for the corresponding 2D joints X and 3D poses Y, i.e.

{X,Y} = {{xj , yj} | j = 1, ...,K}, the objective is to find

the maximum a posterior of the set of learnable weights w.

More formally, assuming that each training data is indepen-

dent and identically distributed (i.i.d), the posterior distri-

bution of w is given by

p(w | X,Y,Ψ) ∝ p(Y | X,w)p(w | X,Ψ) (9)

= p(w | X,Ψ)

K∏

j=1

p(yj | xj ,w)

= p(w | X,Ψ)

K∏

j=1

M∑

i=1

αi(xj ,w)φi(yj | xj ,w),

where Ψ is the hyperparameter of the prior over the learn-

able weights w. Hence, the optimal weight w∗ can be ob-

tained from the minimization of the negative log-posterior

w∗ = argmin
w

− ln p(w | X,Y,Ψ) (10)

= argmin
w

−
K∑

j=1

ln p(yj | xj ,w)− ln p(w | X,Ψ)

︸ ︷︷ ︸

L

,

where L is taken to be the loss function for training our deep

network f(x;w). More specifically,

L = −
K∑

j=1

ln p(yj | xj ,w)− ln p(w | X,Ψ) (11)

= −
K∑

j=1

ln

M∑

i=1

αi(xj ,w)φi(yj | xj ,w)− ln p(w | X,Ψ)

= L3D + Lprior.

The prior loss Lprior can be further evaluated into:

Lprior = − ln p(w | X,Ψ) (12)

= − ln p(w,X | Ψ) + ln p(X | Ψ)

∝ − ln p(Θ(w,X) | Ψ)

= − ln p(α(w,X) | Ψ)− ln p(µ(w,X),σ(w,X) | Ψ),

where the term ln p(X | Ψ) can be dropped in the loss func-

tion since it is independent of w, and we write the random

variables {w,X} in its functional form Θ(w,X) given by

the deep network. We further assume a uniform prior over

µ(w,X) and σ(w,X), and a Dirichlet conjugate prior over

the mixing coefficients α(w,X) that follows a Categorical
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distribution, we get

Lprior = − ln p(α(w,X) | Λ) (13)

= −
K∑

j=1

ln p(α1(w, xj), ..., αM (w, xj) | Λ),

where

p(α1, ..., αM | Λ) = Dir[α1,...,αM ][λ1, ..., λM ] (14)

=
Γ[
∑M

i=1 λi]
∏M

i=1 Γ[λi]

M∏

i=1

αi(w, xj)
λi−1.

Γ[.] is the Gamma function, and Λ = {λ1, ..., λM} are the

hyperparameters of the Dirichlet distribution, where λi ∈
[0, 1] and

∑

i λi = 1. The total loss function to train our

deep network is given by

L = L3D + Lprior,

where

L3D = −
K∑

j=1

ln

M∑

i=1

αi(xj ,w)φi(yj | xj ,w) (15)

Lprior = −
K∑

j=1

M∑

i=1

(λi − 1) lnαi(w, xj).

Note that we drop
Γ[

∑
M

i=1
λi]∏

M

i=1
Γ[λi]

in Lprior because it is indepen-

dent of w.

Remarks: The term Lprior regularizes the mixing coeffi-

cients of our mixture model. Setting λi = 1 for i = 1, ..,M
implies that we have no prior knowledge over the mixing

coefficients. In our experiments, we set λ1 = ... = λM =
C, where C > 1 is a constant scalar value to prevent overfit-

ting of a single Gaussian kernel in the MDN to the training

data, i.e. a single mixing coefficient αi ≈ 1 and αj 6=i ≈ 0.

4. Experiments

Our model is implemented in Tensorflow, and we use

the ADAM [13] optimizer with an initial learning rate of

0.001 and exponential decay. The batch size is set to 64 and

we initialize the weights of linear layers with the Kaiming

initialization [9]. The number of Gaussian kernels is set to 5

and the hyperparameters {λ1, ..., λM} in Eqn. (14) are set to

2. We train our network for 200 epoches with a dropout rate

of 0.5. We also apply max-norm constraint on the weight

of each layer so that it is in range [0, 1]. Moreover, we clip

the value of αi(x) to [1e−8, 1] and σi(x) to [1e−15, 1e15]
to prevent the training loss from becoming NaN. We also

use the log-sum-exp trick as previous work [5] to avoid the

underflow problem.

4.1. Datasets and Protocols

We show numerical results for the Human3.6M

dataset [11] and compare with other state-of-the-art ap-

proaches. We also apply our approach to other datasets in-

cluding MPII [2] and MPI-INF-3DHP [16] datasets to test

the generalization capacity of our network.

Human3.6M dataset: This is currently the largest avail-

able video pose dataset, which provides accurate 3D body

joint locations recorded by a Vicon motion capture system.

There are 15 activity scenarios in total such as “Walking”,

“Eating”, “Sitting” and “Discussion”, each action is per-

formed by 7 professional actors. Accurate 2D joint loca-

tions , 3D pose annotations and camera parameters are pro-

vided. Following [15], we apply standard normalization to

the 2D inputs and 3D outputs by subtracting the mean and

dividing by the standard deviation of the training data. We

also zero-center the 3D poses around the hip joint since we

do not predict the global position of the 3D pose.

MPII dataset: This is a standard dataset for 2D human

pose estimation, which contains 25K unconstrained images

collected from YouTube videos. This is the most challeng-

ing in-the-wild dataset and we use it to test the generaliza-

tion of our approach. We report qualitative result for this

datset because 3D pose information is not provided.

MPI-INF-3DHP dataset: It is a newly released 3D hu-

man pose dataset which is captured by a Mocap system in

both indoor and outdoor scenes. We only use the test split

of this dataset that includes 2935 frames from six subjects

performing seven actions.

2D detections: We use the state-of-the-art stacked hour-

glass network [18] to get the 2D joint detections. The

stacked hourglass network is pretrained on the MPII dataset

and then fine-tuned on the Human3.6M dataset.

Evaluation protocols: For the Human3.6M dataset, we

follow the standard protocol of using S1, S5, S6, S7 and

S8 for training, and S9 and S11 for testing. The evalua-

tion metric is the Mean Per Joint Position Error (MPJPE)

in millimeter between the ground truth and the estimated

3D pose. Since our network generating multiple hypothe-

ses for each 2D detection, we follow [12] to compute the

MPJPE between the ground truth and the best 3D hypothe-

sis generated by our network. The 3D Percentate of Correct

Keypoints (3DPCK) [16] is adopted as the metric for the

MPI-INF-3DHP dataset .

4.2. Results on Human3.6M dataset

We first report our results on the Human3.6 dataset and

compare with other state-of-the-art approaches. From the

results shown in Table 1, we can see that our method outper-

forms the others in most cases. Our approach achieves an
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Table 1: Quantitative results of MPJPE in millimeter on Human3.6M under protocol # 1 and # 2. (Best result in bold)

Protocol #1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Avg.

LinKDE et al. [11] 132.7 183.6 132.3 164.4 162.1 205.9 150.6 171.3 151.6 243.0 162.1 170.7 177.1 96.6 127.9 162.1

Du et al. [8] 85.1 112.7 104.9 122.1 139.1 135.9 105.9 166.2 117.5 226.9 120.0 117.7 137.4 99.3 106.5 126.5

Zhou et al. [28] 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0

Pavlakos et al. [20] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9

Jahangiri et al. [12] 63.1 55.9 58.1 64.5 68.7 61.3 55.6 86.1 117.6 71.0 71.2 66.3 57.1 62.5 61.0 68.0

Zhou et al. [27] 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.1 66.0 51.4 63.2 55.3 64.9

Martinez et al. [15] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Lee et al. [14] 43.8 51.7 48.8 53.1 52.2 74.9 52.7 44.6 56.9 74.3 56.7 66.4 47.5 68.4 45.6 55.8

Ours 43.8 48.6 49.1 49.8 57.6 61.5 45.9 48.3 62.0 73.4 54.8 50.6 56.0 43.4 45.5 52.7

Protocol #2 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Avg.

Yasin et al. [25] 88.4 72.5 108.5 110.2 97.1 142.5 81.6 107.2 119.0 170.8 108.2 86.9 92.1 165.7 102.0 110.1

Bogo et al. [4] 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 86.8 79.7 87.7 82.3

Moreno et al. [17] 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5 74.6 92.6 69.6 71.5 78.0 73.2 74.0

Martinez et al. [15] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

Lee et al. [14] 37.4 38.9 45.6 43.8 48.5 54.6 39.9 39.2 53.0 68.5 51.5 38.4 33.2 55.8 37.8 45.7

Ours 35.5 39.8 41.3 42.3 46.0 48.9 36.9 37.3 51.0 60.6 44.9 40.2 44.1 33.1 36.9 42.6

Figure 3: Qualitative results on the MPII test set. The first and second columns are the input images and output 2D joint

detections of the stacked hourglass network, the last column is the 3D pose generated by our network.

Table 2: Results by using multi-view information

Methods Lee[14] Hossain[10] Pavlakos [21] Ours

Avg. 52.8 51.9 56.9 49.6

improvement of 5.5% compared to the previous best result

55.8 mm [14] and 16.2 % compared to the baseline archi-

tecture [15]. This indicates the efficiency of our approach

by generating multiple hypotheses. Moreover, our network

outperforms [12] which also generates multiple hypotheses

by 22.5%. Following previous work, We show our result

under Protocol #2 [4, 17] where the estimated pose has been

further aligned with the ground truth via a rigid transferma-

tion. The MPJPE error in Table 1 shows that our approach

consistently outperforms other approaches.

It is difficult to disambiguate the multiple 3D pose hy-

potheses generated by our model in a monocular view be-

cause most of them are feasible solutions to the inverse

2D-to-3D problem. Hence, we utilize the multi-view im-

ages from the set of calibrated cameras provided by the Hu-

man3.6M dataset to disambiguate and verify the correctness

of the multiple 3D pose hypotheses generated by our net-

work. Specifically, we transform the same pose under dif-

ferent cameras into the global world coordinates, and then

we choose the pose which is most consistent with the poses

from other camera coordinates. Finally, we get our esti-

mated pose by averaging all poses from different camera

coordinates. We list our result in Table 2 and compare with

other state-of-the-art approaches based on multi-view [21]

(spatial constraint) or video (temporal constraint) informa-

tion [14, 10]. Note that it is however not a fair comparison
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Table 3: Results with one (the first three rows) or two (the last three rows) missing joints

Direct. Discuss Eating Greet Phone Smoke Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Avg.

Jahangiri et al. [12] 108.6 105.9 105.6 109.0 105.5 109.9 102.0 111.3 119.6 107.8 107.1 111.3 108.4 107.0 110.3 108.6

Martinez et al. [15] 57.4 61.6 64.3 65.6 73.3 85.5 61.0 62.1 84.0 101.1 68.2 66.7 70.8 55.6 59.6 69.1

Ours 48.9 53.9 54.5 55.5 62.6 70.4 51.3 52.0 69.7 83.9 60.7 57.2 62.4 48.3 50.8 58.8

Jahangiri et al. [12] 125.0 121.8 115.1 124.1 116.9 123.8 116.4 119.6 130.8 120.6 118.4 127.1 125.9 121.6 127.6 122.3

Martinez et al. [15] 62.9 66.9 69.9 71.4 80.2 93.8 66.3 65.9 90.6 109.7 74.2 72.1 75.5 61.7 65.7 75.1

Ours 54.0 58.5 60.6 61.4 68.6 77.9 56.6 57.0 77.8 92.4 66.2 62.6 67.5 52.5 55.0 64.6

Figure 4: 3D Pose hypotheses generated by our network. The first column is the input of our network, i.e. the 2D joints

estimated by the stacked hourglass network. The second column is the ground truth 3D pose, and the third to seventh

columns are the hypotheses generated by our network. The last column is the 2D reprojections of all five hypotheses. The

corresponding 2D projection and 3D pose are drawn in the same color. (Best view in color)

Table 4: Quantitative results on MPI-INF-3DHP dataset

Studio GS Studio no GS Outdoor All PCK

Mehta et al. [16] 84.1 68.9 59.6 72.5

Ours 70.1 68.2 66.6 67.9

Table 5: Comparison between different number of kernels

Number of kernels 1 3 5 8

Avg. MPJPE 62.9 55.2 52.7 52.6

with other results listed in Table 1 because they did not use

any multi-view or video information. The results show that

our approach has the best performance among both spatial

and temporal constraints based methods, indicating the ad-

vantage of our approach by generating multiple hypotheses.

In realistic scenarios, it is common that some joints are

occluded and cannot be detected. In order to show that our

model can handle with missing joints, we ran experiments

with different number of missing joints selected randomly

from the limb joints including l/r elbow, l/r wrist, l/r knee,

l/r ankle. We show our results in Table 3 and compared

with the baseline 2D-to-3D estimator [15] and the GMM

based methods [12] which also focus on generating mul-

tiple hypotheses. The baseline outperforms GMM based

methods by a large margin, which indicates the advantage

of using deep networks. Moreover, our method improves

the baseline for all actions with average error decreased by

10.4mm for both cases, further showing the robustness of

our method.

4.3. Transfer to MPII and MPI­INF­3DHP datasets

We test our method on the MPII and MPI-INF-3DHP

datasets to validate the generalization capacity. Note that

we train the feature extractor and hypotheses generator

on the Human3.6 dataset which contains data from only

the indoor environment. The validation set of MPI-INF-

3DHP dataset includes images recorded under three differ-

ent scenes: 1143 images in studio with green screen back-

ground (Studio GS), 1064 images in studio without green

screen background (Studio no GS) and 728 images in out-

door environment (Outdoor). We use the 2D joints provided

by the dataset as input and compute the 3DPCK. The re-

sults in Table 4 show that the 3DPCK of our approach is

slightly lower than [16] even though we did not train on
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Table 6: Comparison of our network with and without Dirichlet prior

Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Avg.

Wo prior 44.4 49.6 50.0 51.0 57.3 63.0 46.0 49.2 64.1 78.7 55.4 51.4 56.8 43.1 44.9 53.7

W prior 43.8 48.6 49.1 49.8 57.6 61.5 45.9 48.3 62.0 73.4 54.8 50.6 56.0 43.4 45.5 52.7

Table 7: The similarity of the 2D reprojections of all five pose hypotheses

Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Avg.

PCKh@0.5 99.6 99.5 99.6 94.9 99.5 99.7 99.9 98.8 99.0 87.6 99.6 94.6 99.1 99.2 99.5 98.1

their dataset, indicating the generalization of our network.

Moreover, our results for different scenes do not change too

much compared to the results of [16]. This further suggests

the domain-invariant capability of the two-stage approach

that we adopted. We only give qualitative results for the

MPII dataset in Figure 3 since the ground truth 3D pose

data is not provided. We can see that our network can be

generalized well to outdoor unseen scenes.

4.4. Ablation Study

Different number of kernels Our hypotheses generator

is based on MDN where each of the M Gaussian kernels

in Eqn.(1) yields different result. We note that our network

cannot fit the data completely if M is too small, while larger

M requires more computation resource. We thus train three

different models with M setting to 3, 5, 8, respectively. We

show the average MPJPE on the Human3.6M dataset in Ta-

ble 5 and compare them with the baseline method, which is

based on single Gaussian distribution. The results suggest

that our MDN has better performance than single Gaussion

based method. Moreover, the performance does not im-

prove much when M is larger than five. Consequently, we

set M to five in our experiments in view of the trade-off

between accuracy and computational complexity.

Dirichlet prior We add a Dirichlet conjugate prior to the

distribution of the mixture coefficients α(x) to prevent over-

fitting of a single Gaussion kernel to the training data. In

order to explore the role of the Dirichlet prior, we compare

the performance of our model with and without Lprior. The

results are shown in Table 6, it can be seen that the per-

formance improves by adding the Dirichlet conjugate prior,

especially for the difficult poses in actions “Sitting” and

“SittingDown”. The reason is that most of the poses in

the Human3.6 dataset are in a standing position, resulting

in a worse performance on the “Sitting” and “SittingDown”

actions. This further indicates that the Dirichlet conjugate

prior can prevent overffiting effectively.

What is generated by each kernel? In order to explore

the relation between different hypotheses, we reproject all

five pose hypotheses into the image plane and compute the

difference between projections and the 2D input joints. We

adopt the PCKh@0.5 score [18] which is the standard met-

ric for 2D pose estimation to measure the difference. The

high PCKh@0.5 score in Table 7 suggests that all the five

hypotheses have almost the same 2D reprojections which

are consistent with the 2D input. Note that we do not add

any constraint as [12] did to force all hypotheses to be con-

sistent in the 2D reprojections.

We give several visualization results in Figure 4 to fur-

ther illustrate the relations between all pose hypotheses. As

described by Eqn. (4), each Gaussian kernel can be seen

to generate the same hypotheses for simple pose with less

ambiguity, e.g. standing (first row). This means that sin-

gle Gaussian distribution is sufficient for simple poses. In

comparison, our network can be seen to generate differ-

ent hypotheses for challenging poses like “GettingDown” or

“SittingDown” (second and third rows) due to two reasons.

Firstly, our network receives lesser information on this type

of poses since most of the poses in the Human3.6 dataset

are the “standing” poses. Secondly, there are more ambi-

guities and occlusions for the “GettingDown” or “Sitting-

Down” poses. As a result, our network generates multiple

pose hypotheses to mitigate the increase of the uncertainty.

We also visualize the 2D reprojections of all hypotheses in

the last column. We indicate the corresponding 2D repro-

jection and 3D pose with the same color. The overlaps be-

tween the 2D reprojections further validate that our network

generates hypotheses that are consistent in the 2D image co-

ordinates.

5. Conclusion

In this work, we introduce the use of a mixture density

network to generate multiple feasible hypotheses for the in-

verse problem of 3D human pose estimation from 2D in-

puts. Experimental results show that our network achieves

state-of-the-art results in both best hypothesis and multi-

view settings. Furthermore, the 3D pose hypotheses gen-

erated by our network are consistent in the 2D reprojections

suggests that the hypotheses model the ambiguity along the

depth of the joints. Results on the MPII and MPI-INF-

3DHP datasets further show the generalization capacity of

our network.
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