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Abstract— One of the main aims of humanoid robotics is to
develop robots that are capable of interacting naturally with
people. However, to understand the essence of human interac-
tion, it is crucial to investigate the contribution of behavior and

appearance. Our group’s research explores these relationships
by developing androids that closely resemble human beings in
both aspects. If humanlike appearance causes us to evaluate an
android’s behavior from a human standard, we are more likely
to be cognizant of deviations from human norms. Therefore,
the android’s motions must closely match human performance to
avoid looking strange, including such autonomic responses as the
shoulder movements involved in breathing. This paper proposes
a method to implement motions that look human by mapping
their three-dimensional appearance from a human performer
to the android and then evaluating the verisimilitude of the
visible motions using a motion capture system. This approach
has several advantages over current research, which has focused
on copying a person’s moving joint angles to a robot: (1) in an
android robot with many degrees of freedom and kinematics that
differs from that of a human being, it is difficult to calculate
which joint angles would make the robot’s posture appear
similar to the human performer; and (2) the motion that we
perceive is at the robot’s surface, not necessarily at its joints,
which are often hidden from view.

Index Terms— Learning control systems, motion analysis,
humanlike motion, human-robot imitation, android science,
appearance and behavior problem.

I. INTRODUCTION

Much effort in recent years has focused on the development

of such mechanical-looking humanoid robots as Honda’s

Asimo and Sony’s Qrio with the goal of partnering them with

people in daily situations. Just as an industrial robot’s purpose

determines its appearance, a partner robot’s purpose will also

determine its appearance. Partner robots generally adopt a

roughly humanoid appearance to facilitate communication

with people, because natural interaction is the only task that

requires a humanlike appearance. In other words, humanoid

robots mainly have significance insofar as they can interact

naturally with people. Therefore, it is necessary to discover

the principles underlying natural interaction to establish a

methodology for designing interactive humanoid robots.

Kanda et al. [1] have tackled this problem by evaluat-

ing how the behavior of the humanoid robot “Robovie”

affects human-robot interaction. But Robovie’s machine-like

appearance distorts our interpretation of its behavior because

of the way the complex relationship between appearance

and behavior influences the interaction. Most research on

interactive robots has not evaluated the effect of appear-

ance (for exceptions, see [2] [3]) — and especially not in a

robot that closely resembles a person . Thus, it is not yet

clear whether the most comfortable and effective human-

robot communication would come from a robot that looks

mechanical or human. However, we may infer a humanlike

appearance is important from the fact that human beings have

developed neural centers specialized for the detection and

interpretation of hands and faces [4] [5] [6]. A robot that

closely resembles humans in both looks and behavior may

prove to be the ultimate communication device insofar as it

can interact with humans the most naturally.1 We refer to

such a device as an android to distinguish it from mechanical-

looking humanoid robots. When we investigate the essence of

how we recognize human beings as human, it will become

clearer how to produce natural interaction. Our study tackles

the appearance and behavior problem with the objective of

realizing an android and having it be accepted as a human

being [7].

Ideally, to generate humanlike movement, an android’s

kinematics should be functionally equivalent to the human

musculoskeletal system. Some researchers have developed

a joint system that simulates shoulder movement [8] and a

muscle-tendon system to generate humanlike movement [9].

However, these systems are too bulky to be embedded in

an android without compromising its humanlike appearance.

Given current technology, we embed as many actuators as

possible to provide many degrees of freedom insofar as this

does not interfere with making the android look as human as

possible [7]. Under these constraints, the main issue concerns

how to move the android in a natural way so that its movement

may be perceived as human.

A straightforward way to make a robot’s movement more

1We use the term natural to denote communication that flows without
seeming stilted, forced, bizarre, or inhuman.



humanlike is to imitate human motion. Kashima and Isurugi

[10] extracted essential properties of human arm trajectories

and designed an evaluation function to generate robot arm

trajectories accordingly. Another method is to copy human

motion as measured by a motion capture system to a hu-

manoid robot. Riley et al. [11] and Nakaoka et al. [12]

calculated a performer’s joint trajectories from the measured

positions of markers attached to the body and fed them to

the joints of a humanoid robot. In these studies the authors

assumed the kinematics of the robot to be similar to that of

a human body. However, the more complex the robot’s kine-

matics, the more difficult it is to calculate which joint angles

will make the robot’s posture similar to the performer’s joint

angles as calculated from motion capture data. Therefore,

it is possible the assumption that the two joint systems are

comparable results in visibly different motion in some cases.

This is especially a risk for androids because their humanlike

form makes us more sensitive to deviations from human

ways of moving. Thus, slight differences could strongly

influence whether the android’s movement is perceived as

natural or human. Furthermore, these studies did not evaluate

the naturalness of robot motions.

Hale et al. [13] proposed several evaluation functions

to generate a joint trajectory (e.g., minimization of jerk)

and evaluated the naturalness of generated humanoid robot

movements according to how human subjects rated their

naturalness. In the computer animation domain, researchers

have tackled a motion synthesis with motion capture data

(e.g., [14]). However, we cannot apply their results directly;

we must instead repeat their experiment with an android

because the results from an android testbed could be quite

different from those of a humanoid testbed. For example,

Mori described a phenomenon he termed the “uncanny valley”

[15], [16], which relates to the relationship between how

humanlike a robot appears and a subject’s perception of

familiarity. According to Mori, a robot’s familiarity increases

with its similarity until a certain point is reached at which

slight “nonhuman” imperfections cause the robot to appear

repulsive (Fig. 1). This would be an issue if the similarity

of androids fell into the chasm. (Mori believes mechanical-

looking humanoid robots lie on the left of the first peak.) This

nonmonotonic relationship can distort the evaluation proposed

in existing studies. Therefore, it is necessary to develop a

motion generation method in which the generated “android

motion” is perceived as human.

This paper proposes a method to transfer human motion

measured by a motion capture system to the android by copy-

ing changes in the positions of body surfaces. This method

is called for because the android’s appearance demands

movements that look human, but its kinematics is sufficiently

different that copying joint-angle information would not yield

good results. Comparing the similarity of the android’s visible

movement to that of a human being enables us to develop

more natural movements for the android.

In the following sections, we describe the developed an-

droid and mention the problem of motion transfer and our
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Fig. 1. Uncanny valley

Fig. 2. The developed android “Repliee Q2”

basic idea about the way to solve it. Then we describe the

proposed method in detail and show experimental results from

applying it to the android.

II. THE ANDROID

Fig. 2 shows the developed android called Repliee Q2. The

android resembles an Asian woman because it is modeled

after a Japanese woman. The standing height is about 160

cm. The skin is composed of a kind of silicone that has

a humanlike feel and neutral temperature. The silicone skin

covers the upper torso, neck, head, and forearms with clothing

covering other body parts. Unlike Repliee R1 [17], [7],

silicone skin does not cover the entire body so as to facilitate

flexibility and a maximal range of motion. The soft skin

gives the android a human look and enables natural tactile

interaction. To lend realism to the android’s appearance, we

took a cast of a person to mold the android’s skin. Forty-two

highly sensitive tactile sensors composed of piezo diaphragms

Fig. 3. Examples of motion and facial expressions
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Fig. 4. The android control system

TABLE I

THE DOF CONFIGURATION OF REPLIEE Q2

Degree of freedom

Eyes pan×2 + tilt×1
Face eyebrows×1 + eyelids×1 + cheeks×1

Mouth 7 (including the upper and lower lips)
Neck 3

Shoulder 5×2
Elbow 2×2
Wrist 2×2

Fingers 2×2
Torso 4

are mounted under the android’s skin and clothes throughout

the body, except for the shins, calves, and feet. Since the

output value of each sensor corresponds to its deforming rate,

the sensors can distinguish different kinds of touch ranging

from stroking to hitting.

The android is driven by air actuators that give it 42 degrees

of freedom (DoFs) from the waist up. (The legs and feet are

not powered.) The configuration of the DoFs is shown in

Table I. The android can generate a wide range of motions

and gestures as well as various kinds of micro-motions such as

the shoulder movements typically caused by human breathing.

The DoFs of the shoulders enable them to move up and down

and backwards and forwards. Furthermore, the android can

make some facial expressions and mouth shapes, as shown

in Fig. 3. The compliance of the air actuators makes for a

safer interaction with movements that are generally smoother.

Because the android has servo controllers, it can be controlled

by sending desired joint positions from a host computer.

Parallel link mechanisms adopted in some parts complicate

the kinematics of the android.

III. TRANSFERRING HUMAN MOTION

A. The basic idea

One method to realize humanlike motion in a humanoid

robot is through imitation. Thus, we consider how to map

human motion to the android. Most previous research assumes

the kinematics of the human body is similar to that of the

robot except for the scale. Thus, they aim to reproduce human

motion by reproducing kinematic relations across time and,

in particular, joint angles between links. For example, the

three-dimensional locations of markers attached to the skin

are measured by a motion capture system, the angles of the

body’s joints are calculated from these positions, and these

angles are transferred to the joints of the humanoid robot. It

is assumed that by using a joint angle space (which does not

represent link lengths), morphological differences between the

human subject and the humanoid robot can be ignored.

However, there is potential for error in calculating a joint

angle from motion capture data. The joint positions are

assumed to be the same between a humanoid robot and

the human performer who serves as a model; however,

the kinematics in fact differs. For example, the kinematics

of Repliee Q2’s shoulder differs significantly from those

of human beings. Moreover, as human joints rotate, each

joint’s center of rotation changes, but joint-based approaches

generally assume this is not so. These errors are perhaps more

pronounced in Repliee Q2, because the android has many

degrees of freedom and the shoulder has a more complex

kinematics than existing humanoid robots. These errors are

more problematic for an android than a mechanical-looking

humanoid robot because we expect natural human motion

from something that looks human and are disturbed when

the motion instead looks inhuman.

To create movement that appears human, we focus on

reproducing positional changes at the body’s surface rather

than changes in the joint angles. We then measure the postures

of a person and the android using a motion capture system

and find the control input to the android so that the postures

of person and android become similar to each other.

B. The method to transfer human motion

We use a motion capture system to measure the postures

of a human performer and the android. This system can

measure the three-dimensional positions of markers attached

to the surface of bodies in a global coordinate space. First,

some markers are attached to the android so that all joint

motions can be estimated. The reason for this will become
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Fig. 5. The feedback controller with and without the estimation of the android’s joint angle

clear later. Then the same number of markers are attached

to corresponding positions on the performer’s body. We must

assume the android’s surface morphology is not too different

from the performer’s.

We use a three-layer neural network to construct a mapping

from the performer’s posture to the android’s control input,

which is the desired joint angle. The reason for the network is

that it is difficult to obtain the mapping analytically. To train a

neural network to map from xh to qa would require thousands

of pairs of xh, qa as training data, and the performer would

need to assume the posture of the android for each pair. We

avoid this prohibitively lengthy task in data collection by

adopting feedback error learning (FEL) to train the neural

network. Kawato et al. [18] proposed feedback error learning

as a principle for learning motor control in the brain. This

employs an approximate way of mapping sensory errors to

motor errors that subsequently can be used to train a neural

network (or other method) by supervised learning. Feedback-

error learning neither prescribes the type of neural network

employed in the control system nor the exact layout of the

control circuitry. We use it to estimate the error between the

postures of the performer and the android and feed the error

back to the network.

Fig. 4 shows the block diagram of the control system,

where the network mapping is shown as the feedforward

controller. The weights of the feedforward neural network are

learned by means of a feedback controller. The method has

a two-degrees-of-freedom control architecture. The network

tunes the feedforward controller to be the inverse model

of the plant. Thus, the feedback error signal is employed

as a teaching signal for learning the inverse model. If the

inverse model is learned exactly, the output of the plant tracks

the reference signal by feedforward control. The performer

and android’s marker positions are represented in their local

coordinates xh,xa ∈ R3m; the android’s joint angles qa ∈

R
n can be observed by a motion capture system and a

potentiometer, where m is the number of markers and n is

the number of DoFs of the android.

The feedback controller is required to output the feedback

control input ∆qb so that the error in the marker’s position

∆xd = xa − xh converges to zero (Fig. 5(a)). However, it

is difficult to obtain ∆qb from ∆xd. To overcome this, we

assume the performer has roughly the same kinematics as

the android and obtain the estimated joint angle q̂h simply

by calculating the Euler angles (hereafter the transformation

from marker positions to joint angles is described as T ).2

Converging q̂a to qh does not always produce identical

postures because q̂h is an approximate joint angle that may

include transformation error (Fig. 5(b)). Then we obtain

2There are alternatives to using the Euler angles such as angle decompo-
sition [19], which has the advantage of providing a sequence independent
representation, or least squares, to calculate the helical axis and rotational
angle [20] [21]. This last method provides higher accuracy when many
markers are used but has an increased risk of marker crossover.
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the estimated joint angle of the android q̂a using the same

transformation T and the feedback control input to converge

q̂a to q̂h (Fig. 5(c)). This technique enables xa to approach

xh. The feedback control input approaches zero as learning

progresses, while the neural network constructs the mapping

from xh to the control input qd. We can evaluate the apparent

posture by measuring the android posture.

In this system we could have made another neural network

for the mapping from xa to qa using only the android. As

long as the android’s body surfaces are reasonably close

to the performer’s, we can use the mapping to make the

control input from xh. Ideally, the mapping must learn every

possible posture, but this is quite difficult. Therefore, it is still

necessary for the system to evaluate the error in the apparent

posture.

IV. EXPERIMENT TO TRANSFER HUMAN MOTION

A. Experimental setting

To verify the proposed method, we conducted an experi-

ment to transfer human motion to the android Repliee Q2.

We used 21 of the android’s 42 DoFs by excluding the 13

DoFs of the face, the 4 of the wrists, and the 4 of the

fingers (n = 21). We used a Hawk Digital System,3 which

can track more than 50 markers in real-time. The system is

highly accurate with a measurement error of less than 1 mm.

Twenty markers were attached to the performer and another

20 to the android as shown in Fig. 6 (m = 20). Because

the android’s waist is fixed, the markers on the waist set

the frame of reference for an android-centered coordinate

space. To facilitate learning, we introduce a representation

of the marker position xh,xa as shown in Fig. 7. The effect

3Motion Analysis Corporation, Santa Rosa, California.
http://www.motionanalysis.com/
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Fig. 7. The representation of the marker positions. A marker’s diameter is
about 18 mm.

of waist motions are removed with respect to the markers

on the head. To avoid accumulating the position errors at

the end of the arms, vectors connecting neighboring pairs of

markers represent the positions of the markers on the arms.

We used arc tangents for the transformation T , in which the

joint angle is an angle between two neighboring links where

a link consists of a straight line between two markers.

The feedback controller outputs ∆qb = K∆q̂d, where the

gain K consists of a diagonal matrix. There are 60 nodes

in the input layer (20 markers × x, y, z), 300 in the hidden

layer, and 21 in the output layer (for the 21 DoFs). Using 300

units in the hidden layer provided a good balance between

computational efficiency and accuracy. Using significantly

fewer units resulted in too much error, while using signifi-

cantly more units provided only marginally higher accuracy

but at the cost of slower convergence. The error signal to the

network is t = α∆qb, where the gain α is a small number.

The sampling time for capturing the marker positions and

controlling the android is 60 ms. Another neural network

which has the same structure previously learned the mapping

from xa to qa to set the initial values of the weights. We

obtained 50,000 samples of training data (xa and qa) by

moving the android randomly. The learned network is used

to set the initial weights of the feedforward network.

B. Experimental results and analysis

1) Surface similarity between the android and performer:

The proposed method assumes a surface similarity between

the android and the performer. However, the male performer

whom the android imitates in the experiments was 15 cm

taller than the women after whom the android was modeled.

To check the similarity, we measured the average distance

between corresponding pairs of markers when the android
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Fig. 9. The change of the position error with learning of the network

and performer make each of the given postures; the value

was 31 mm (see the Fig. 6). The gap is small compared to

the size of their bodies, but it is not small enough.

2) The learning of the feedforward network: To show the

effect of the feedforward controller, we plot the feedback

control input averaged among the joints while learning from

the initial weights in Fig. 8. The abscissa denotes the time

step (the sampling time is 60 ms.) Although the value of

the ordinate does not have a direct physical interpretation,

it corresponds to a particular joint angle. The performer

exhibited various fixed postures. When the performer started

to make the posture at step 0, error increased rapidly because

network learning had not yet converged. The control input

decreases as learning progresses. This shows that the feed-

forward controller learned so that the feedback control input

converges to zero.

Fig. 9 shows the average position error of a pair of

corresponding markers. The performer also gave an arbitrary

fixed posture. The position errors and the feedback control

input both decreased as the learning of the feedforward

network converged. The result shows the feedforward network

learned the mapping from the performer’s posture to the

android control input, which allows the android to adopt

the same posture. The android’s posture could not match
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Fig. 10. The step response of the android

the performer’s posture when the weights of the feedforward

network were left at their initial values. This is because the

initial network was not given every possible posture in the

pre-learning phase. The result shows the effectiveness of the

method to evaluate the apparent posture.

3) Performance of the system at following fast movements:

To investigate the performance of the system, we obtained

a step response using the feedforward network after it had

learned enough. The performer put his right hand on his knee

and quickly raised the hand right above his head. Fig. 10

shows the height of the fingers of the performer and android.

The performer started to move at step 5 and reached the final

position at step 9, approximately 0.24 seconds later. In this

case the delay is 26 steps or 1.56 seconds. The arm moved

at roughly the maximum speed permitted by the hardware.

The android arm cannot quite reach the performer’s position

because the performer’s position was outside of the android’s

range of motion. Clearly, the speed of the performer’s move-

ment exceeds the android’s capabilities. This experiment is

an extreme case. For less extreme gestures, the delay will be

much less. For example, for the sequence in Fig. 11, the delay

was on average seven steps or 0.42 seconds.

4) The generated android motion: Fig. 11 shows the per-

former’s postures during a movement and the corresponding

postures of the android. The value denotes the time step.

The android followed the performer’s movement with some

delay (the maximum is 15 steps, that is, 0.9 seconds). The

trajectories of the positions of the android’s markers are

considered to be similar to those of the performer, but errors

still remain, and they cannot be ignored. While we can

recognize that the android is making the same gesture as the

performer, the quality of the movement is not the same. There

are a couple of major causes of this:

• The kinematics of the android is too complicated to

represent with an ordinary neural network. To avoid this

limitation, it is possible to introduce the constraint of the

body’s branching in the network connections. Another

idea is to introduce a hierarchical representation of the

mapping. A human motion can be decomposed into a

dominant motion that is at least partly driven consciously
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and secondary motions that are mainly nonconscious

(e.g., contingent movements to maintain balance, such

autonomic responses as breathing). We are trying to

construct a hierarchical representation of motion not only

to reduce the computational complexity of learning but

to make the movement appear more natural.

• The method deals with a motion as a sequence of

postures; it does not precisely reproduce higher order

properties of motion such as velocity and acceleration

because varying delays can occur between the per-

former’s movement and the android’s imitation of it. If

the performer moves very quickly, the apparent motion

of the android differs. Moreover, a lack of higher order

properties prevents the system from adequately compen-

sating for the dynamic characteristics of the android and

the delay of the feedforward network.

• The proposed method is limited by the speed of motion.

It is necessary to consider the properties to overcome the

restriction, although the android has absolute physical

limitations such as a fixed compliance and a maximum

speed that is less than that of a typical human being.

Although physical limitations cannot be overcome by any

control method, there are ways of finessing them to ensure

movements still look natural. For example, although the

android lacks the opponent musculature of human beings,

which affords a variable compliance of the joints, the wobbly

appearance of such movements as rapid waving, which are

high in both speed and frequency, can be overcome by

slowing the movement and removing repeated closed curves

in the joint angle space to eliminate lag caused by the slowed

movement. If the goal is humanlike movement, one approach

may be to query a database of movements that are known to

be humanlike to find the one most similar to the movement

made by the performer, although this begs the question of

where those movements came from in the first place. Another

method is to establish criteria for evaluating the naturalness

of a movement [10]. This is an area for future study.

C. Required improvement and future work

In this paper we focus on reproducing positional changes

at the body’s surface rather than changes in the joint angles

to generate the android’s movement. Fig. 5(a) is a straightfor-

ward method to implement the idea. This paper has adopted

the transformation T from marker positions to estimated joint

angles because it is difficult to derive a feedback controller

which produces the control input ∆qb only from the error in

the marker’s positional error ∆xd analytically. We actually

do not know which joints should be moved to remove a

positional error at the body’s surface. This relation must

be learned, however, the transformation T could disturb the

learing. Hence, it is not generally guaranteed that the feedback

controller which converges the estimated joint angle q̂a to

q̂h enables the marker’s position xa to approach xh. The

assumption that the android’s body surfaces are reasonably

close to the performer’s could avoid this problem, but the

feedback controller shown in Fig. 5(a) is essentially necessary

for mapping the apparent motion. It is possible to find out

how the joint changes relate to the movements of body

surfaces by analyzing the weights of the neural network of

the feedforward controller. A feedback controller could be

designed to output the control input based on the error in the

marker’s position with the analyzed relation. Concerning the

design of the feedback controller, Oyama et al. [22], [23], [24]

proposed several methods for learning both of feedback and

feedforward controllers using neural networks. This is one

potential method to obtain the feedback controller shown in

Fig. 5(a). Assessment of and compensation for deformation

and displacement of the human skin, which cause marker



movement with respect to the underlying bone [25], are also

useful in designing the feedback controller.

We have not dealt with the android’s gaze and facial

expressions in the experiment; however, if gaze and facial

expressions are unrelated to hand gestures and body move-

ments, the appearance is often unnatural, as we have found in

our experiments. Therefore, to make the android’s movement

appear more natural, we have to consider a method to imple-

ment the android’s eye movements and facial expressions.

V. CONCLUSION

This paper has proposed a method of implementing human-

like motions by mapping their three-dimensional appearance

to the android using a motion capture system. By measuring

the android’s posture and comparing it to the posture of a

human performer, we propose a new method to evaluate mo-

tion sequences along bodily surfaces. Unlike other approaches

that focus on reducing joint angle errors, we consider how to

evaluate differences in the android’s apparent motion, that is,

motion at its visible surfaces. The experimental results show

the effectiveness of the evaluation: the method can transfer

human motion. However, the method is restricted by the speed

of the motion. We have to introduce a method to deal with

the dynamic characteristics and physical limitations of the

android. We also have to evaluate the method with different

performers. We would expect to generate the most natural and

accurate movements using a female performer who is about

the same height as the original woman on which the android

is based. Moreover, we have to evaluate the human likeness of

the visible motions by the subjective impressions the android

gives experimental subjects and the responses it elicits, such

as eye contact [26], [27], autonomic responses, and so on.

Research in these areas is in progress.
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