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Abstract

We describe the creation of nonclassical states of microwave radiation via ideal

dichotomic single photon detection, i.e., a detector that only indicates presence

or absence of photons. Ideally, such a detector has a back action in the form of

the subtraction operator (bare lowering operator). Using the non-linearity of this

back action, it is possible to create a large family of nonclassical states of

microwave radiation, including squeezed and multi-component cat states,

starting from a coherent state. We discuss the applicability of this protocol to

current experimental designs of Josephson photomultipliers.

Keywords: quantum computing, quantum information, superconducting circuits,

microwave photonics

1. Introduction

The generation of nonclassical states of radiation is an important test of the foundations of

quantum mechanics and a necessary precursor to implementing quantum communication and

computation protocols in many architectures [1–3]. While the methodology for creating

nonclassical radiation at optical wavelengths has been studied extensively [4–8], the technology

to create quantum states with larger and larger wavelengths has recently become available with

advances in cavity- and circuit-QED.
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In this paper we present a novel way to generate a family of nonclassical states of

microwave radiation in a long wavelength resonator using only detection by an ideal binary

detector, such as the Josephson photomultiplier (JPM). The protocol only involves radiating a

microwave cavity with coherent radiation and post selection based on single photon detection,

without further manipulation. In addition, our protocol applies to any detection mechanism with

a back action resembling that of the subtraction operator (equation (1)) and so can be

generalized to other quantum systems, in particular, other superconducting circuits where strong

photon-detector coupling is possible [9–11]. Recent proposals have established an analogous

detection scheme in cavity-QED, broadening the range of application of our results [12, 13].

In the microwave regime of cavity-QED/circuit-QED squeezed states [14–16] and cat-like

states [17, 18] of microwave radiation have been generated by the Kerr interaction between a

cavity/transmission line and coupled atoms/superconducting qubits. Multi-component cat states

have also been produced in circuit-QED using a gate-based construction [10, 11]. We show

how these nonclassical states can be created in circuit-QED by a measurement based protocol,

and add a new class of nonclassical states to the list, the generalized squeezed states, which so

far have only been proposed in theory [19, 20].

The JPM, a current biased Josephson junction related to the phase qubit, has been shown

experimentally [21] and theoretically [22–24] to be an effective single microwave photon

counter. Previously, we have shown that for a JPM under optimal conditions (long relaxation

time, short pure dephasing time, and a small dark count rate) the back action of photon detection

is the photon subtraction operator [22],

∑ˆ ≡ | − 〉〈 |
=

∞

B n n1 , (1)
n 1

a nonlinear operator that can be related to the photon lowering operator by ˆ = ˆ ˆa B n , but

cannot be expressed as a linear combination of photon creation and annihilation operators. Also,

note that B̂ is not invertible, and hence not unitary. The JPM can be seen in this regime as an

ideal dichotomic detector (see appendix A for further information), providing information about

the presence or absence of photons but not revealing their number beyond that. Unlike

traditional intensity meausurements, a measurement with subtraction operator back action has

no corresponding classical observable, and as such has the potential to turn classical states into

nonclassical ones.

2. Protocols for nonclassical state generation

In this paper we show how to use the noncommuntativity of the detection back action with

coherent displacement pulses to achieve single mode quadrature squeezing of an input coherent

state as well as to generate other nonclassical states, namely generalized squeezed states and

squeezed multi-component Schrödinger cat states [4]. The subtraction operator is phase

squeezing in particular as it removes the phases of the lower energy Fock states in the original

coherent state superposition without changing the phases of the higher energy Fock states—

which become the lower energy states—to compensate. Note that a special case of the second

step of our protocol is already known in quantum optics: subtracting a photon from a squeezed

vacuum state produces a low-power cat (kitten) state [7].
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2.1. Squeezed states

The generation of squeezed states of microwave radiation using JPMs follows a simple

protocol. The cavity is initially prepared in a coherent state, α α| 〉 = ˆ | 〉 = ∑ | 〉α−

=

∞

!

α| |

D e n( ) 0
n n0

n2

2

where α α≡ | | φ
αei , and is coupled to one or more detectors, each acting with back action B̂ on the

cavity after a photon is detected. Mathematically a coherent displacement such as this is

represented by the displacement operator αˆ = α αˆ − ˆ*†

D e( ) a a( ). After N photons are counted (either

by N detectors, or less if fast detector reset is possible), a further displacement pulse is applied

such that the state is centred around α− in phase space. After N further photon detections are

observed, the resulting state is a squeezed state. The optimal choice of N will be discussed

shortly.

Starting from the coherent state input, the probability for N photons to be detected is

∑
α Γ α

Γ
≡ −

| |

!
= −

| |α−| |

=

−

P e
n

N

N
1 1

( , )

( )
(2)N

n

N n

0

1 2 2
2

where Γ α| |N( , )2 is the upper incomplete gamma function of N and α| |2 [25]. α∼ | | !P N/N

N2 as

α| | → 0; however, at α| | ≈ N2 PN jumps rapidly towards unity, and so can be made arbitrarily

close to unity with higher power coherent pulses (see appendix C for further details).

It is straightforward to calculate the normalized post measurement cavity state after N

detections,

ρ
α α

≡
ˆ | 〉〈 | ˆ

′

†
B B

P
, (3)

N N

N

and the average photon number ≡ 〈 〉ρ

†
′n a a1 is given by

α
=

| | − − −Γ α

Γ

Γ α

Γ

− | |

−

| |( ) ( )
n

N

P

1 1
, (4)

N

N

N

N

N

1

2 ( 1, )

( 1)

( , )

( )

2 2

which can also be numerically evaluated. After N detections, the next step is to displace the

state by an amount α α= − −φ
αn ei1 1 , so that the resulting state will be centred in phase space

around α− . For this displaced state, N photon detection events will occur with probability ′PN
3 ,

and the renormalized cavity state will have the form

ρ
α ρ α

≡
ˆ ˆ

″
′ ′ ′

′

† †
B D D B

P

( ) ( )
. (5)

N N

N

We will now show that the state ρ″ is a squeezed state.

To quantify the amount of squeezing, we calculate the variance of the squeezed quadrature

Δ ρ ρ= ˆ − ˆ″ ″p p pTr [ ] Tr [ ] . (6)2 2 2

The quadrature observable φp̂ ( )
a

is defined by φˆ = ˆ − ˆφ φ† −
α αp a e ae( ) ( )a

i i i

2
, where â is the

annihilation operator for the cavity microwave mode. The phase shift φ−
αe i accounts for the fact
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that this protocol squeezes along the phase space axis complementary to that defined by the

phase of the input coherent state. Anything less than Δ =p2 1

2
indicates a squeezed state. The

amount of squeezing is expressed in dB, by calculating

Δ
Δ

Δ
Δ≡ =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟S p

p

p
p( ) 10 log 10 log (2 ). (7)

10

2

norm

2 10

2

In addition, we can calculate how far the state ρ″ deviates form a minimal uncertainty state by

calculating Δ Δx p (where ˆ = ˆ + ˆφ φ− †
α αx ae a e( )

i i1

2
is the conjugate observable to p̂). Figures 1(a)

and (b) show ΔS p( ) and Δ Δx p respectively as functions of α and the number of detection events

on either side of the displacement, N.

As can be see in figure 1(a), the maximum amount of squeezing possible on a given input

state α| 〉 increases monotonically with α| |2, proportional to the power of the input pulse.

Interestingly, for a given α, there exists a finite N that achieves a global minimum in Δp2. One

would be tempted to use this value of N in the protocol to create ρ″; however, as can be seen in

figure 1(b), there are other concerns.

As figure 1(b) shows, for a given α, Δ Δx p is not monotonic in N. Since we want ρ″ to be as
close to a minimal uncertainty state as possible, while still maintaining a significantly squeezed

quadrature, the optimal choice of N for the protocol would be at the Δ Δx p local minima shown

in figures 1(a) and (b) by the white curve. While this does not minimize Δp2 (and therefore

maximize squeezing), it achieves a significantly squeezed state ρ″ that is as close to being a

minimal uncertainty state as is possible, which is what we consider optimal.

2.2. Generalized squeezed states

Other nonclassical states of microwave radiation having φ π≡ k2 /
k

rotational symmetry in

phase space result from generalizing this procedure (see figure 2). The squeezed state protocol

discussed previously involves detecting the cavity state while centred at two points on a line

through the origin of phase space, i.e. the case k = 2. To generalize this protocol, we detect N

photons at k positions equally spaced around a circle of radius α| | in phase space, and take the

first position on the positive real axis for simplicity.
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Figure 1. (a) ΔS p( ) and (b) Δ Δx p of the state ρ″, as functions of α and the number of

detection events, N. φ =
α

0 for both figures. The white curve indicates the value of N

that gives a local minimum in Δ Δx p, while maintaining a squeezed Δp2.



There are k steps to this generalized protocol, and for =j 0, 1, .. −k 1, the jth step is to: (1)

displace by αj so that the cavity state is centred around α| | φeij k, (2) detect N photons, and (3)

displace by α′
j , such that the cavity state is centred around the origin, where the coherent

displacements parameters are

α α= | | φe (8)j

ij
k
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Figure 2. (upper) A schematic description of the state preparation protocol. (lower)
Wigner representations (first and second columns) and Husmi Q representations (third
column) of the k = 2, k = 3, and k = 4 generalized squeezed vacuum states (first column)
and squeezed k-component Schrödinger cat states (second and third columns). The
Wigner functions have been scaled such that they correspond to the quadrature opertors

defined previously scaled by a factor of 1/ 2 . Note that the second column has non-
uniform colour bars for its figures in order to highlight all relevant information.
Appendix D contains a table of the fidelities, success probabilities, and α, δ, and N
values for these states, as well as the fit parameters z and β.



α δ= −′ φe (9)j j

ij
k

δ ≈ n . (10)j j

The amplitude of the displacement to the origin, δj, is approximately the square root of the

photon number left in the cavity after N detections, with a small correction accounting for the

asymmetry of the intermediate states of the protocol.

Finally, after detecting N photons at all k positions, we obtain the generalized squeezed

state with k-fold symmetry, ρ
k
. The detection stage at each position transforms ρ

j1
to ρ

j2

according to

ρ
ρ

≡
ˆ ˆ†
B B

P
, (11)

j

N

j

N

N

j2

1

where PN
j
is the probability of detecting N photons from the state ρ

j1
. The entire protocol will

complete with success probability

∏=
=

−

PProb(success) , (12)
j

k

N

j

0

1

which can be made close to unity (see appendix C).

As mentioned previously, the case k = 2 (φ π=
k

) corresponds to the creation of the

vacuum with squeezed quadratures. We find high (here and henceforth meaning above 99%)

overlap with

Ψ| 〉 = | 〉 = − ˆ − * ˆ†

S z e( ) 0 0 (13)z a z a

2

1
2 ( ( ) ( ) )

2 2

by numerically searching over N and z, where S(z) is the ordinary squeezing operator with

complex squeezing parameter z. In general, for ⩾k 2, the states created by this protocol have

high overlap with the analytic states

Ψ| 〉 = | 〉 = − ˆ − * ˆ†

S z e( ) 0 0 , (14)k

k z a z a( ) 1
2 ( ( ) ( ) )

2 2

where S z( )k( ) is called a generalized squeezing operator with complex parameter z [19, 20]. The

first three operators of this class are

= = − =−
⎜ ⎟
⎛
⎝

⎞
⎠

S z e S z D
z

S z S z( ) , ( )
2

and ( ) ( ), (15)z(0) Im [ ] (1) (2)

where S(z) is the squeezing operator of equation (13).

Consider the final state after displacing to the origin ρ
k
. To find z, we impose the condition

that ρ
k
and Ψk have the same average photon number by setting

Ψ Ψ〈 | ˆ ˆ| 〉 = 〈 ˆ ˆ〉ρ

† †a a a a . (16)k k
k

This results in excellent fidelity between the states, quantified by

ρ ρ Ψ Ψ≡ { }F [ ] Tr . (17)
k k k k

In fact, for =k 2, 3, 4 the fidelity is greater than 99% in each case for various values of α| |. The
Wigner functions of these states are shown in the left column of figure 2.
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To verify that these states are indeed nonclassical, a suitable nonclassicality witness can be

used. For this purpose, we use the entanglement potential of [26], where a nonzero

entanglement potential indicates that a state is nonclassical. Indeed, as can be calculated

numerically, the states created by the generalized protocol all have nonzero entanglement

potential (see appendix B).

Since the first displacement stage of each step ensures the average photon number of each

state ρ
j1
is on the order of α| |2, each PN

j
can be quite large, and as a result, the generalized

protocol can have a significant probability of success. For example, for the modest α| | of the
states shown in figure 2, the success probabilities are all greater than 99%. Furthermore, the

success probability will grow monotonically with α| |, and so can be increased by increasing the

initial input state power.

2.3. Squeezed multi-component cat states

It is known in quantum optics [7] that subtracting a photon from a squeezed vacuum produces

an odd Schrödinger cat state. This concept can be generalized, such that subtracting a photon

from a generalized squeezed vacuum of k-fold symmetry (the output state ρ
k
of our protocol in

2.2) leaves a squeezed, k-component Schrödinger cat state in the cavity. We note that while

having some similarity to the optical setting, our protocol does not require a beam splitter or a

photon number resolving detector, instead, it simply requires the subtraction of one more

photon from the squeezed states created by the protocol described in the previous section.

If we remove one more photon from the final state ρ
k
, the resulting state has the form

ρ
ρ

=
ˆ ˆ

′

†
B B

P
, (18)

k

k

k

1

where Pk

1 is the probability of a single photon being detected from state ρ
k
. This procedure

produces states of high overlap with

∑Ψ β=′ φ π φ π

=

−
+ +( )S z e e( ) , (19)k

k

j

k

ij ij( )

0

1

( )
k k

where now both ∈z and β ∈ must be found numerically. These states all have non-zero

entanglement potential, and are therefore nonclassical states of microwave radiation (see

appendix B).

For k = 2, this additional detection will create a state very close to a squeezed odd

Schrödinger cat state

Ψ β β| 〉 = | 〉 − | − 〉′ S z( ) ( ). (20)2

(2)

For k = 3 and k = 4, we have

Ψ β β β| 〉 = | 〉 + | 〉 − | −′
π π π π− −S z e e e e( ) ( ) (21)i i i i

3

(3)
3 3 3 3

Ψ β β β β| 〉 = | 〉 + | 〉 − | − 〉 − | − 〉′ S z i i i i( ) ( ). (22)4

(4)

The k = 3 state is the state formed when the operator S z( )(3) is applied to a voodoo cat state [11].

The k = 4 state is the operator S z( )(4) applied to a coherent superposition of four out of phase

coherent states, known as a compass state, which is known to have favourable decoherence
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properties [17, 27]. The Wigner and Husimi Q functions of these squeezed multi-component cat

states are shown in the middle and right columns of figure 2 respectively, all of which have

greater than 94% fidelity with (20), (21) and (22).

We have plotted both representations of these states as they highlight distinct information

about the state. The Q function emphasizes the cat-like properties of the final state, while the

Wigner function makes apparent the similarity between the final state and a −k 1 photon Fock

state, squeezed to the same order in k. The highly nonclassical nature of the state is also made

evident by the large negative region of its Wigner function.

The probability of successful generation of these multi-component cat states is

∏=′
=

−

P PProb(success) . (23)k

j

k

N

j

1

0

1

Unfortunately, the Pk

1 are often very small, and for the squeezed multi-component cat states

shown in figure 2 this results in a much lower success probability than the generalized squeezed

vacuum. Optimization of this success probability is discussed in appendices C and D.

3. Discussion

3.1. Experimental implementation

In regards to experimental implementation of this protocol with JPMs, superconducting

microwave resonators are currently fabricated with Q-factors approaching 107, which in the

microwave regime will lead to cavity lifetimes on the order of 105 ns [28]. Thus, when JPMs

with short T2 are used [22], we can conservatively expect that as many as 102 to 103

measurements can be performed in the lifetime of the cavity. Practically, space requirements on

a chip require a fast reset strategy for the JPMs, which is currently being developed [29].

For a realistic implementation of this protocol via JPMs, one must also consider the

possibility of energy dissipation and dark counts in the JPMs. The behaviour of a JPM under

such conditions has previously been discussed in [22, 23], and as such, we will highlight only

the key point here. Both energy relaxation in the detector, and dark counts can be treated on the

same footing. Energy relaxation corresponds to an unregistered measurement, and dark counts

to false positives. One can thus adjust the number of measurements according to these rates to

approach the desired number of B̂-applications.

In the presence of dark counts and energy relaxation, one must describe the state of the

cavity by a classically mixed state, with mixture components corresponding to different photon

numbers in the cavity. However, in line with the standard interpretation of quantum mechanics,

this mixing is only a lack of complete information on the observerʼs part, not on the action of

the JPM. During each step of the protocol a definite number of photons is removed from the

cavity, leaving it in a pure state. While we may be unaware of this exact number, unless this

number plays a significant role in the success and performance of our protocol, or to further

applications of the states created, then the mixture components are practically indistinguishable.

To that effect, as is illustrated in figure 1(a), the asymmetric squeezing performed at the

j’th step is a smooth and slowly varying function of N, and as such is only minimally affected

by a small change in N. Thus, the protocol is generally robust to the effects of energy relaxation

and dark counts, provided these effects are small. Only the final detection used to generate
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squeezed multi-component cat states is sensitive to small perturbations in N, with an odd

number of detections producing states of the form seen in equation (19).

Photon lifetimes are in general a limiting factor for nonclassical states, but these have been

reported to be very long in circuit QED (on the order of 100 μs in [17]), and given the fast

measurement times of our protocol, the cavity lifetime will affect our protocol less than others.

In addition, some of the nonclassical states created by our protocol are robust to photon loss.

For example, the even k-th order squeezed states are robust to single photon loss [30].

3.2. Applications

The generalized squeezed states have applications in continuous variable quantum computing

[31]. Our protocol provides a simple way to obtain the necessary single mode squeezing and

nonlinearity: by applying the generalized squeezed state protocols for k = 2 and ⩾k 3

respectively. In particular, implementing the nonlinearity is often the technological bottleneck,

as it cannot be created using linear optics alone [32], and our proposal is to use the nonlinear

transformation performed by our protocol for ⩾k 3 in place of traditional nonlinear interactions

(such as Kerr-like interactions). In this regard, our protocol has the potential to be more efficient

and require less technological overhead than most known methods to implement the

nonlinearity [32, 33].

The squeezed multi-component Schrödinger cat states (SMCS) have applications in

metrology, in particular for phase estimation using a Mach–Zehnder interferometer set up. It has

recently been shown that cat states can be used in combination with linear optics to create

entangled coherent states (ECS), and that phase estimation using these ECS outperforms that

using NOON states [34]. The performance difference is especially significant at low photon

number, and/or when photon loss is considered. It is an emerging and active area of research to

see if an improvement in phase estimation can be gained by using SMCS in place of cat states in

this scheme.

3.3. Conclusions

In conclusion, we have shown how a combination of strongly coupled photon counting and

coherent displacement can be used to create nonclassical states of radiation with high

probability (greater than 99% for the generalized squeezed states), and with high fidelity

(greater than 99% for the generalized squeezed states, and greater than 94% for the squeezed

multi-component cats). This protocol can be realized in circuit QED using JPM.
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Appendix A. The JPM

The JPM consists of a current biased Josephson junction which can be completely described by

the phase difference across the junction, and its conjugate momentum (related to the charge
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difference across the junction). Such a system has a potential energy (as a function of phase)

which has the so called ‘tilted washboard’ shape:

ϕ ϕ ϕ≈ − −U I I( ) cos (A.1)c b

where Ic is the junction critical current and Ib is the applied bias current.

The system thus has an infinite number of local energy minima which have one or more

metastable bound states. The applied bias current determines the number of bound states, and

during operation the JPM is biased such that the potential minimum working point contains

only two metastable bound states. Additionally, during operation, the bias current is finely

tuned such that the energy difference between the metastable bound states is equal to the photon

energy of the microwave cavity coupled to the JPM. It is important to note that the control

offered by the applied bias makes the JPM tunable, allowing one to bring it in and out of strong

coupling with the microwave cavity.

The detection mechanism of the JPM relies on the fact that the bound states of the potential

well are metastable, and have finite quantum tunnelling rates out of the potential well. These

rates increase exponentially as the excitation number in the potential well increases. When there

are only two metastable states in the potential well, tunnelling out of the ground state is

exponentially suppressed, and all observed tunnelling events can be attributed to incident

microwave radiation exciting the JPM into the excited metastable state, and this state then

tunnelling out of the potential well. A tunnelling event results in a large voltage change across

the circuit, and as a result can be detected by external classical circuitry. We can thus equate a

tunnelling event with a single photon detection.

In reference [22] the back action of the JPM onto the microwave cavity was thoroughly

examined, taking into account the relevant physical processes occurring (JPM relaxation and

pure dephasing, and tunnelling out of the metastable ground state). We will briefly summarize

the points relevant to this work.

Photon detection by a JPM approaches the dichotomic detection of the subtraction operator

when the JPM and the cavity are allowed to interact for a long enough time (typically several

Rabi periods) before the tunnelling event occurs. This is achieved when the coupling strength

between the JPM and the cavity is comparable to the tunnel rate out of the first excited

metastable state, as achieved in [21]. This ‘long’ interaction time removes any photon number

information in the measurement time coming from the n g dependent oscillation periods of the

Fock states.

However, the long interaction time with the JPM results in the reduction of the coherence

between cavity Fock states after measurement, something that is not caused by the subtraction

operator. To counteract this affect, a JPM with a short T2 time can be used, since pure dephasing

effectively kills the cavity coherence damping effect of the JPM (see [22], figure 3(b)). In the

extreme case where the cavity–JPM interaction is itself incoherent, the subtraction operator

back action is obtained.

Appendix B. Nonclassicality

The entanglement potential is both a nonclassicality witness and measure, and as such can be

used to examine how the nonclassicality changes with the number of detections at each step of

the generalized protocol. It is defined as
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ρ σ≡ ∥ ∥ρEP[ ] log , (B.1)T

2 1
A

where σ ρ= ⊗ | 〉〈 |ρ

†U U( 0 0 )BS BS, forUBS the unitary transformation of a 50:50 beam splitter, and

σρ

TA is the partial transpose of σρ [35]. Figure B1 shows the entanglement potential of the

generalized squeezed states and the multi-component cat states (for =k 2, 3, 4) as a function of

the number of detections at each step. As can be seen, for the squeezed state (k = 2), the

maximum value of EP occurs around the optimal value of N determined in the main text.

Appendix C. Success probability versus fidelity

Due to the noncommutivity of the subtraction operator and coherent displacement, finding a

simple closed form analytic solution for the success probability of our protocols (equations (12)

and (23)) may not be possible. However, we can examine the behaviour of PN of equation (2) to

understand how the total detection probability scales with α| |2. As can be seen in figure C1(a),

PN rapidly approaches unity for α| | > N2
. As a result of this, it is possible to achieve very high

success probabilities for the generalized squeezed state protocol. For the squeezed multi-

component cat states, the limiting factor remains Pk

1 , which can be quite small.

In addition to success probability, one also wishes to maximize the fidelity with the target

analytic states. In the k = 2 case, we find that this is achieved when, for a given α| |, N lies nearly

along the minimal uncertainty curve of figure 1(b). This curve is well approximated by

α α α| | = | | + | | +q a b c( ) 2 , where ∈a b c, , can be found numerically. Since N must be an

integer, we set

α= ⌈ | | ⌉N q ( ) , (C.1)

where ⌈*⌉ rounds up to the nearest integer. It is worth examining what effect this has on the

success probability of PN , now defined by

Γ α α

Γ α
= −

⌈ | | ⌉ | |

⌈ | | ⌉
P

q

q
1

( ( ) , )

( ( ) )
. (C.2)N

2

This is plotted in figure C1(b), along with the continuous version of equation (C.2), where N is

allowed to take non-integer values. As the figures show, the success probability approaches

unity with increasing α| |. It is therefore possible to maximize both fidelity and success

probability in the k = 2 case, for both the squeezed state and Schrödinger cat state.

For >k 2 there is no known analog of the minimal uncertainty curve of figure 1(b),

however, numerical results have shown that it is possible to achieve high fidelity and success

probability using N and α| | similar to that of the k = 2 case, i.e. near to the minimal uncertainty

curve.

Appendix D. Numerical results

In figure 2, we have given examples of a generalized squeezed vacuum and a squeezed/multi-

component cat, for =k 2, 3, 4. Each of these examples is found by a numerical fit over the

parameters in the protocol: the field amplitude α, the number of photon subtractions at each

position N, and the small corrections for photon loss, δ1, .., δk. For each of the examples in
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figure 2, we have locally minimized the error function

ϵ ρ ρ= − F1 [ , ] (D.1)
k k

t

over the set of parameters  = x{ }i necessary to define ρ
k
—the final state produced in our

protocol—and the target state ρ Ψ Ψ=
k k k

t . The fidelity F is as defined in equation (17). We

have given examples only for N = 16 (N = 6 in the case of the 4-component cat state) to reduce

this parameter space. Although this choice is somewhat arbitrary, it generally predicts

reasonably small error for α| | ∈ [3, 10], an experimentally accessible range.

In the case of the generalized squeezed vacuum states, we constrain the squeezing

parameter z, all that is necessary to specify the target state, so that

〈 ˆ〉 = 〈 ˆ〉ρ ρn n . (D.2)
k k

t
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Figure B1. This figure shows entanglement potential (EP) of the states created by the

generalized protocol (for =k 2, 3, 4) as a function of the number of detections, N,
performed at each step in the protocol. The generalized squeezed states are the circles,
and the diamonds correspond to the squeezed multi-component cat states. These states
all have α| | = 3.

Figure C1. The success probability of the first step of the protocol as a function of input
coherent state power. In (a) for several values of fixed N, and in (b) for N assumed to
vary quadratically as α| |q ( ). The solid line in (b) is for N taking real values, and the

dashed line for N taking only integer values.



There remains +k 1 unconstrained parameters determining the error function:

ϵ ϵ α δ δ≡ ( , , .., ). (D.3)k k

k1

In the case of multi-component/squeezed cats, two parameters specify ρ
k

t, z and the cat-state

amplitude β. In this case, β is constrained according to equation (D.2), and we add z to the set of

parameters over which we minimize the error:

ϵ ϵ α δ δ≡ z( , , , .., ). (D.4)k k

k1

Figure D1 contains the parameter values, ϵ
k, and success probabilities P for each of the

cases shown in figure 2.

Note that the error function equation (D.1) is multimodal, so we have not likely found a

global maximum in state fidelity. Generally, the detection probability is also multimodal when

the integer nature of N is considered, e.g. see dotted curve in figure C1(b), so the detection

probabilities listed here are not likely maximal and depend sensitively on the choice of N. While

our choice N = 16 is well-suited for k = 2, other values would likely optimize the cat-state

detection probabilities for different k. We leave the optimal value of N for a given k as an open

question.
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Figure D1. Protocol parameters α and δ{ }j , target state parameter(s) z (and β), error ϵ
k,

and corresponding success probability P for each of the examples given in figure 2.
N = 16 in all cases except for the 4-component cat, in which case N = 6.
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