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Abstract

We review existing smoothed particle hydrodynamics setup methods and outline their advantages, limitations, and

drawbacks. We present a new method for constructing initial conditions for smoothed particle hydrodynamics simulations,

which may also be of interest for N-body simulations, and demonstrate this method on a number of applications. This

new method is inspired by adaptive binning techniques using weighted Voronoi tessellations. Particles are placed and

iteratively moved based on their proximity to neighbouring particles and the desired spatial resolution. This new method

can satisfy arbitrarily complex spatial resolution requirements.
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1 INTRODUCTION

Smoothed particle hydrodynamics (SPH) is a Lagrangian hy-

drodynamics modelling technique developed independently

by Lucy (1977) and Gingold & Monaghan (1977). In this

grid-less technique, fluid elements are represented by in-

dividual particles that act according to hydrodynamic flow

equations. SPH has been used to model a wide variety of as-

trophysical phenomena, including star formation (e.g., Mon-

aghan & Lattanzio 1991; Bonnell & Bastien 1992; Whitworth

1998), planet formation (e.g., Benz, Slattery, & Cameron

1986; Mayer et al. 2002; Nelson, Benz, & Ruzmaikina 2003),

cosmology (e.g., Navarro, Frenk, & White 1995a, 1995b;

Springel 2005), stellar collisions (e.g., Benz & Hills 1987;

Rasio & Shapiro 1991; Davies, Benz, & Hills 1991, 1992),

stellar mergers (e.g., Rasio & Shapiro 1992; Terman, Taam,

& Hernquist 1994; Davies et al. 1994; Rosswog et al. 1999;

Lee, Kluzniak, & Nix 2001; Fryer & Heger 2005; Yoon, Pod-

siadlowski, & Rosswog 2007; Motl et al. in preparation), gas

dynamics in the Galactic centre (e.g., Rockefeller et al. 2004,

2005; Cuadra et al. 2005), galaxy mergers (e.g., Hernquist

& Mihos 1995; Mihos & Hernquist 1996; Thakar & Ryden

1998; Cox et al. 2006; Khalatyan et al. 2008), and supernovae

(Fryer & Warren 2002; Hungerford, Fryer, & Warren 2003;

Fryer, Hungerford, & Rockefeller 2007).

Each SPH particle i has an associated size hi, its so-called

smoothing length. Fluid properties such as temperature or

density are smoothed according to a smoothing function W ,

which is referred to as the SPH kernel. The most commonly

used kernel functions are cubic splines (Monaghan 1992)

that are non-zero only within two smoothing lengths of the

particle.1 Fluid properties at the location of a particle can

then be calculated as a linear combination of the contribu-

tions from all neighbouring particles. Thus, it is essential for

this technique to start out with initial conditions whose inter-

polation properties are as accurate as possible. In addition,

the initial particle setup should be as close as possible to a

configuration that would arise by itself in an SPH simulation.

Due to their well-known interpolation properties and ease

of construction, the simplest setup schemes often arrange par-

ticles on a lattice. While there are many lattice configurations

that could in principle be used to produce SPH initial con-

ditions, we focus on three popular configurations—a simple

cubic lattice, a cubic close-packed lattice, and a hexagonal

close-packed lattice. The simplest such arrangement (and one

of the most popular) is the cubic lattice configuration, which

has been shown to be an unstable equilibrium configuration

1The gadget astrophysical SPH code defines the kernel to be non-zero from
r = 0 to 1h instead of 0 to 2h (Springel, Yoshida, & White 2001).
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and has strong preferred directions along the x, y and z axes

(Morris 1996; Lombardi et al. 1999). Cubic close-packed

and hexagonal close-packed lattices represent the two opti-

mal and most efficient ways to pack spheres of equal sizes;

they are stable against random perturbation and thus much

preferred to a simple cubic lattice (Monaghan 1992). We also

include a comparison with a new configuration method based

on a quaquaversal tiling of space that has recently been sug-

gested for quasi-random initial conditions of cosmological

N-body simulations (Hansen et al. 2007).

To avoid geometrical effects, initial conditions are often

perturbed and then relaxed into a stable configuration by ap-

plying a dampening force that is proportional to but directed

against the particle velocities (e.g., Rosswog, Ramirez-Ruiz,

& Hix 2009). While this additional step before calculation is

perfectly acceptable to produce low-noise initial conditions,

it is computationally expensive and usually only viable for

static initial conditions, as the net forces on the whole set of

particles should vanish. In addition, there is no way to guar-

antee the exact configuration into which the particles will

settle at the end.

Another major problem in setting up initial conditions

for SPH is that many astrophysical simulations require very

large dynamic ranges in density. In simulations of, e.g., the

accretion flow in binary mass transfer, the convective region

in core-collapse supernova engine models, or interactions

between supernova remnants or stellar winds and the inter-

stellar medium, the resolution requirements may not trace

the mass, and a range of particle masses may be required to

model the system. Large ranges of particle masses in SPH

are undesirable and care must be taken when using a range

of particle masses. However, setting up arbitrary initial

conditions with a spatially varying resolution is an unsolved

problem so far; the few previously proposed solutions have

only been applicable in spherical symmetry (e.g., Fryer et al.

2007; Rosswog et al. 2009).

In this paper, we propose a solution to this problem inspired

by weighted Voronoi tessellations (WVTs) and present a new

method to set up SPH initial conditions with arbitrary, spa-

tially varying resolution requirements. We describe require-

ments for an optimal setup technique in Section 2 and then

review and compare existing popular particle setup meth-

ods in Section 3. To the best of our knowledge, this is the

first comprehensive comparison of SPH setup techniques,

despite the known importance of initial conditions for SPH

simulations. We introduce our new setup in Section 4 and

demonstrate its capabilities with examples in Section 5. In

Section 6, we quantitatively compare this new setup method

to existing techniques.

2 REQUIREMENTS FOR AN OPTIMAL

PARTICLE CONFIGURATION METHOD

A method for generating initial SPH particle configurations

should fulfil the following key requirements:

2.1 Isotropy

The resulting particle configuration should be locally and

globally isotropic, i.e., it should not impose any particular

preferred direction at any location in the simulation domain.

The main reason for this requirement is the fact that shocks

moving along a perfectly aligned string of SPH particles

behave differently than in other directions (Herant 1994). In

addition, spatially correlated density perturbations can excite

modes along these preferred directions.

2.2 High interpolation accuracy

The setup should be locally uniform to minimise noise in

the density interpolation. Ideally, for a uniform resolution,

the interpolation accuracy should be comparable to that of

perfectly uniform lattice configurations. This interpolation

accuracy should also worsen for non-uniform particle con-

figurations. Any deviations should also be isotropic and have

no preferred directions, in order not to excite non-physical

modes in the simulation domain. This requirement is equiv-

alent to enforcing a low particle noise.

2.3 Versatility

The ideal method should be able to reproduce any spatial

configuration and should not impose any requirement for

symmetry. In particular, this requires the method to work

with interpolation of a tabulated data set and not require

analytical solutions.

2.4 Ease of use

Ideally, the algorithm should either be publicly available as

a stand-alone routine or be easy to implement on top of any

existing SPH code.

3 POPULAR PARTICLE SETUP METHODS

Since the invention of the SPH technique, many different

methods have been employed to set up initial conditions in

multiple dimensions. In this section, we summarise all parti-

cle setup methods known to us, or that have been described

in the literature. Figure 1 shows a simple comparison of re-

sults of arranging approximately 22 000 particles with equal

smoothing lengths in a sphere with each method. Figure 2

shows a similar comparison for spatially adaptive configura-

tions, where the smoothing length varies across the domain

(from smallest at the centre, to largest at the outer boundary).

Section 3.1 describes the methods that are limited to pro-

ducing configurations in which all particles have the same

smoothing length; Section 3.2 describes the methods that can

be used when smoothing lengths are not uniform. Readers

who are already familiar with these methods or who are just

interested in details of our method may examine the figures

or skip this section entirely.
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Optimal SPH Initial Conditions 3

Figure 1. Popular configurations for setting up spatially uniform SPH initial conditions. From the top-left corner to the bottom right: cubic lattice, cubic

close packing, hexagonal close packing, quaquaversal tiling, random configuration, concentrical shells, gravitational glass, and the new WVT approach. All

examples contain approximately the same number of particles in the sphere (22 000). One quadrant of the sphere is cut out to allow a view into the inner

configuration. Colours change along the z-axis simply to show depth.

3.1 Spatially uniform distributions

The following methods are capable of generating spatially

uniform particle configurations.

3.1.1 Cubic lattice

Probably the simplest and fastest way to set up a uniform

particle distribution is to arrange them on a cubic lattice.

This method received early widespread use in both SPH

(Monaghan 1992) and N-body simulations (Efstathiou et al.

1985). One of the obvious problems with this method is that it

has very pronounced preferred directions along the x, y, and z

axes and their diagonals, as can easily be seen in the upper-left

example in Figure 1. In addition, the cubic lattice structure is

not a stable equilibrium configuration when the particles are

perturbed (Morris 1996; Lombardi et al. 1999), as there are

other more compact particle configurations that are energet-

ically favourable, such as cubic or hexagonal close-packed

arrangements.
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4 Diehl et al.

Figure 2. Popular configurations for setting up spatially adaptive SPH initial conditions. From the top-left corner to the bottom right: stretched cubic lattice,

stretched cubic close packing, stretched hexagonal close packing, stretched quaquaversal tiling, random configuration, concentrical shell setup, stretched

gravitational glass, and the new WVT approach. All examples contain approximately the same number of particles in the sphere (22 000), and the particles’

sizes reflect the desired particle spacing. One quadrant of the sphere is cut out to allow a view into the inner configuration. Colours change along the z-axis

simply to show depth.

3.1.2 Cubic close-packed lattice

A more compact lattice structure is produced when one in-

serts an additional particle into the centre of each of the six

faces of the cubes in the cubic lattice. This results in the well-

studied cubic close packing (CCP) configuration, also known

as face-centred CCP (Figure 1, top centre panel). This con-

figuration is one of the optimal ways to pack uniform spheres

together, with a packing density of 74%. Similar to the cu-

bic lattice, it has the problem of having preferred directions

along the principal axes and diagonals of the lattice, and

along multiple other planes in which particles are arranged

in a hexagonal grid. However, these preferred direction are

much less pronounced than for the cubic lattice configura-

tion. The simplest way to construct this configuration is to

start with a plane with spheres in a hexagonal configuration

(plane A), and lay on top another such plane (B) so that the
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Optimal SPH Initial Conditions 5

spheres fit into the gaps created by the layer of spheres from

the lower plane, filling half the gaps. The third such plane

(C) will then be oriented in a way to fill the other half of

the gaps of plane A, while at the same time fitting into the

gaps of plane B. This pattern is then continuously repeated

to produce an ABCABC order.

3.1.3 Hexagonal close-packed lattice

A very similar lattice configuration is the second optimal

packing scheme of uniform spheres, hexagonal close pack-

ing (HCP), as seen in the top-right panel of Figure 1. HCP is

equally dense and optimal as CCP, with very similar proper-

ties. The only difference in its construction is that instead of

the ABC pattern as in the CCP lattice, every second layer of

hexagonal lattice planes is identical, resulting in an ABAB

pattern. Due to their relatively simple implementation, close

packing schemes have been utilised in many different appli-

cations of SPH (e.g., Davies et al. 1991; Davies et al. 1992).

3.1.4 Quaquaversal tiling

Another lattice-like particle configuration has been intro-

duced by Hansen et al. (2007) based on a quaquaversal tiling

of space (Conway & Radin 1998). Quaquaversal tiling hier-

archically tiles the 3D space into triangular prisms that are

rotated about orthogonal axes 2/3 π and 1/2 π . Originally

introduced as a way to set up cosmological initial conditions,

recent work by Wang & White (2007) argues against this

choice. As can be seen in the middle-left panel of Figure 1,

this setup has many characteristics of a grid.

3.1.5 Gravitational glass

The best way to set up cosmological initial conditions how-

ever is the generation of a gravitational glass. This method

simply reverses the sign of gravity and lets the particles set-

tle into an equilibrium configuration while dampening their

motion. In this paper, we use the implementation of a gravi-

tational glass as provided in the publicly available gadget2

code (Springel et al. 2001; Springel 2005; Wang & White

2007). This method is particularly effective when used with

periodic boundary conditions. A cube with a fixed number

of particles can then be replicated numerous times to achieve

a larger total number of particles in the final configuration.

While this is disadvantageous for cosmological N-body sim-

ulations, which require a certain degree of homogeneity on

all scales, SPH only requires locally optimal configurations

and is not affected by this. Thus, a single instance of a grav-

itational glass can be concatenated to effectively produce

arbitrarily large particle configurations.

3.2 Spatially adaptive distributions

We now discuss the subset of setup methods that are ca-

pable of producing spatially adaptive particle distributions.

To the best of our knowledge, all of these methods have so

far been employed to create spherically symmetric config-

urations. Examples of each of these methods are shown in

Figure 2.

3.2.1 Random configuration

The simplest option to produce a spatially adaptive particle

configuration is to distribute particles randomly according to

an underlying probability distribution. For example, Terman

et al. (1994) have used this technique in combination with the

relaxation method to create adaptive initial conditions. This

relaxation is absolutely necessary, as this method results in

very clumpy distributions with very low interpolation accu-

racy. We only mention this method as it represents the starting

point for our new setup procedure described in Section 4.

3.2.2 Stretched lattice

To achieve a spatially adaptive resolution, Herant (1994) and

later Rosswog et al. (2009) proposed to stretch a uniform lat-

tice configuration in the radial direction. With this method,

each point coordinate r of the uniform lattice is multiplied by

a radially varying scaling factor q(r) to achieve the desired

spherically symmetric distribution, such that r′ = q(r) r.

This also implies through simple geometry that the given

distance δ between two particle on the shell with radius r is

now also scaled by q(r), effectively setting the resolution to

δ′(r′) = q(r) δ.

Thus, the problem has now been reduced to figuring out

how to choose q(r) to produce the desired resolution in

the new stretched coordinates, i.e. δ′(r′) has to obey the

differential equation r′δ(r) − rδ′(r′) = 0. While it is en-

tirely possible to solve this problem analytically for sim-

ple δ′(r′) functions by substituting r′ and solving, it is

more convenient to use a more generally applicable tech-

nique to find the root of the function f (r′) = r′δ(r) − rδ′(r′),

with its derivative d f ′/dr′ = δ(r) − r dδ′(r′)/dr′. We chose

the simple Newton–Raphson technique by iterating over

r′
n+1 = r′

n + f (r′
n) [d f /dr′(r′

n)]
−1. Note that r is a constant

parameter in this context, as it is given by the known position

of the particle in the uniform lattice.

As this distorted lattice essentially incorporates and even

aggravates all of the undesirable characteristics of a lattice

configuration, it is essential not to use this stretched lattice

configuration directly, but rather to relax the resulting config-

uration before using it in an actual SPH simulation (Rosswog

et al. 2009).

3.2.3 Stretched glass

Instead of radially stretching or compressing a uniform lattice

configuration, it is also in principle possible to generate a

gravitational glass of uniform resolution and stretch this glass

accordingly, to avoid the strong preferred lattice symmetry

axes. To the best of our knowledge, this method has never

been employed in published simulations.

3.2.4 Concentric shells

In many supernova calculations using the Supernova SPH

code (snsph) (e.g., Fryer & Warren 2002; Hungerford et al.
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2003; Fryer, Rockefeller, & Warren 2006; Fryer et al. 2007;

Fryer & Young 2007), the initial conditions are set using shell

templates. For a given particle count, such a shell template

is created by first randomly placing the particles in a shell

of unit radius. The particles are given a repulsive force and

then the entire system is evolved until the variation in parti-

cle separation falls below some tolerance, essentially creat-

ing a two-dimensional gravitational glass wrapped around a

sphere. The templates are then used to match a given spher-

ical density profile and either a resolution or particle mass

requirement. The spherical object is constructed from the

inside outward, each concentric shell determining the new

position of the next shell (one smoothing length above the

previous shell). The shells are randomly rotated and placed

on top of each other so that, even if the same template is used,

the setup is random. A variant of this method had originally

been proposed by Herant (1994) but to our knowledge has

never been extensively described in the literature before.

The advantage of this technique is that the particles are

placed randomly and hence have no preferred axis. Depend-

ing on the tolerance set for the template creation, the resolu-

tion used, and the density gradient, this technique can match

a spherical density profile to arbitrary precision. For low-

resolution core-collapse calculations, Fryer & Young (2007)

achieved density perturbations below 3–5% (convection in

the stellar models they were mapping argued for higher per-

turbations). For a high-resolution mapping of an exploding

star, Fryer et al. (2007) limited this perturbation to below

1%. This technique is tuned to spherical objects, and does

not work, without major revision, on aspherical objects.

4 A NEW APPROACH INSPIRED BY WEIGHTED

VORONOI TESSELLATIONS

In this section, we describe a novel technique for generat-

ing spatially adaptive initial conditions for SPH simulations

that does not impose any restrictions on the geometry of the

desired configuration. This method was inspired by a two-

dimensional adaptive binning technique using WVTs devel-

oped by Diehl & Statler (2006), which in turn was based on

previous work by Cappellari & Copin (2003).

4.1 Weighted Voronoi tessellations

Given a metric and a set of k points zi, i = 1, . . . , k (referred

to as ‘generators’) in a given domain, a Voronoi tessellation

of the domain is a tessellation in which the ith region contains

all of the points closer to zi, according to the chosen metric,

than to any other generator. A WVT applies a weight to the

distance from each generator; a multiplicatively weighted

Voronoi tesselation simply multiplies the distance from a

given generator by its associated weight (see, e.g., Møller

1994). The boundary surface b between adjacent regions in a

multiplicatively weighted Voronoi tesselation is defined such

that the scaled distance from each generator to the surface is

equal, i.e.,

|b − z
i
|/δ

i
= |b − z

j
|/δ

j
, (1)

if the metric is simply Euclidean distance, and where δi is a

scale factor (i.e., the inverse of the weight) assigned to the

ith generator.

A centroidal Voronoi tessellation (CVT) is a Voronoi tes-

sellation where each generator coincides with the centroid

of its region. Again, each generator can have an associated

weight or scale factor, so that the sizes of the regions in the

CVT vary across the domain.

One of the most well-known algorithms for constructing a

CVT is the Lloyd algorithm (Lloyd 1982), which alternates

between constructing a Voronoi tessellation from a set of

generators, and moving each generator to the centroid of its

associated Voronoi region. The Lloyd algorithm is a special

case of a general gradient descent approach to minimising

the CVT energy function (Du & Emelianenko 2006; Liu et al.

2009). It delivers monotonic, linear convergence to a CVT

without the need for step size control (Du, Faber, & Gun-

zburger 1999) but requires the ability to construct Voronoi

tessellations, which is not a capability typically associated

with implementations of SPH.

4.2 Technique

Our adaptive setup technique arranges particles by repeatedly

applying net displacements based on proximity to neigh-

bours and the desired final spatial resolution, which can vary

across the problem domain. Identifying neighbouring parti-

cles and iteratively accumulating and applying pairwise dis-

placements falls well within the normal capabilities of SPH

codes.

Although we refer to it as ‘WVT’ because of the method

that inspired it (Diehl & Statler 2006), our technique does

not actually construct a WVT. The technique described below

is similar to the distributed algorithm for constructing area-

centred Voronoi configurations (Cortés, Martı́nez, & Bullo

2005; Martı́nez, Cortés, & Bullo 2007); each particle within a

limited radius contributes to the calculation of a displacement

in each iteration.

Given a desired average distance to neighbours δ(r) at

each point r in the problem, the corresponding smoothing

length h is determined by h(r) = N
1/n

neigh
(δ(r)/2) in n di-

mensions, where Nneigh is the target number of neighbours.

We construct an initial set of particles by sampling random

positions according to the underlying particle probability dis-

tribution P(r) ∝ h(r)−3dV for a volume dV . We then evolve

this configuration for multiple iteration steps by applying

repulsive forces between the particles so they settle in the

desired places. Figure 3 shows a two-dimensional example

of the whole iteration process for a uniform distribution of

particles, starting with the initial collection of particles in the

upper left and ending with the final product in the lower right.

Figure 4 shows an equivalent sequence for an azimuthally

symmetric but non-uniform distribution. At the outer
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Figure 3. Two-dimensional example for producing a uniform particle density in a circle with radius 1 with the new WVT setup for 1 000 particles.

The frames show snapshots of the WVT iterations, starting with random positions sampled from a uniform distribution (top left), and then showing

every 10th iteration, until the final product in the lower right panel (here, iteration 70). The hollow particles are ‘ghost particles’ that establish proper

boundaries.

Figure 4. Same as Figure 3, but for a non-uniform particle distribution. The target particle density is four times higher at the edge of the circle than in the

centre.

boundary, ghost particles exert a purely radial force on parti-

cles inside the domain, as if a smooth surface surrounded the

domain, which leads to the formation of an unusually uniform

ring of particles within 2h of the boundary. Such smoothness

at the boundary might be an asset in some simulations—for

example, if the simulation domain really is the inside of a

sphere—but in other cases the outer particles simply behave

like the outermost layer of a concentric shell configuration

(Section 3.2).

To reach a useful final configuration, these artificial forces

should satisfy two main requirements:

1. The net ‘force’ on any particle should be zero (to a rea-

sonable level of precision) in the desired equilibrium
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configuration, i.e., when the distance between two par-

ticles is identical (or very close) to the desired resolu-

tion.

2. The ‘forces’ should be such that the net displacement

from the last position is on the order of a fraction of

the desired resolution. This will ensure equally fast

convergence for high and low-resolution regions of the

problem.

Thus, Equation (1) dictates the value of the repulsive ‘dis-

placement’ from bin j on bin i, which we express for sim-

plicity directly as a net displacement

�x
i
=

∑

[

μ h
i

f (h
i j
, r

i j
) r̂

i j

]

= μ h
i

∑

[

f (h
i j
, r

i j
) r̂

i j

]

,

(2)

with hi j = (hi + h j)/2. The function f (hi j, ri j) should be

compact within 2h, and empirical tests show fastest conver-

gence of the method for a r−2 dependence. In practice, we

add an ǫ term in the denominator to avoid numerical prob-

lems for close particles, and subtract a constant value to make

sure the function value vanishes at the boundary at 2h and

is set to 0 if the separation is larger than that. Thus, we can

express the function as f (hi j, ri j) = [hi j/(ri j + ǫ)]2 + const.

The value of μ in Equation (2) regulates what fraction of hi j

the particles are allowed to move during each iteration step.

This free parameter should be chosen to ensure fast con-

vergence. In practice, we shrink μ monotonically with the

number of iterations, so particles can move relatively freely at

the beginning and at the end ‘freeze’ into their final position.

Note that the particle spacing δ(r) can be an almost arbitrary

function of space, as long as its value does not change sig-

nificantly across one particle spacing to ensure convergence

of the method, i.e., �δ(r)/δ(r) ≪ 1.

We chose the r−2 dependence as it reproduces locally many

desirable properties of a gravitational glass. A functional

form based on the SPH kernel would be another natural

choice for this problem, though we did not thoroughly test

this possibility.

4.3 Practical implementation

Here, we provide some practical advice on implementing the

WVT setup on top of an existing SPH code.

4.3.1 Normalising h(r)

In our description of the WVT method above, we have as-

sumed that we know a priori the desired particle spacing

δ(r) as a function of position. However, it can be difficult

to guess what specific spatial resolution, at each point in

a complex problem, will produce a configuration with an

acceptable total particle count. Thus, our implementation in-

terprets the input particle spacing as a relative rather than an

absolute value, and scales it according to a desired number

of particles NSPH and neighbours Nneigh. At each iteration

step, h(r) is evaluated for all particle positions and we then

compute the sum of all individual SPH particle volumes:

VSPH =
∑

i[(4π/3)(2 hi)
3]. Since we do know the actual vol-

ume V of our computational domain and that we desire Nneigh

neighbours within 2h for each particle, we scale all h(r) val-

ues so that V = VSPH/Nneigh.

4.3.2 Treating boundaries

Most modern SPH codes have some kind of boundary treat-

ment already implemented. Fixed boundaries are usually im-

plemented by means of ghost particles (e.g., Herant 1994)

that exert antisymmetric forces on the particles to keep them

across a given boundary. WVT works well with this type of

boundary treatment, and we suggest mirroring SPH particle

layers within two smoothing lengths at the boundary inter-

face and adding them to the set of normal particles during the

pseudo force calculation step. Periodic boundaries may also

be used, and the region of interest can simply be ‘cut out’

afterwards. We find this method to work well for arbitrary

geometries.

4.3.3 Updating particle positions

The most convenient way to implement WVT is to use the en-

tire structure of your existing SPH code with as few changes

as possible. We suggest modifying the existing SPH loop

to calculate the sum in Equation (2) and then multiply this

pseudo ‘velocity’ by the ‘individual time steps’ μhi to up-

date particle positions. If the distribution does not appear to

converge, we suggest decreasing the value of μ with each

iteration.

4.3.4 Finishing the iterative process

Judging when an initial setup is sufficiently good is appli-

cation dependent and at least somewhat subjective. In our

experience, slowly reducing the value of μ (the maximum

fractional distance a particle can be moved in one time step;

see Equation (2)) works well. For the cases we have stud-

ied, which include setups using from 100 000 to 50 million

particles (Raskin et al. 2009, 2010; Fryer et al. 2010; Passy

et al. 2012; Ellinger et al. 2012), convergence occurs in about

100 iterations, usually even after only 40 iterations. However,

this number may strongly depend on the details of the algo-

rithm, and the desired interpolation accuracy, an issue that

we discuss in more detail in Section 6.

5 EXAMPLE APPLICATIONS

Different applications may impose very different require-

ments on the resolution of a particular object. When particle

mass density and desired number density vary together, WVT

can generate initial conditions with particles of uniform mass;

when the mass density and desired number density vary in

different ways, WVT can produce configurations where both

particle mass and size vary across the domain. We now con-

sider different examples, mostly from stellar interactions,

that impose very different numerical requirements.
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x x x

Figure 5. Top panels: particle configurations in two-dimensional examples. We consider three different configurations: uniform particle density (left), more

resolution in outer layers (centre), more resolution at centre (right). The bottom panels shows the actual particle separations as a function of radius. The

points measure the average distance to the closest 8 (red), 16 (green), 32 (blue) and 64 (orange) neighbours. The solid black line shows the input resolution

scaled for the closest 16 neighbours, indeed closely following the green data points.

5.1 Uniform particle density

In the first application, we consider representing a star with

a uniform particle density, which would be appropriate for

simple head-on collisions between two stars. In this situa-

tion, it is very likely that both centre and outer layers will be

heavily involved in the process, as all parts should be equally

affected during the merger, and would require equal resolu-

tion to resolve hydrodynamic effects throughout the star.

Such a 2D particle setup is shown in the top-left panel

of Figure 5. The lower panel shows how well the desired

resolution is achieved by measuring the average distance

between particles for the closest 8 (red), 16 (green), 32 (blue)

and 64 (orange) neighbours. The black solid line shows the

expected theoretical values for 16 neighbours. The deviations

at the boundary are due to the lack of neighbours across

the boundary, and can of course be fixed by increasing h

accordingly in that region.

5.2 More resolution in the centre

However, if the user is interested in any type of mixing within

the stars or during a merger, it is imperative to use equal-

mass particles. Work by Lombardi et al. (1999) suggests that

artificial forces between non-equal-mass particles lead to nu-

merical diffusion and artificial mixing. With the WVT setup,

we can enforce equal mass particles by adjusting the particle

separation according to the underlying density ρ(r), such that

δ(r) ∝ ρ(r)−1/3. This results in a setup with more resolution

in the centre, as shown in the right panel of Figure 5.

5.3 More resolution in the outer layers

If one is interested in studying the more gentle Roche Lobe

overflow phase in a binary, one needs as much numerical res-

olution as possible in the outer layers of the donor star, in or-

der to sufficiently resolve the overflow and accretion stream.

The middle panel of Figure 5 shows a polytrope where we

have put more resolution in the outermost layer than in the

centre.

5.4 Asymmetric initial conditions: Double

degenerate binary

Figure 6 shows an example of an asymmetric, three-

dimensional setup with WVT. The picture depicts a dou-

ble degenerate binary system with the donor (right) on the
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Figure 6. This three-dimensional example shows an asymmetric WVT setup for a double degenerate merger simulation. In this example,

the accretor (left) is modelled with a constant particle density, whereas the donor (right) has significant more resolution in the outer layers

than in the centre, making SPH simulation of Roche lobe overflow feasible.

verge of overflowing its Roche lobe. Note how the size of the

SPH particles (varying sizes and colours of spheres) is much

smaller in the outer layers of the donor, which helps signifi-

cantly in resolving the mass transfer stream in the simulation

(Motl et al. in preparation). The evolution of the system is ex-

tremely sensitive to the initial mass transfer (as it governs the

evolution of the orbit). Resolving this mass transfer is critical

to achieving good agreement between SPH and rotating grid

simulations.

5.5 Asymmetric initial conditions: Elliptical galaxies

Simulations of normal elliptical galaxies commonly use a gas

component embedded within a dark matter halo in order to

model evolution properly. Creating an initial configuration

for a simulation of feedback effects in such a galaxy, it is

reasonable to say the gas has settled hydrostatically into the

dark matter potential and is quiescent. We assume that the

gravitational effects of the gas are small compared to those

of the dark matter. Then, we should expect the gas density

ρgas to follow the dark matter potential �DM, assuming a

polytropic equation of state:

ρgas(x, y, z) =

[

−1

K(n + 1)
�DM(x, y, z) + C

]n

(3)

where K is a constant, n is the polytropic index, and C is a

constant of integration that determines the sharpness of the

edge of the density distribution. Note that ρgas and �DM
need not be spherical in shape; the dark matter potential maps

into the gas density regardless of its degree of eccentricity.

In fact, we may take direct advantage of the non-

requirement for spherical shape; the WVT code contains

an option to use a cloud of dark matter particles as three-

dimensional interpolation points in order to determine the

value of the dark matter potential at a given position. Then,

Equation (3) defines the mass density for a gas particle placed

at that point.

If Equation (3) is applied correctly, the resulting surfaces of

constant gas mass density must coincide with the surfaces of

constant dark matter potential. Thus, as a diagnostic test, we

first construct a self-consistent Hernquist sphere of N-body

particles with a distribution function of Ossipkov–Merritt

form (Osipkov 1979; Merritt 1985a, 1985b; Kazantzidis,

Magorrian, & Moore 2004) and anisotropy radius ra =

1 × 1010, and then use the method of Holley-Bockelmann

et al. (2001) and Widrow (2008) to deform the sphere adi-

abatically into a triaxial system. The resulting configuration

of N-body particles has approximate axis ratio 17:15:14, and

forms the set of interpolation points from which to create a

cloud of gas particles via WVT. The example gas cloud anal-

ysed in Figure 7 has a polytropic index of n = 3/8, and shows

gas isodensities coincident with the dark matter isopotentials.

5.6 Asymmetric initial conditions: WVT logo

Figure 8 shows another example of an arbitrarily complex

setup. The top panel shows the letters ‘WVT’ used in three

dimensions, the lower panel gives the same example in two

dimensions. Note that we omitted the largest SPH particles

(white particles in the 2D version) in the 3D version for

clarity. WVT has no difficulties in matching the desired res-

olution even in these complex test cases.

5.7 Mixing in supernovae

As the shock moves out through a star in a supernova explo-

sion, Richtmyer–Meshkov and Rayleigh–Taylor instabilities

drive turbulence behind the shock. This turbulence mixes

elements, dredging up radioactive 56Ni and injecting hydro-

gen into slower moving layers. This mixing is observed in
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Figure 7. WVT results for a gas cloud with polytropic index of n = 3/8, embedded within a

triaxial (axis ratio 17:15:14) dark matter potential, a slice through the simulation at z = 0. Top left:

Dark matter particles in cyan, with surfaces of constant potential overplotted. Top right: SPH gas

particles in red, with surfaces of constant mass density overplotted. Bottom left: SPH gas particles

in red and dark matter particles in cyan. Bottom right: The surfaces of constant dark matter potential

(blue) coincide with the surfaces of constant gas mass density (red).

Figure 8. Examples for an arbitrary spatial configuration. The top panel

shows a 3D configuration, the lower panel shows a two-dimensional config-

uration. Particles with large smoothing lengths (shown in white in bottom

panel) are omitted in the three-dimensional view for clarity. This particu-

lar configuration shows a dynamic range of ∼10. Smoothing lengths are

indicated by colour and proportional to their symbols’ sizes.

supernova light-curves and in the knots in supernova rem-

nants. But modelling this turbulence is not trivial; the shock

radius expands by several orders of magnitude, and both

cartesian grid Eulerian and SPH codes introduce numerical

turbulence (based on noise in the initial setup) that can arti-

ficially produce spurious turbulence.

The Sedov blast wave is an ideal test for any code mod-

elling these explosions; an analytic solution exists and can be

compared to simulation results. This test also exposes con-

sequences of choices in initial conditions beyond just total

particle or mesh cell count. Approximating a point explosion

in a large volume benefits from higher spatial resolution near

the origin, and the shock is often unstable to hydrodynamic

instabilities (e.g., Richtmyer–Meshkov and Rayleigh–Taylor

behind the shock), so any initial density perturbation intro-

duced by the setup (or grid effects in an Eulerian code) can

artificially seed turbulence.

With a given total particle budget, different schemes for

generating initial conditions have different degrees of suc-

cess in meeting the resolution, homogeneity, and isotropy

requirements of Sedov simulations. Figure 9 shows the par-

ticle distribution, in terms of mass density versus radius, for

three different simulations of a Sedov blast wave—one using

a hexagonal close-packed lattice, one using a concentric shell

configuration, and one using WVT—at a time t = 0.06317

after the launch of the shock. The number of particles is

nearly identical for each simulation (1.52 million for the

PASA, 32, e048 (2015)
doi:10.1017/pasa.2015.50

https://doi.org/10.1017/pasa.2015.50 Published online by Cambridge University Press

http://dx.doi.org/10.1017/pasa.2015.50
https://doi.org/10.1017/pasa.2015.50


12 Diehl et al.

Figure 9. Density versus radius of a Sedov blast wave problem comparing the results from a WVT

setup with a hexagonal close-packed lattice (left) and a concentric shell configuration (right), each

using 1.5 million particles. The black line indicates the analytic solution. In the hexagonal close-

packed lattice, different shock velocities at different angles through the lattice lead to variation

in the shock position around the sphere—and to lower-density regions behind the fastest parts

of the shock, which show up in the plot as extra scatter in density, especially for radii between

∼0.32 and ∼0.36, at this time in the simulation. The initial density perturbations in the concentric

shell setup—visible as scatter in density at constant radius outside the shock—grow in the shock

to produce a broad range of particle densities. The low resolution at the energy source leads to

velocity perturbations that then create density perturbations.

shell setup, 1.50 million for the hexagonal close-packed and

WVT configurations). The black line in the figure indicates

the analytic solution at this time. All three simulations used

the same gamma-law equation of state, with γ = 7/5.

In the same way that initiating a Sedov blast wave calcula-

tion by injecting energy into a single mesh cell could imprint

the mesh geometry onto the resulting shock, initiating a cal-

culation by injecting energy into a single SPH particle at

the origin could produce an aspherical explosion imprinted

with artefacts of the arrangement of neighbouring particles.

In each of the three simulations, energy E = 1 was injected

into a small spherical volume at the centre of the simulation

at t = 0. The radius of that volume varied among the simu-

lations, according to the competing constraints that it be as

small as possible, to initiate a point-like explosion, but large

enough to extend out to several times the smoothing length

of the innermost particles, to eliminate relics of the specific

particle arrangement around the origin.

A uniform lattice is, by definition, poorly suited for prob-

lems with spatially varying resolution requirements. The goal

was to simulate a Sedov blast wave in a sphere of radius

rmax = 1, but the hexagonal close-packed lattice compro-

mised at both small and large radii; with a uniform spacing

of 0.01 between closest neighbours, it extended out only to

rmax = 0.63. At the same time, the uniform lattice had lim-

ited ability to simulate a point-like explosion; energy was

smoothed over particles at radii r < 0.024, which included

81 particles.

Though both the concentric shell setup and the WVT setup

covered a larger range of radii, using the concentric shell

setup for Sedov simulations requires extra attention to the

compromise between radial and angular resolution. Increas-

ing the particle count for a given shell tends to reduce varia-

tion in density around the sphere at that radius, but spending

the particle budget on angular resolution requires reducing

the overall number of shells, and having too few shells per
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neighbourhood can lead to radial fluctuations in density and

velocity.

Both the concentric shell setup and the WVT setup

extended from rmax = 1 (where the largest particles had

smoothing lengths hmax = 2.62 × 10−2 in the concentric

shell setup and hmax = 3.29 × 10−2 in the WVT setup) to

much smaller scales; near the origin, the smallest particles

had smoothing lengths hmin = 7.81 × 10−3 in the concentric

shell setup and hmin = 2.69 × 10−4 in the WVT setup. In the

concentric shell setup, energy was smoothed over particles at

radii r < 3.9 × 10−3, or the innermost 10 shells (containing

a total of 4 840 particles); in the WVT setup, energy was

smoothed over particles at radii r < 5.0 × 10−3, which in-

cluded 38 148 particles. Particles had an average of 54 neigh-

bours in the hexagonal close-packed lattice, 76 neighbours

in the concentric shell setup, and 50 neighbours in the WVT

setup.

As the shock expands outwards, the variation of resolution

with radius among the three sets of initial conditions becomes

apparent; at t = 0.06317, there are 481 562 shocked particles

in the simulation using the shell setup, only 190 472 in the

hexagonal close-packed simulation, and 977 512 in the WVT

simulation.

In the hexagonal closed-packed lattice, the shock prop-

agates faster along lattice planes than in other directions.

This leads to a radial spread in the apparent shock location,

averaged over the sphere, and areas of lower density behind

those advanced parts of the shock that show up especially be-

tween radii 0.32 < r < 0.36, at this time in the simulation.

A WVT setup with the same uniform particle spacing avoids

this angle-dependent behaviour, which eliminates the appear-

ance of faster-than-expected features ahead of the shock, and

most of the variation in density at a given radius. When used

to generate initial conditions with spatially varying resolu-

tion, WVT produces much less scatter with the same total

particle count, limiting the numerically seeded turbulence in

this problem.

The nature of the concentric shell setup introduces a den-

sity perturbation within each shell, visible as scatter in den-

sity at discrete radii outside the shock in the right panel of

Figure 9. This perturbation grows when the shock passes

through it, driving strong density perturbations and convec-

tion. In simulations of supernova explosions (e.g., Fryer et al.

2007) and other more complex environments, ensuring that

these perturbations are small compared to perturbations ex-

pected in the natural system can require several rounds of

setup, simulation, and adjustment. Even with the same in-

nermost radius and particle size, WVT produces a smoother

representation of the initial conditions in both radius and

angle; in the simulations presented here, WVT was used to

produce a configuration with a smooth representation at even

smaller radii, supporting a smaller energy injection region

containing more particles.

The WVT setup underestimates the density both behind

and ahead of the shock—by 6.6% for particles between

r = 0.2 and 0.25, 9.3% between r = 0.25 and 0.3, 15.4% be-

tween r = 0.3 and the shock, and 2.9% in the unshocked re-

gion between r = 0.37 and 0.41. Both the hexagonal closed-

packed and shell configurations provide better estimates of

the density ahead of the shock—overestimating by 0.95%

and 1.9%, respectively. Behind the shock, the average den-

sity for the shell configuration is consistently lower than the

WVT result—15.5% below the analytic value for particles

between r = 0.2 and 0.25, 14.4% low between r = 0.25 and

0.3, and 13.6% low between r = 0.3 and the shock. The av-

erage density in the hexagonal close-packed simulation is

just slightly above the analytic line—by 0.6%—for parti-

cles between r = 0.2 and 0.25, and below the target value

by 6.7% between r = 0.25 and 0.3, and by 14.7% between

r = 0.3 and the shock, but averaging over all particles at a

given radius in this calculation hides significant variation be-

tween different angles around the sphere. For both the shell

setup and WVT, the iterative process of assigning masses

to particles given their initial position and spacing could be

improved to better match the desired initial density profile.

6 COMPARISON TESTS

6.1 Interpolation accuracy: Uniform density

An important performance test for any SPH setup method

is to find out how well it reproduces a given density field.

This test will reveal the level of perturbations that are in-

troduced by the setup, which could seed convection, excite

sound waves, or trigger instabilities. The simplest such test

is to see how well each method can mimic a uniform density

field with a uniform particle distribution. Thus, each particle

should have the same mass, which we will assume to be 1,

and the same smoothing length/resolution. At the same time,

this test will then provide a means to test the accuracy of the

particle density distribution itself.

Figure 10 shows the accuracy of all uniform density meth-

ods described in Section 3, along with the new WVT method.

Each panel shows a projection of a unit cube containing 8 000

particles onto the x–y plane according to the standard spline

SPH kernel targeted at containing approximately 128 neigh-

bours. We divided each figure into two parts, with the colours

in the left half showing up to 5% deviations (negative: blue,

positive: red, accurate: green), whereas the right half reveals

lower level (up to 1%) deviations.

The first three panels show the lattice configurations (cu-

bic lattice, CCP, and HCP) which obviously have excellent

interpolation properties. This is not surprising, as they are

designed to be as uniform as possible, and each particle has

an identical number of neighbours. Only in the right half of

each panel does low-level noise becomes visible, revealing

the underlying lattice structures. Note that the CCP panel

shows hexagonal structures, as the x–y plane cuts through a

hexagonal layer. Other orientations of the plane would reveal

different patterns, but give the same qualitative impression.

The fourth panel in the top row shows the quaquaver-

sal tiling configuration, which demonstrates very strong
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Figure 10. Comparison of the interpolation accuracy for 128 neighbours in the cubic lattice, cubic close packing, hexagonal close packing, quaquaversal

tiling, random configuration, shell setup, gravitational glass, and the new WVT approach (top left to bottom right). Colours indicate deviations from the

target density, with blue colours showing negative and red colours denoting positive deviations. Each panel is divided into two halves with different dynamic

ranges: ±5% on the left and ±1% on the right side. Note that the shell setup is shown at an off-centre location, to avoid the discussed special treatment of

the centre in this comparison. Quaquaversal tiling and the random setup perform noticeably worse than any other method, while the uniform grid setups

perform best as expected. The non-gridded setup methods perform equally well, with very high interpolation accuracies that never exceed 1%.

clustering of particles and corresponding deviations from

the ideal values. Even with 128 neighbours, density fluctua-

tions on the order of 5% are found throughout the simulation

volume. In addition, these deviations are strongly spatially

correlated, which makes numerical artefacts likely. This rea-

son alone is grounds enough not to use quaquaversal tiling

for SPH setups. This effect has also recently been pointed out

by Wang & White (2007), who found that using quaquaversal

tiling to initialise cosmological situations leads to an exces-

sive amount of small halos and clumping. In fact, the only

setup method that produces stronger density fluctuations is

placement of particles randomly throughout the simulation

domain (top-right panel).

The first panel in the lower row shows the interpolation

accuracy of the shell setup, at an off-centre location. This

setup has most often been used for simulations with an in-

ner boundary inside the innermost shell of particles, which

excludes that central volume from the simulation domain.

(In a simulation that extends all the way to r = 0, inter-

polation accuracy inside the innermost shell will be poor

without special treatment. Options include placing a small

lattice configuration, a gravitational glass configuration, or

a single particle inside the innermost shell; the former two

can still produce artefacts near the innermost shell, while

the latter works best if the innermost shell radius is about

the same as the typical inter-particle separation within the

shell.) Similar to the lattice configurations, individual shells

are visible as low-level noise in the right half of the panel.

The level of noise in the density interpolation for 128 neigh-

bours is on the order of 1%, consistent with findings by Fryer

et al. (2007). However, note that the setup is only optimised

within one shell, which leads to the noise deviations hav-

ing a preferred radial direction perpendicular to the shell

structures.

Within one shell, the setup has similar properties to a uni-

form gravitational glass, shown in the second panel of the

bottom row. The level of noise for this method is very low,

generally on the order of 0.5% at most. Also note that the

noise is isotropic with no preferred direction, as is true for

the underlying particle distribution. These desirable proper-

ties make the gravitational glass setup a suitable choice for

uniform density distributions.

The last panel in the bottom row shows the interpolation

properties of our new WVT setup method. Note the similarity

to the gravitational glass, with an equally low amount of noise

and an isotropic distribution of the noise without preferred

directions. In our WVT implementation, each repulsive force

is roughly proportional to r−2, and the ratio of scale lengths

is 1 for a uniform distribution, which makes the WVT setup

locally very similar to a gravitational glass.

In summary, the three uniform lattices (cubic lattice, CCP,

HCP) have excellent interpolation characteristics for a uni-

form density and should be used in situations where lattice

effects are expected to be unimportant, but a very low level

of initial numerical noise is needed. The quaquaversal and

random initial condition are unacceptable for any application

due to their low interpolation accuracy. In spherical symme-

try, the shell setup provides an adequate configuration, but

without a special treatment of the centre is unable to repro-

duce a solid, uniform centre of the sphere. The gravitational

glass and the new WVT setup method both perform best in

the interpolation test among non-lattice configurations. Both

have a high level of interpolation accuracy with maximum

deviations generally on the order of 0.5% for 128 neighbours.
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Figure 11. The equivalent of Figure 10, but for spatially adaptive setups: stretched cubic lattice, stretched cubic close packing, stretched hexagonal close

packing, stretched quaquaversal tiling, random configuration, shell setup, stretched gravitational glass, and the new WVT approach (top left to bottom

right). All uniform-grid-based setups, quaquaversal tiling and the random configuration perform very badly. Of the non-gridded setup methods, the WVT

setup performs best with density inaccuracies below 1%. The stretched gravitational glass introduces artefacts that are located inside shells, whereas the

shell setup demonstrates deviations in the radial direction.

6.2 Interpolation accuracy: Non-uniform density

We now consider a very similar test, but for a non-uniform

particle distribution. We test all adaptive setup methods listed

in Section 3 along with our new WVT setup. As a comparison

test, we choose a spherical setup with the resolution intended

to scale as r2/3. Figure 11 shows the comparison data, in a

similar fashion to Figure 10.

Even with this moderate amount of stretching, all the lat-

tice configurations (stretched cubic lattice, stretched CCP,

stretched HCP) perform very poorly in this test. This is

not surprising when one considers the 3D structure of the

stretched lattices in Figure 2. The problem for these struc-

tures is that the stretching factor is a function of radius, and

thus not parallel to one of the lattice axes. Thus, originally

parallel planes are warped significantly during the stretch

process, and the particle spacings within one such plane are

multiplied by different stretching factors. This results in a

very uneven distribution of particle density, and the lattice

structure can now be easily picked out in the first three panels

of Figure 11.

The quaquaversal tiling and random configuration perform

even more poorly, and the problems seen in the uniform

density test are even more apparent.

The intrinsically adaptive shell setup (bottom row, left)

performs very well in this test, with density perturbations

equivalent to the uniform density test, usually not exceeding

1% for 128 neighbours. The only disadvantage of the shell

setup is that the density deviations are systematically in the

radial direction, as it is only optimised within a shell.

Interestingly and maybe surprisingly, the stretched glass

performs relatively poorly, as shown in the middle panel of

the bottom row. Even though the gravitational glass has ex-

cellent interpolation properties for uniform densities, this is

not the case when stretched in a radial (or any other) direc-

tion. As was true for the lattice configurations, the stretching

procedure tends to pronounce voids between planes that are

perpendicular to the direction in which the stretching is ap-

plied. The glass does not have a uniform clear lattice struc-

ture but still tends to order particles along randomly oriented

strings on a local level, as can be seen in the left panel of

Figure 12. Thus, the stretching will preferably pick out those

features that are perpendicular to our stretching direction, i.e.,

those inside shells. This leads to the wavy shell-like features

in the right panel of Figure 12 which shows the stretched

glass. In this particular example, the density deviations are

on the order of 3%, which is significantly less than the lattice

structures. However, with stronger stretching, these features

will only become even more pronounced.

The WVT setup (bottom row, far-right panel) does not

exhibit these features. Note how the level of noise for the

adaptive setup is as low as for the uniform distribution. This

is due to the fact that the WVT setup knows beforehand the

desired resolution at each point in space, and is not a stretched

version of a uniform distribution, allowing it to converge to

the optimal solution in either case. We also note that this high

level of interpolation accuracy does not depend on spherical

symmetry as in the shell setup, which makes WVT much

more versatile.

In summary, we find that stretched lattice configurations

are not suitable for producing non-uniform particle dis-

tributions. Quaquaversal tiling and random configuration

have even worse interpolation properties. The shell setup

has acceptable levels of noise, but is restricted to spherical
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Figure 12. Unstretched (left) and stretched glass (right). Note the wavy shell-like structure in the stretched glass. To bring out this

structure, particles are periodically coloured by their radius in the unstretched glass, which is then also applied to the stretched glass.

symmetry and the noise distribution is preferably along the

radial direction. The stretched glass setup also introduces

artefacts in shells which could lead to radial pulsations in an

SPH simulation. The WVT setup has interpolation properties

that are equivalent to the uniform distribution, which makes

it the method of choice for adaptive resolution requirements.

All other distributions should be relaxed into their equilib-

rium configuration prior to being used.

6.3 Particle noise

Another way of judging the characteristics of an SPH setup

is to measure the particle noise inside a uniform distribu-

tion of particles within a uniform density distribution. In an

ideal situation, all the pressure forces of individual particles

cancel out, and the net force is 0 or very small compared

to an individual force. Then, the contribution to the pressure

force of an individual SPH particle i on another particle j is

Monaghan (1992)

dv
i j

dt
∝ −m

i

P
i

ρ2
i

∇
i
W

i j
. (4)

For our test, we set up conditions such that the particle masses

mi = 1, the average pressure P̄i = 1, and the average den-

sity ρ̄i = 1. Thus, we expect a single particle to contribute

|∇Wi j| ≈ 0.08 on average to the acceleration term. Assum-

ing Poisson noise, we thus expect the noise for a random

configuration to be on the order of (Nneigh)
1/2 |∇Wi j| = 0.64

for 64 neighbours.2 Our random configuration yields a value

2Although this relationship suggests that increasing Nneigh—by, implicitly,

increasing h—would conveniently reduce noise, Price (2012) notes that
such stretching amounts to an arbitrary change in the weighting of a neigh-
bouring particle at a given distance and does not lead to formal convergence

of 0.60 ± 0.25 in our test setup, consistent with expectations.

We will take this measured value of 0.6 as a reference point

to measure the performance of the other setup methods in

terms of ‘fractional Poisson noise’.

As expected, the uniform lattice configurations yield a

perfect equilibrium down to machine precision. The quaqua-

versal tiling on the other hand shows very poor performance

again, with a particle noise of about 30% the Poisson level,

consistent with our findings in the density interpolation ac-

curacy. Both the shell setup (3.9 ± 1.7%), the gravitational

glass (3.1 ± 1.3%), and WVT (3.9 ± 1.7%) reduce the noise

by an order of magnitude.

6.4 Summary

In Table 1, we summarise our findings about positive and

negative characteristics of all considered setup methods for

uniform particle distributions. We also provide recommen-

dations for which method should be preferred in which situ-

ation.

7 CONCLUSIONS

We have presented an extensive comparison of all particle

setup methods currently employed in astrophysics that we are

aware of. In particular, we review spatially uniform configu-

rations such as a cubic lattice, CCP, HCP, quaquaversal tiling,

and gravitational glasses. For spatially adaptive methods, we

also include the random probability distribution, stretched

lattice, stretched glass, and a concentrical shell setup. To the

of the density estimate, while using higher-order spline kernels improves
the smoothness of the density estimate without changing the definition of
h and should be the standard approach.
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Table 1. Comparison of particle setup methods.

Method Adaptive? Noise Advantages Disadvantages Recommendation

Cubic lattice no very

low

- very good interpolation properties

- trivial to implement

- prone to artefacts due to very strong

particle alignment along grid axes

- uniform distributions only

- unstable equilibrium configuration

- not an optimal packing scheme

- Should not be used, as it is affected by strong

lattice effects and does not present a stable

equilibrium configuration

Cubic close packing no very

low

- optimal packing scheme

- stable equilibrium configuration

- uniform distributions only

- prone to artefacts due to strong particle

alignment along lattice symmetry

axes

- Useful for mainly static problems that do not

collapse or exhibit shocks, and if interpolation

accuracy is important

Hexagonal close packing no very

low

- optimal packing scheme

- stable equilibrium configuration

- uniform distributions only

- prone to artefacts due to strong particle

alignment along lattice symmetry

axes

- Useful for mainly static problems that do not

collapse or exhibit shocks, and if interpolation

accuracy is important

Quaquaversal tiling no high - non-intuitive lattice effects

- uniform distributions only

- Not recommended for use with SPH

Random configuration yes very

high

- applicable to arbitrary geometries - very bad interpolation properties

- very clumpy

- dominated by Poisson noise

- Not recommended for use with SPH

Gravitational glass no low - very good interpolation properties

- no lattice structures

- with periodic boundaries, can be tiled to generate

arbitrarily large setups

- noise is isotropic

- uniform distributions only - A very good choice for uniform particle

distributions if interpolation accuracy is

important and lattice effects need to be avoided

Stretched lattice yes very

high

- fast and easy to implement - strongly anisotropic particle

distribution due to lattice effects

- not a stable configuration, has to be

relaxed into equilibrium configuration

- Should only be used in conjunction with a

relaxation technique

Stretched glass yes high - better starting point for initial conditions than a

stretched lattice

- noise non-isotropic, tends to be

spatially correlated in shells.

- not a stable configuration, has to be

relaxed into equilibrium configuration

- Should only be used in conjunction with a

relaxation technique; faster to relax than a

stretched lattice

Shell setup yes low - very well suited to produce perfect spherical

symmetry

- very good interpolation properties

- computationally expensive to generate

shell templates

- requires a lot of shell templates

- only optimised within shells

- noise non-isotropic

- Good choice for spherically-symmetric initial

conditions if interpolations accuracy is

important. Center needs special treatment.

WVT setup yes low - applicable to arbitrary geometries

- easy to implement on top of an existing SPH code

- very good interpolation properties

- Good choice for any uniform or adaptive setup.

Only choice for adaptive setups without

spherical symmetry.
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best of our knowledge, the stretched glass and concentrical

shell setup have not been described in the literature before.

The main focus of our paper, however, is a new setup

method based on WVTs. This new method allows for arbi-

trary spatial configurations of particles, which has not been

possible before. We show that this new method is easy to im-

plement on existing SPH codes and demonstrate its superior

characteristics in several examples.

This method has now been used in a variety of astro-

physics problems from core-collapse supernovae (Ellinger

et al. 2012) to modelling binary interactions (Raskin et al.

2009, 2010; Fryer et al. 2010). Especially in doing binary in-

teraction calculations comparing multiple techniques, using

identical initial conditions is critical and these initial con-

ditions tend to have complicated structures caused by tidal

effects (e.g., Passy et al. 2012).
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