
Generating OWL Ontology for Database Integration
Nasser Alalwan, Hussein Zedan, François Siewe

Software Technology Research Laboratory
De Montfort University

Leicester, UK
[nasser, hzedan, fsiewe]@dmu.ac.uk

Abstract– Today, databases provide the best technique for
storing and retrieving data, but they suffer from the absence of
a semantic perspective, which is needed to reach global goals
such as the semantic web and data integration. Using
ontologies will solve this problem by enriching databases
semantically. Since building an ontology from scratch is a very
complicated task, we propose an automatic transformation
system to build Web Ontology Language OWL ontologies from
a relational model written in Structured Query Language
SQL. Our system also uses metadata, which helps to extract
some semantic aspects which could not be inferred from the
SQL. Our system analyzes database tuples to capture these
metadata. Finally, the outcome ontology of the system is
validated manually by comparing it with a conceptual model of
the database (E/R diagram) in order to obtain the optimal
ontology.

Keywords - reverse engineering, ontology, conceptual models,
ontology learning, information extraction, Deep Web,
Semantic Deep Web annotation.

Introduction

Today, the semantic web is gaining a significant amount of
attention from researchers, because it has the ability to solve
complicated problems such as data integration. The core of
the semantic web is ontologies. An ontology is an explicit
specification of a conceptualization [1]. Also it can be
defined as a formally explicit set of terms formed in
hierarchically structured way for describing concepts in a
domain of discourse which can be used as a skeletal
foundation for a knowledge base [2]. Ontologies play an
important role in realizing the idea of database
interoperability because of significant characteristics [3] such
as:

Adding rich, machine- readable semantics to data.
Sharing the semantic perspective of the information
structure with people or software agents.
Separating domain knowledge from operational
knowledge.
Making explicit assumptions for a domain.

 Although the use of an ontology is not proposed as a
substitute for database technology, a database is still more
powerful than an ontology for storing large-scale data sets.

However, an ontology can be used with a database to provide
a conceptual vision of heterogeneous data sources distributed
in a number of databases with an interface built on an
ontological model.

Thus, we need a system that utilizes both database and
ontology techniques. However, while databases are widely
available, the corresponding ontologies are not. Furthermore,
constructing an ontology from scratch is tedious, time-
consuming, error-prone and labour-intensive, while building
one by hand presents the same difficulties [4] [5].

The proposed solution therefore starts by transforming a
given database to an ontology with some rules as guidelines,
which can be used for manual transformation or as the basis
for an automatic transformation process [6]. Before going
further, we have to clarify the difference between the terms
‘transformation’ and ‘mapping’. The transformation of a
database to an ontology means creating an ontology from the
rules, either manually or by using a system, whereas in
mapping, the database and the ontology both exist [7] [8].

This paper is organized as follows: we explain the
motivation for our work in Section II, then offer an overview
of relational databases and OWL ontologies in Section III
and an outline of our approach in Section IV. Section V
describes the overall rules for constructing an ontology
(classes, object properties, datatype properties and instances)
with a walkthrough example. The implementation is
explained in Section VI. The validation and evaluation of
instances in Section VII show that the transformation is
correct. We present related work in Section VIII, then a
summary of our contribution, a conclusion and suggestions
for future work in Section IX.

I. MOTIVATION

Most approaches fail in their rules to differentiate entities
having an ‘IS-A’ relationship from fragmented entities, such
as [4] [5], or not mention it, such as [7]. Some use specific
examples as rules, which can be misleading in respect of the
results and can affect both the generalization of the rules and
the accuracy of the system. Furthermore, some approaches
avoid some circumstances, by making unrealistic
assumptions such as no ternary relationships, no IS-A
relationships or no fragmentation of tables. Others fail to
cover some issues such as multi-valued attributes and
composite attributes from the relational database side or
cardinality restrictions, has-value restrictions and enumerated
properties on the ontology side.

2009 Third International Conference on Advances in Semantic Processing

978-0-7695-3833-4/09 $26.00 © 2009 IEEE

DOI 10.1109/SEMAPRO.2009.21

22

In our approach, we test different situations with our
rules to cover different circumstances and we combine the
benefits of the relational model, the conceptual (E/R) model
and the analysis of database tuples.

II. RELATIONAL DATABASES AND OWL ONTOLOGIES:
AN OVERVIEW

In the last 30 years, the relational model, which is the core of
any relational database, has become more widely accepted
than older approaches such as the hierarchical and network
models. This applies even to the new models, such as object-
relational or object-oriented databases, because relational
databases are widely accepted by users, designers and
vendors. More than three-quarters of the data on the current
Web are stored in relational databases [9]. Both functional
and domain expertise are also widely available for relational
databases, but not for new models such as object-relational
or object-oriented databases.
 There are many advantages in using databases. For
example, data need storing only once, multiple locations can
be used, they are easy to back up, can have multiple layers of
security and are scalable; and standards are enforceable.
These advantages of databases are opposed by some general
limitations, such as meaningless table or attribute names,
poor semantics, bad design and poor performance.

However, the most serious limitation lies in database
design, which goes through two phases: building the
conceptual model in the entity relationship model (E/R
diagram), then converting it to the relational model
constructs typically found in Structured Query Language-
Data Definition Language (SQL-DDL). The problem is the
heavy semantic losses during the process of converting an
E/R model to SQL [5].
 Hence, the solution to database limitations and the
shortcomings of the relational model is to move to an
ontological model, using one of the ontology languages.
Web Ontology Language (OWL) is the latest standard of
W3C; it facilitates greater machine interpretability of web
content than that supported by XML, RDF or RDF Schema,
by providing additional vocabulary along with formal
semantics. OWL has three sublanguages:

OWL Lite is designed for a simple class hierarchy and
simple constraints.
OWL DL is based on description logics and is more
expressive than OWL-Lite. Moreover, the reasoning
software is able to support complete reasoning for every
feature of OWL-DL. This paper focuses on OWL-DL.
OWL Full is designed for high expressiveness. However,
it does not have a computational guarantee [10].

III. DATABASE INTEGRATION APPROACH
We assume complete cooperation from database owners
who choose to participate in integrating their databases with
others. The architecture of our approach is depicted in Fig.1.

Our system is divided into four phases: (i) generating the
OWL ontology from SQL statements; (ii) validating and
refining the ontology produced, by a comparison with the
E/R diagram; (iii) mapping the ontology produced (local

ontology) to a global ontology and (iv) integrating the global
ontology by linking it with the database.

Mapping

Phase 3

Validating and
refining
ontology

Phase 2

Generating
OWL
ontology

Phase 1

Ontology Ontology

Global
OntologyER

diagram

Relational
Database
SQL

Phase 4

Global
Ontology

Relational
Database

Local
Ontology

Figure 1. Database Integration Framework

Therefore our system needs to be provided with two
inputs. The first input for the first phase is in SQL-DDL and
SQL-DML. We can obtain this information from the
database dump, which is a way of finding the structure of the
table and the data in the tuples. Thereafter, our system
applies the rules explained in Section V of this paper to
generate a complete OWL ontology without instances, by
parsing the SQL/DDL sentences. At this point the first phase
is complete.

The second input is the E/R diagram of the database for
the second phase, whose purpose is to refine and validate the
OWL ontology produced in the first phase. In this second
phase the database owner must supply our system with the
E/R model. If this is not available, the database administrator
is responsible for analyzing the system and producing the
E/R model, although there are some programs, such as
Power Design, which help database administrators to
produce E/R models. Alternatively, they can use the
techniques in [11] [12]. After the E/R diagram has been
supplied or produced, the rules in Section V are applied.
Next, the system will produce a refined and complete OWL
ontology for the database. The goal of this second phase is to
reach an optimal result without the need for a domain expert.

Finally, in the third phase, an expert will choose an
appropriate global ontology designed for the domain.

In this paper, we concentrate on the first two phases,
leaving the third and fourth phases to future work.

IV. RULES FOR TRANSFORMATION OF SQL-DDL TO
OWL ONTOLOGY

This section gives formal rules for transforming relational
databases to OWL ontologies. In subsection A we define our
predicates, then we introduce an example in subsection B.
An ontology is built in four stages. The first stage, building
classes with their datatype properties, is explained in
subsection C, while subsections D and E respectively explain
how object properties are created and instances migrated .

We adopt the assumptions of most of the work done in
the transformation rules for our methodology:

(i) Relations are in third normal form (3NF), available in
SQL-DDL [14].

23

(ii) New tuples added to the database are consistent with
the derived metadata [11].

A. Notations
We denote by Dom(x) the set of all possible values of a
single or composite attribute x. We adopt the following
predicate symbols:

PK(x, R): x is the (single or composite) primary key of
the relation R and is represented as a set of attributes.

OCC(v, x, R): there is a tuple in R for which the value of
x is v ∈ Dom(x).

FK(x, R, y, S): x is a (single or composite) foreign key in
relation R and references a primary key y in relation S.

IsFK(x, R) =ෝ ∃ y, S: FK(x, R, y, S).
IsFK (x, R) means that x is a (single or composite)
foreign key in the relation R.

NonFK(x, R): x is an attribute in relation R that does not
participate in any foreign key.

Attr(x, R): x is an attribute in relation R.

B. Running Example
The example in Table I shows a university database of SQL
statements. This database covers different cases for entities
and relationships, such as relation built from strong entity,
relation built from weak entity, relation for a multi-valued
attribute, IS-A relationship, binary relationship and ternary
relationship.

TABLE I. THE UNIVERSITY SQL-DDL Department table:
Create table department(dept_id int, dept_name varchar(70) not
null,dept_phone varchar(20),
primary key(dept_id));
staff table:
Create table staff(staff_id int, staff_name varchar(70) not null,dept_id int,
manger_id int,
primary key(staff_id),
foreign key (dept_id) references dept(dept_id)
foreign key (manger_id references staff(staff_id));
Staff-details table:
Create table staff-details(staff_id int,staff_firstname varchar(10),
staff_midname varchar(5), staff_familyname varchar(20), DOB
date,address varchar(50),email varchar(50),memo varchar(120),homepage
varchar(20),
primary key(staff_id),
foreign key (staff_id) references staff(staff_id));
Academic-staff table:
Creat table academic-staff(staff_id int,
specialty varchar check in (‘Demonstrator’, ‘Instructor’,‘Assistant
professor’, ‘Associate professor’, ‘Professor’)
research_area varchar (40),
primary key(staff_id),
foreign key (staff_id) references staff(staff_id));
student table:
Create table student(st_id int, st_name varchar(70) not null,sex char(1),
dept_id int,
primary key(st_id),
foreign key (dept_id) references dept(dept_id));
Graduate-student table:
Create table graduate-student(st_id int, research_area varchar(70),
primary key(st_id),
foreign key (st_id) references student(st_id));

Dependent table:
Create table dependent(staff_id int, d_id int, depdent_name varchar (20)
not null,sex char(1),DOB date, relationship varchar(40),
primary key(Staff_id, d_id),
foreign key (Staff _id) references staff (staff _id));
course table:
Create table course(c_id int, course_name varchar(70) not null, dept_id int,
primary key(c_id),
foreign key (dept_id) references dept(dept_id));
registered table:
Create table registered(st_id int, c_id int,
primary key(st_id,c_id),
foreign key (st_id) references student(st_id),
foreign key (c_id) references course(c_id));
Teach table:
Create table teach (st_id int, c_id int, staff_id int,
primary key(st_id,c_id,staff_id),
foreign key (st_id) references student(st_id),
foreign key (c_id) references course(c_id),
foreign key (staff_id)
references academic-staff (staff_id));

C. Class and Datatype property Creation Rules
Our transformation rules have the form: IF condition THEN
action. In the following rules, relation symbols are assumed
to be universally quantified.

1) Fragmentation rules

a) Rule C1: Fragmentation class rule
If the information of one entity is spread across more than
one relation, which is known as fragmentation (vertical
partitioning of a table), then it should be integrated into one
class, as follows:

1ܥ_݈݁ݑܴ

⎩

− Class condition
,1ݔ∃ …,2ݔ , ݊ݔ ∶ ൮(ܽ)⋀ 1=݅݊)ܭܲ ݅ݔ , ܴ݅)) ∧ ,1ݔ)ܭܨݏ݅ 1ܴ) ∧ (ܾ)⋀ 2=݅݊)ܭܨ ݅ݔ , ܴ݅ , ,1ݔ 1ܴ) ∋ ݒ ∀(ܿ) ∧ :(1ݔ)݉݋ܦ ,ݒ)ܥܥܱ) (1ܴ,1ݔ ⇒ ⋀ ,ݒ)ܥܥܱ ݅ݔ ,݊݅=2 ܴ݅))൲− − Class action ܿ݁ݐܽ݁ݎ ݏݏ݈ܽܿ ݊݋݅ݐ݈ܽ݁ݎ ℎ݁ݐ ݉݋ݎ݂ ܥ ൬ራ ܴ݅݊݅=1 ൰

 (1)
To apply this rule, all participating relations must satisfy

all the conditions to be merged into one class.
1. There are two or more relations sharing the same

primary key.
2. There is a master relation where

a. its primary key is not a foreign key.
b. the primary keys of all the remaining relations

also act as foreign keys referring to the master
relation.

3. All the primary key values present in the master
relation must exist in all remaining relations.

 If all three of these conditions are satisfied then we can
merge these tables into one class in the ontology.

This relationship is of the one-to-one type, with a
cardinality ratio (participation constraint) of (1, 1) on each
side.

24

b) Rule DP1: Fragmentation datatype property rule
All attributes present in each relation participating in the
fragmentation rule and not forming a foreign key will be
allocated to the integrated class created from Rule C1, as
depicted in equation 2. For example, the table staff has the
attributes (staff_id, staff_ family_name) which do not form
foreign keys. Similarly, the table staff-details has the
attributes (staff_first_name, staff_mid_name, DOB, address,
email, memo, homepage) which also do not form foreign
keys, except that any repeated attribute will appear once in
the integrated class. A datatype property is then created for
each attribute in these two relations and allocated to the class
staff which corresponds to the tables staff and staff_details.
These datatype properties will consider the class staff as their
domain and the corresponding datatype in Table II as their
range; we refer to them by dom(x) in our rules. For example,
staff_first_name will have the range of xsd: string.

1ܲܦ݈݁ݑܴ ⎩⎨
− Datatype condition: ሥ((ܴ݅,ݔ)ݎݐݐܣ݊

݅=1 ∧ ൯− Datatype action(ܴ݅,ݔ)൫ܭܨ݊݋ܰ ݁ݐܽ݁ݎܿ ∶ ݊݅ܽ݉݋ܦ ℎݐ݅ݓ (ݔ)ܲܦ ܥ ܽ݊݀ ܴܽ݊݃݁ (ݔ)݉݋݀
(2)

TABLE II. DATATYPE BETWEEN DATABASE AND XML

Type DB XML/ OWL
number integer/int Xsd: integer

float Xsd: float
Char char /varchar/vchar Xsd:string
date/Time time Xsd:time

date Xsd:date
datetime Xsd: datetime

Boolean boolean Xsd:boolean

2) Hierarchy rules

a) Rule C2: Hierarchy class rule
One of the most important stages in building the ontology
is constructing the hierarchy. The term ‘hierarchy’ refers to
the specification of the relationships between classes and
subclasses. The class-subclass relationship appears as an IS-
A relationship between entities in the E/R model. To extract
the inheritance relationship, we require the analysis of tuples
in each relation.

 For example, some approaches [4] [5] fail to distinguish
between the fragmentation of one entity into more than one
relation and the IS-A relationship, which represents two
different entities with the idea of superentity and subentity
(generalization /specialization). Other approaches let the user
decide [6]. The condition and the action below illustrate the
rules for inheritance.

2ܥ_݈݁ݑܴ

⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ − Class condition:

,ݔ∃ ݕ ∶ ቌ(ܽ)ܲ(1ܴ,ݔ)ܭ) ∧ (2ܴ,ݕ)ܭܲ ,2ܴ,ݕ)ܭܨ(ܾ) ∧ ,ݔ 1ܴ) ∋ ݒ ∃(ܿ) ∧ :(ݔ)݉݋ܦ ,ݒ)ܥܥܱ)) ,ݔ 1ܴ) ∧ ,ݒ)ܥܥܱ ݁ݐܽ݁ݎܿ (2 1ܴ ݉݋ݎ݂ 1ܥ ݏݏ݈ܽܿ ݁ݐܽ݁ݎܿ (ቍ− Class Action: ቌ1((2ܴ,ݕ ݏݏ݈ܽܿ ݁݇ܽ݉ (3 2ܴ ݉݋ݎ݂ 2ܥ ݏݏ݈ܽܿ 1ቍܥ (݂ܱܾݑݏ) 2ܥ
 (3)

 To apply this rule, all participating relations must satisfy
all the conditions to create two classes (superclass, subclass).

1. There are two relations sharing the same primary
key.

2. There is a master relation where
a. its primary key is not a foreign key, in which

case it becomes a master relation. Otherwise
there will be multiple inheritances.

b. the primary key of the other relation also acts
as a foreign key (referring to the master
relation or to the sub-master).

3. Not all the primary key values present in the master
relation must exist in the other relation.

When this rule applies, we can build a superclass from
the master table and the other table will be a subclass in the
ontology.

We consider this relationship to have one-to-one
cardinality. The participation ratio must be (1, 1) in the
master relation and (0, 1) in the other relation.

b) Rule DP2: Hierarchy datatype property rule
Rule 4 demonstrates the datatype property rule for relations
participating in hierarchy rules. From the class hierarchy rule
(C2) we create two classes, one for the master relation and
the other for the subrelation. Here we have to ensure that all
the attributes present in each relation will be moved to the
corresponding class. For example, the tables student and
graduate_student form a superclass and subclass
respectively. Therefore, all the attributes in the table student
do not form a foreign key which will be allocated to the class
student. In our example (Table I) the attributes (st_id
st_name, sex) will have the class student as their domain,
while the class graduate_student will be the domain for the
attribute research_area. Furthermore, all the attributes
present in the class student will be inherited automatically by
the class graduate_student.

2ܲܦ݈݁ݑܴ
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧− Datatype condition: ቆݔ)ݎݐݐܣ, 1ܴ) ∧ ܭܨ݊݋ܰ ,ݔ) 1ܴ) (2ܴ,ݕ)ݎݐݐܣ∧ ∧ ܭܨ݊݋ܰ (2ܴ,ݕ) ቇ− Datatype action ∶

ቆܿ݁ݐܽ݁ݎ ݊݅ܽ݉݋ܦ ℎݐ݅ݓ (ݔ)ܲܦ ݀݊ܽ 1ܥ ܴܽ݊݃݁ ݁ݐܽ݁ݎܿ(ݔ)݉݋݀ ݊݅ܽ݉݋ܦ ℎݐ݅ݓ (ݕ)ܲܦ ݀݊ܽ 2ܥ ܴܽ݊݃݁ ቇ(ݕ)݉݋݀
(4)

25

Some approaches mix ontology design and database
design. For example, if there are two classes represented in a
hierarchy, the subclass will inherit all the datatype properties
present in the superclass, so there is no need to define the
datatype property domain from the union of the superclass
and the subclass. The example below shows this inaccuracy.

<owl:DatatypeProperty rdf:ID="staff_id">
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Staff"/>
 <owl:Class rdf:about="#Acadimac_staff"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range rdf:resource="&xsd;int"/>
 </owl:DatatypeProperty>

3) Multi-valued rules
a) Rule C3: Multi-valued class rule

Databases cannot deal with a multi-valued attribute
efficiently, while ontologies have an efficient way to deal
with them. For example, if the student relation has the
attribute hobbies as in Fig. 2, then the database designer has
a choice of two ways to represent this attribute. The first is to
put all the hobbies into one attribute, separated by commas
(see Fig. 2A). Our system rejects this as bad design, adopting
instead the second choice, which is to put the multi-valued
attribute in separate relations to avoid duplicating tuples. The
designer links each multi-valued relation with the master
relation by placing the primary key of the master relation as
part of the primary key of the multi-valued attribute.

ST_id

1

2

3

4

… Hobbies

Reading

Writing

Drawing, Photography

Skiing, Cooking, Travel

Student relation with bad design

A

Hobbies

B

Student

0..M
FK

St_id Hobbies

1 Reading

2 Writing

3 Drawing

3 Photography

4 Skiing

4 Cooking

4 Travel

PK

St_id

PK

Name Sex M_id Dept_id

St_id Hobbies...

1..1

Figure 2. Representation of Multi-Valued Attributes

Thus, in our example, the attributes (st_id, hobby) will
form the primary key of the hobbies relation. Hence, the
multi-valued attribute relation appears as a weak entity.
However, the difference between the weak entity and the
multi-valued attribute relation is simple, because the multi-
valued attribute relation has just one attribute beside the
primary key of the master relation. Conversely, the weak
relation has more than one attribute to describe the relation
as well as the primary key of the master relation.

Therefore, in order to represent an entity with a multi-
valued attribute, we merge the two relations representing the

master relation and the multi-valued relation into one class.
This is facilitated by the ability of OWL to combine a single
valued attribute with a multi-valued attribute in the same
instance. Rule C3 is as follows:

3ܥ_݈݁ݑܴ
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧− Class condition: ∃ݕ,ݔ ∶ ቌ(ܽ) ܲ(2ܴ,ݕ⋃ݔ)ܭ) ݖ∃ (ܾ) ∧ ∶ 2ܴ,ݔ)ܭܨ , ,ݖ 1ܴ) (2ܴ,ݕ)ݎݐݐܣ (ܿ) ∧ ∧ ݁ݐܽ݁ݎܿ :ቍ−Class Action(2ܴ,ݕ))ܭܨ݊݋ܰ ݏݏ݈ܽܿ ܥ) ݉݋ݎ݂ 1ܴ⋃ܴ2)

 (5)
The difference between this case and that of the

fragmentation rule is the type of relationship involved. In the
fragmentation case, the relationship is of the one-to-one type,
while in case of multi-valued attribute, the relationship will
be of the one-to-many type.

b) Rule DP3: Multi-valued datatype property rule
The multi-valued relation has two attributes, one holding the
relationship with the master relation and the other
representing the multi-value attribute. Here we integrate the
multi-value attribute to the class which corresponds to the
master relation. In our example, the relation hobby represents
the multi-valued attribute which contains the attributes
(st_id, hobby_name), where the relation hobby ramifies from
the relation student. Thus, the attribute hobby_name will
have the class student as its domain.

⎨⎪⎩ 3ܲܦ݈݁ݑܴ
⎪⎧− Datatype condition: ሥ(2(ܴ݅,ݔ)ݎݐݐܣ

݅=1 ∧ ݁ݐܽ݁ݎܿ :൯− Datatype action(ܴ݅,ݔ)൫ܭܨ݊݋ܰ ݊݅ܽ݉݋ܦ ℎݐ݅ݓ (ݔ)ܲܦ ݀݊ܽ ܥ ܴܽ݊݃݁ (ݔ)݉݋݀
(6)

4) Default rules
a) Rule C4: Default class rule

The condition and the action below demonstrate the default
rule. Where rules C1, C2 and C3 are inapplicable, then all
remaining relations not representing a binary relationship
with many-to-many cardinality will form a class. The default
rule will form classes for strong and weak entities.

4ܿ_݈݁ݑܴ
⎩⎪⎪
⎨⎪
⎪⎧− Class condition: ∃ݔ, ݕ ∶ ቌ(ܽ) ܲ(ܴ,ݕ⋃ݔ)ܭ) ∧ (ܴ,ݔ)ܭܨݏ݅ ∧ (ܴ,ݕ)ܭܨݏ݅ ∧ (ܾ) x⋂ y = ∅ ∧ ݖ∀ ∶ (ܴ,ݖ)ܭܨݏ݅) ⇒ ∋ ݖ ݔ , ݕ) ∧ (ܿ) ∀t ∶ (ܴ,ݐ)ݎݐݐܣ) ⇒ ∋ ݐ ݔ ∪ ܴ ݉݋ݎ݂ ܥ ݏݏ݈ܽܿ ݁ݐܽ݁ݎܿ :ቍ− Class action (ݕ

(7)
This rule will include more cases than strong and weak

entities, such as the two following cases.

CASE 1: BINARY RELATIONSHIPS WITH ADDITIONAL
ATTRIBUTES

Most approaches do not assume the existence of additional
attributes describing a relationship, such as the result relation

26

having many-to-many cardinality with the grade attribute
(see Table III for the schema).

TABLE III. SCHEMA FOR ATTRIBUTES ON RELATIONSHIP

Relation Primary
Key(s)

Foreign
Key(s)

Result (st_id, c_id, grade) St_id, c_id, st_id (Student)
c_id (Course)

We propose to create a new class for this kind of
relationship with two pairs of inverse object properties and to
create a datatype property for the additional attribute (see
Fig. 3). The creation of object properties is discussed in
detail in subsection D.

Course
entityResult

MM

Course
Class

Result Class

Grade Data type property

Has_course Object property

Has_student Object property

Domain: Result
Range: integer

Domain: Result
Range: Course

Domain:Result
Range: Student

Ontological Model

ER Model

Grade

Student
Class

Student
entity

Figure 3. Many-to-many relationships with additional attributes

Note: We have chosen to deal with the number of
referenced relations instead of the number of attributes in the
foreign key. This will remove any confusion with a foreign
key having composite attributes.

[4] and [6] fail to provide a general rule to decide
whether a relationship is of the type (N-M) or not, because
their rules suppose that each relation has just one attribute for
the primary key. Thus, they do not consider the many-to-
many relationship between a strong entity whose primary
key has one attribute and a weak entity with a primary key
having composite attributes.

CASE 2: N-ARY RELATIONSHIPS
OWL does not deal with n-ary relationships when n>2, so
some approaches such as [4] [5] suggest decomposing any
ternary or n-ary relationship to a binary relationship. Our
approach first creates a class to deal with ternary or higher
relationships, then decomposes these to binary relationships.
This is the only way to ensure that such a relationship exists
as a whole.

An example will explain the necessity to create a class
for an n-ary relationship. Suppose we have the ternary
relationship teach. When we decompose this to binary
relationships, we will get three relations (see Fig. 4). The
figure illustrates the repetition of data in all three tables,
which violates the characteristic of the relational model by
duplicating tuples, thus affecting the design of the ontology.

S_id

1111

1111

1111

1122

1122

C_id

101

102

101

102

101

Staff_id

101

102

101

102

101

Staff_id

101

102

101

102

101

C_id

101

102

101

102

101

S_id

1111

1111

1111

1122

1122

C_id

101

102

101

102

101

S_id

1111

1111

1111

1122

1122

Staff_id

101

102

101

102

101

S_id C_id Staff_id

S_id C_id Staff_idS_id C_id Staff_id

Figure 4. Ternary relation after decomposing

b) Rule DP4: Default datatype property rule
For all relations not participating in any of the rules DP1, DP2
or DP3, datatype properties can be created from their
attributes which do not form foreign keys. Then each class
will be allocated to its corresponding datatype properties.

ܦ_݈݁ݑܴ ૝ܲ ⎩⎨
⎧ − Datatype condition: (ܴ,ݔ)ݎݐݐܣ ∧ ൯− Datatype action(ܴ,ݔ)൫ܭܨ݊݋ܰ) ݁ݐܽ݁ݎܿ ∶ ݀݊ܽ ܥ ݊݅ܽ݉݋ܦ ℎݐ݅ݓ (ݔ)ܲܦ ܴܽ݊݃݁ (ݔ)݉݋݀ (8)

We do not use a general rule for all cases such as in 8.
Instead, we make specific datatype property rules for each
class rule for more accuracy.

c) Applying other SQL aspects to datatype property
rules
Table IV shows the rules for creating some SQL aspects.

TABLE IV. RULES FOR SOME SQL ASPECTS

Sql aspect OWL
Primary Key Functional, Cardinality is 1
Not Null minCardinality is1
Unique maxCardinality is 1
Check in owl : oneOf
5) Applying classes and datatype rules in our example

The Department and Course relations are strong entities and
do not satisfy rules C1, C2 or C3. Even a weak entity can
form a class unless it represents a relationship with a many-
to-many cardinality. For example, the dependent relation is a
weak entity, although it can form a class.

However, the Registered relation violates rule C4,
because it is a relation used to express the (N-M)
relationship.

Finally, those classes are created from Table I by class
creation rules:

Fragmentation rule (Staff + staff-details)= Staff
Hierarchy rule (Academic- Staff, Staff), (Graduate-
student, Student)

Default rule Department, Course, dependent, teach
 The corresponding code below represents the end of the
first stage.

<owl:Class rdf:ID=" Department "/>
<owl:Class rdf:ID=" Course "/>
<owl:Class rdf:ID=" dependent "/>

27

 <owl:Class rdf:ID=" Staff "/>
<owl:Class rdf:ID="Academic- Staff "/>

 <rdfs:subClassOf rdf:resource="# Staff " />
<owl:Class rdf:ID=" Student"/>
<owl:Class rdf:ID="Graduate-student"/>

 <rdfs:subClassOf rdf:resource="# Student " />

 The following example defines a datatype property in a
class.

<owl:DatatypeProperty rdf:ID="staff_name">
 <rdfs:domain rdf:resource="#Staff"/>
 <rdfs:range rdf:resource="&xsd;string"/>
 </owl:DatatypeProperty>

D. Rules for the creation of object properties
Properties in OWL are of two types: object properties and
datatype properties. This subsection presents the rules
applying to object properties. The rules for creating datatype
properties have been dealt with above.

Object properties in OWL are similar to relationships in
the database. Before going further, we have to distinguish
between the degree of the relationships and their cardinality.
For example, a relationship of degree one exists in one
entity, and is called a unary relationship; a relationship of
degree two is a binary relationship between two entities and
so on. In terms of cardinality, relationships can be of three
types: one-to-one (1-1), one-to-many (1-M), or many-to-
many (N-M). We deal with one-to-one relationships by
either the fragmentation rule or the IS-A relationship. Rule
OP1 below concerns many-to-many relationships, while rules
OP2 and OP3 apply to different cases representing one-to-
many relationships, including n-ary relationships.

 In fact, the general rule is that each relationship can be
represented by a pair of inverse object properties or by two
pairs of inverse object properties with a class.

1) Rule OP1: Object property rules for binary
relationships (many-to-many)

This rule is applied to relations built on top of a binary
relationship with many-to-many cardinality. In an informal
way, we check the primary key of a relation to see if it also
plays the role of foreign key for this relation and then
whether the foreign key attributes refer to the primary keys
of two different relations. We ensure that there is a many-to-
many relation where their attributes are a concatenation of
the primary keys of two different relations.

1݌݋_݈݁ݑܴ

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
݊݋݅ݐ݅݀݊݋ܿ ݐ݆ܾܱܿ݁⎪ ,ݔ∃ ′ݔ,ݕ , ′ݕ ∶ ቌ(ܽ) ݔ)ܭܨ,ܴ, ′ݔ , 1ܴ)) ∧ ,ܴ,ݕ)ܭܨ ′ݕ ,ܴ2) ∧ (ܴ,ݕ⋃ݔ)ܭܲ ݔ (ܾ) ∧ ݕ⋂ = ∅ ∧ ݖ∀ ∶ (ܴ,ݖ)ܭܨݏ݅) ⇒ ∋ ݖ ݔ , ݕ) ݐ∀ (ܿ) ∧ ∶ (ܴ,ݐ)ݎݐݐܣ) ⇒ ∋ ݐ ݔ ݊݋݅ݐܿܣቍ (ݕ⋃ (10)1− ݐ݆ܾܿ݁݋ ݊ܽ ݁ݐܽ݁ݎܥ ܱ ݊݅ܽ݉݋݀ ℎݐ݅ݓ 1ܲ) ݋ݐ ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ 1ܥ ݏݏ݈ܽܿ ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ 2ܥ ݏݏ݈ܽܿ ݃݊ܽݎ ݀݊ܽ(1ܴ (ܴ2) 2− ݐ݆ܾܿ݁݋ ݊ܽ ݁ݐܽ݁ݎܥ ܱ ݊݅ܽ݉݋݀ ℎݐ݅ݓ 2ܲ ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ 2ܥ ݏݏ݈ܽܿ 1ܥ ݏݏ݈ܽܿ ݃݊ܽݎ ݀݊ܽ(2ܴ) ݋ݐ ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ (ܴ1) 3− ܱ 1ܲ ܽ݊݀ ܱ ݏ݁݅ݐݎ݁݌݋ݎ݌ ݁ݏݎ݁ݒ݊݅ ݁ݎܽ 2ܲ .

2) Object property rules for one-to-many relationships

There are two cases in this type of relationship.

a) Rule OP2: Object property rules for a relation with
unary relationship
For a relation R having a foreign key referencing the primary
key of R itself (Fig. 5), we create two inverse object
properties, as shown in the condition and action below. This
is because this case has the one-to-many cardinality,
regardless of the degree of the relationship.

staff MANAGES

Subordinate N

Superior 1

Figure 5. Relationships in the same relation

2݌݋_݈݁ݑܴ

⎩⎪⎪⎪
⎪⎨
⎪⎪⎪⎪
⎧ Object condition ,ݔ∃ ∶ ݕ ∶ ൭ (ܴ,ݔ)ܭܲ (ܽ) ,ܴ,ݕ)ܭܨ(ܾ)∧ (ܴ,ݔ ∧ xሩ y = ∅ ൱Action ∶ (11)1 − ݁ݐܽ݁ݎܥ ݐ݆ܾܿ݁݋ ݊ܽ ܱ 1ܲ ݊݅ܽ݉݋݀ ℎݐ݅ݓ ݏݏ݈ܽܿ ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ ܥ ݏݏ݈ܽܿ ݃݊ܽݎ ݀݊ܽ(ܴ) ݋ݐ ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ ܥ −12 ݕݐ݈݅ܽ݊݅݀ݎܽܿ ݀݊ܽ (ܴ) ݐ݆ܾܿ݁݋ ݊ܽ ݁ݐܽ݁ݎܥ ܱ 3 (ܴ) ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ ܥ ݏݏ݈ܽܿ ݃݊ܽݎ ݀݊ܽ (ܴ) ݋ݐ ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ ܥ ݏݏ݈ܽܿ ݊݅ܽ݉݋݀ ℎݐ݅ݓ 2ܲ − ܱ 1ܲ ܽ݊݀ ܱ ݏ݁݅ݐݎ݁݌݋ݎ݌ ݁ݏݎ݁ݒ݊݅ ݁ݎܽ 2ܲ

The corresponding OWL descriptions are as follows.

<owl:ObjectProperty rdf:ID="has_subordinate">
 <rdfs:domain rdf:resource="#Staff"/>
 <owl:inverseOf rdf:resource="#has_superior"/>
 <rdfs:range rdf:resource="# Staff "/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="has_superior">
 <rdfs:domain rdf:resource="# Staff "/>

 <owl:inverseOf
rdf:resource="#has_subordinate"/>

 <rdfs:range rdf:resource="# Staff "/>
 </owl:ObjectProperty>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#has_ superior "/>
 <owl:cardinality rdf:datatype="&xsd;int">1
</owl:cardinality>
 </owl:Restriction>

b) Rule OP3: Object default rule
For relations R1 and R2, if there is an attribute A part of R1
referencing R2, and regardless of whether A is part or not
part of the primary key of R1, then an object property (OP1)
and the inverse of the object property (OP2) can be created
between the classes C1 and C2 corresponding to R1 and R2
respectively. The OP1 domain is C1 and the range is C2, and
vice versa for OP2.

28

3݌݋_݈݁ݑܴ
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧Object condition: ∃ݔ, ݕ ∶ ,1ܴ,ݔ)ܭܨ Action: 1(12) (2ܴ,ݕ − ݁ݐܽ݁ݎܥ ݐ݆ܾܿ݁݋ ݊ܽ ܱ ݊݅ܽ݉݋݀ ℎݐ݅ݓ 1ܲ ݏݏ݈ܽܿ ݃݊݅݀݊݋݌ݏ݁ݎݎ݋1ܿܥ ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ 2ܥ ݏݏ݈ܽܿ ݃݊ܽݎ ݀݊ܽ(1ܴ) ݋ݐ (ܴ2) 2 − ݁ݐܽ݁ݎܥ ݐ݆ܾܿ݁݋ ݊ܽ ܱ ݊݅ܽ݉݋݀ ℎݐ݅ݓ 2ܲ ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ 1ܥ ݏݏ݈ܽܿ ݃݊ܽݎ ݀݊ܽ(2ܴ) ݋ݐ ݃݊݅݀݊݋݌ݏ݁ݎݎ݋2ܿܥ ݏݏ݈ܽܿ (ܴ1) 3− ܱ 1ܲ ܽ݊݀ ܱ ݏ݁݅ݐݎ݁݌݋ݎ݌ ݁ݏݎ݁ݒ݊݅ ݁ݎܽ 2ܲ

Some approaches such as [4] differentiate between a
relationship existing between two relations R1 and R2, when
an attribute A, a subset of the primary key of R1, refers to the
primary key of R2, or if A is not part of the R1 primary key.
For the former case they create two object properties, OP1
and OP2. For the second case they create just one object
property, OP, with domain C1 and range C2. We choose to
represent each relationship by a pair of inverse object
properties because this allows more semantic detail to be
held.

This is the description in OWL of the objects Staff work
in Department and Department has worker Staff:

<owl:ObjectProperty rdf:ID=" work_in">
 <rdfs:domain rdf:resource="# Staff "/>
 <owl:inverseOf rdf:resource="# has _worker "/>
 <rdfs:range rdf:resource="# department "/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID=" has _worker">
 <rdfs:domain rdf:resource="# department "/>
 <owl:inverseOf rdf:resource="# work_in"/>
 <rdfs:range rdf:resource="# Staff "/>
</owl:ObjectProperty>

This rule will also include the cases of:
Binary relationships of cardinality (many-to-many) with
additional attributes.
Ternary and higher relationships.
In the case of the binary relationship (many-to-many)

with additional attributes, we have already created a class to
represent the binary relationship relation rule (C4). Then the
relationship will be changed to two one-to-many
relationships between the three classes, as shown in Fig. 6.
Thus, in this case, the relationship shows two pairs of inverse
object properties with a class.

Course
Class

Student
Class

M11M Result
Class

Figure 6. Binary Relationship with additional attribute

This rule will also treat a ternary or higher relationship in
the same manner. For example, when we have a ternary
relationship, we first create a class for it, using rule C4, then
we decompose the ternary relationship to a binary one,
before creating two inverse object properties between each of
the corresponding classes. The number of object properties
in the n-ary relationship will be:

 N*(N-1).

E. Rules for instances
This step is optional in our system because we prefer that the
data stay in the database, which is more powerful for storing
large-scale data sets than the ontology. The system also
considers moving queries from the global ontology website
to the database tuples. However, if we need to create a
knowledge base for the ontology produced by our system,
we can use a two-step algorithm to migrate database tuples to
ontological instances:

1- Each tuple is given a unique label name and migrated
with all its data attributes except for the foreign keys.

2- A natural join link between the label tables and the
foreign keys to instantiate each object property with
its corresponding individual.

V. IMPLEMENTATION

 ER diagram and ontology have a similar structure.
However, starting with E/R is difficult for many reasons for
instances, the ER diagram is not available, the attributes do
not have domain and there is no instances. So we generate
our OWL ontology from SQL-DDL. We have designed and
built a prototype system for our approach. This applies all
the rules for creating classes, object properties and datatype
properties. We have added an option for migrating data in
tuples to the ontology instances. Our prototype is also
flexible; For example, if a user prefers to use the SQL
structure without any analysis of database tuples, our system
gives him the choice of omitting the optional fragmentation
rule. Therefore, there is the option of following a user-
defined order of class creation rules (see Fig. 7). For
example, if the user specifies the order of 2-3-4 for the
creation of a class, this means applying the hierarchy rule for
both first rule cases (fragmentation relations and multi-
valued attribute relations).

Figure 7. Screenshot of SQL2OWL Prototype

One of the characteristics of our system is that it shows
the user the status of each table after applying the rules. For
example, as each relation is converted to a class its type also
changes to a class. Conversely, for a relation which has not

29

been converted to a class, the type stays as a relation in the
Registered relation. The system also shows the user that
classes have been integrated together by the combination of
their names. Furthermore, we add to each object property the
class names which relate to it.

VI. VALIDATION

Because the validation process is still not automated in our
system, we suggest involving domain experts in validation to
help refine the ontology produced. The process uses a
comparison between the E/R model of the database and the
OWL ontology with these characteristics:

The number of entities with relationships of the n-ary
type where (n>2) in the E/R must be equal to the number
of classes in the ontological model.
A binary relationship with additional attributes must be
counted as an entity.
The IS-A relationship between two entities must be
demonstrated between the classes derived from those
entities by subClassOf.
For each one-to-many relationship between two entities,
two inverse object properties must exist.
In each many-to-many relationship, two inverse object
properties exist without a class.
If any n-ary relationships exist where n>2, then there are
two inverse object properties for each foreign key. The
same applies to any binary relationship with an additional
attribute.
In the example given in Table I, counting the entities in

the E/R model and those in the ontological model will show
them to be equal (see Table V). The reason is that both
models draw on the conceptual model shown in Fig. 8.

TABLE V. E/R AND ONTOLOGY ELEMENTS

E R model no Ontology model no
Entity + ternary
relationships

6+1 Classes 7

Binary relationships
(foreign key)

2 Two inverse object
properties

2

Ternary relationships
(foreign keys)

3 Two inverse object
properties for each foreign
key in the n-ary
relationship

3

(1-M) strong-weak entity 1 Two inverse object
properties

1

(1-M) foreign keys 4 Two inverse object
properties

4

IS-A relationships 2 subClassOf 2

The remaining semantic features which should be
transferred manually from the E/R to the ontology are as
follows:

If an entity contains a composite attribute, the user must
build a class for it, then add an object property to link the
sub-attribute to the main class. For example, the attribute
Name has sub-attributes (first name, middle name, family
name) in the Staff class. We create a class for the name,
then create the datatype properties for the first name,
middle name and family name. Next, we create a

functional object property relating the Name class to the
Staff class, such as has_name, and inverse functional
object properties, to ensure that the relation is of the one-
to-one type. All attributes in the Name class will also
have a cardinality of one. Thus we ensure that each
appears once [12].
We then add the cardinality participation for each object
property, because the cardinality restrictions cannot be
obtained from SQL [13].
We add the quantifier restrictions “allValuesFrom” or

“someValuesFrom”, depending on the semantics, because
these could not be inferred from the SQL statements.

Work related to our approach can be found in the
community of the semantic web known as semantic
annotation. However, the database community considers it to
be reverse engineering of a database [6].

Course
Student

Graduate
student

Staff

Registered

offer

work

Teach

M M

1

1

M

M

1

Department
1

M

M

1Academic
staff

1

1

Manages

Subordinate

Superior

M

1

Dependent

1

M

Has

belong

1

M

Figure 8. E/R Diagram for university (the attributes and keys are omitted
for simplicity)

VII. RELATED WORK
Many approaches rely on a variety of sources, such as E/R
diagrams, extended E/R, relational schemata, SQL-DDL,
database tuples, analysis of user queries and analysis of
HTML, to construct the rule for the transformation of a
relational database into an ontology. Most of these
approaches use a combination of sources.

The idea of transformation was first applied to that from
a relational model to an object-oriented model, then from a
relational to (RDF) model which is an ontological model.

Stojanovic and others [6] established the rules for
transforming databases to Frame Logics. However, their
rules are manual and do not produce OWL ontologies. Also

30

they do not cover in their rules the issues of composite
attribute or multi valued attribute. In [13], Bucella and others
present global rules which cannot be implemented.
In [7], Astrova and others ignore the hierarchy rule or the
fragmentation rule in their table mapping. Furthermore, they
concentrate mostly on mapping constraints.

In [4] [12] [14] [15] the rules for transformation to OWL
are specified. However, some rules in these approaches are
not global, as they fail to cover certain types of entity or
relationship, such as unary or binary relationships with
additional attributes, or ternary and higher relationships.

Many approaches [4] [5] [13] [14] [16] have misleading
rules in case of fragmentations and IS-A relationships (class
hierarchies). There are many mistakes in their rules, such
that they cannot be applied to all cases which may be
presented in different databases.

The method in [11] [12] extracts a conceptual model
(E/R diagram) from the source, then builds the
transformation rule. The drawback of such approaches is that
they build the ontology in the absence of necessary metadata
from relations. In [5], the approach is based on the idea that
the semantics extracted by analyzing HTML forms will be
used to restructure and enrich the relational schema. The
limitation of this work is that it involves a great deal of
human participation. Also, ontologies can break down after
any modification to the structure of the HTMLs on which
they are based. Our approach, by contrast, deals successfully
with complicated problems, such as distinguishing between
fragmentations and IS-A relationships. We also deal with
unary and binary relationships with additional attributes,
ternary relationships, higher relationships and multi-valued
attributes in our approach, whereas most previous
approaches have failed to do so.

We utilize three techniques in our approach: the E/R
model, the relational model and the analysis of database
tuples.

VIII. CONCLUSION AND FUTURE WORK

Many approaches are currently used to investigate the
transformation of a relational model into an ontological one;
these use either a relational schema or an E/R diagram. We
have succeeded in combining the benefits of the relational
model and the conceptual (E/R) model, by applying rules to
the SQL statements and the inference of some metadata from
the database tuples. We have then validated the resulting
ontology with a conceptual E/R model of the database. It
should also be mentioned that we have covered situations
such as the relation with itself, and additional attributes of
binary relationships ignored in other approaches. The
dynamic aspects of SQL, such as triggers, assertions and
referential actions, will be treated in future work.

REFERENCES

[1] T. Gruber, A Translation Approach to Portable Ontology
Specifications, Knowledge Acquisition, June 1993, pp.199-
220.

[2] B. Swartout, R. Patil, K. Knight and T. Russ, “Toward
Distributed Use of Large-Scale Ontologies”, Ontological
Engineering AAAI-97 Spring Symposium Series, 1997, pp.
138-148.

[3] N. Noy and D. McGuinness, “Ontology Development 101: A
guide to creating your first ontology”, Report, Stanford
University, Stanford, CA, 94305.

[4] M. Li, X. Du and S. Wang, “Learning ontology from
Relational Database”, in Proceedings of the Fourth
International Conference on Machine Learning and
Cybernetics, Guangzhou, August 2005,18-21.

[5] S. Benslimane, D. Benslimane and M. Malki, “Acquiring
OWL Ontologies from Data-Intensive Web Sites”,
USA.ACM, Palo Alto, California, July 11-14, 2006.

[6] L. Stojanovic , N. Stojanovic and R. Volz, “Migrating data-
intensive Web Sites into the Semantic Web”. In Proceedings
of the 17th ACM symposium on applied computing ACM
press, 2002, pp. 1100-1107.

[7] I. Astrova, N. Korda and A. Kalja, “Rule-Based
Transformation of SQL Relational Databases to OWL
Ontologies”. In Proceedings of the 2nd International
Conference on Metadata & Semantics Research, October
2007.

[8] I. Astrova, N. Korda and A. Kalja, Storing OWL Ontologies
in SQL Relational Databases, International Journal of
Electrical, Computer and System Engineering , 2007.

[9] W. Hu and Y. Qu, Discovering Simple Mappings Between
Relational Database Schemas and Ontologies, Springer-
Verlag Berlin Heidelberg, 2007, pp. 225–238.

[10] OWL, Web Ontology Language (OWL),
http://www.w3.org/2004/OWL,20/07/2009

[11] K. Sonia and S. Khan, “R2O Transformation System:
Relation to Ontology Transformation for Scalable Data
Integration”, in Proceedings of IDEAS08, Coimbra, Portugal,
September 2008.

[12] S. Upadhyaya and P.Kumar, “ERONTO: A Tool for
Extracting Ontologies from Extended E/R Diagrams”,
SAC’05 ACM Symposium on Applied Computing, Santa Fe,
New Mexico, USA, March 2005.

[13] A. Bucella, M.R. Penabad, F.J. Rodriguez, A. Farina, A.
Cechich “From relational databases to OWL ontologies”,
Digital Libraries: Advanced Methods and Technologies.
Digital Collection, Puschchino, Russia S.

[14] J. Barrasa, O. Corcho and A. G. Perez, “Fund Finder: A Case
study of database to ontology Mapping”. In International
Semantic Web Conference, Number 2870 in Lecture Notes in
Computer Science, pages 17-22, Sanibel Island, Florida,
USA, October 2003. Springer-Verlag.

[15] Z. Xu, S. Zhang, Y. Dong, “Mapping between Relational
Database Schema and OWL Ontology for Deep Annotation”.
In IEEE/WIC/ACM International Conference on Web
Intelligence, WI 2006.

[16] S.H. Tirmizi, J. Sequeda and D. Miranker, “Translating SQL
Applications to the Semantic Web” In S.S. Bhowmick, J.
Küng, and R. Wagner (Eds.) DEXA 2008, LNCS 5181, pp.
450 – 464, Springer-Verlag, Berlin, 2008.

31

