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Abstract– Today, databases provide the best technique for 
storing and retrieving data, but they suffer from the absence of 
a semantic perspective, which is needed to reach global goals 
such as the semantic web and data integration. Using 
ontologies will solve this problem by enriching databases 
semantically. Since building an ontology from scratch is a very 
complicated task, we propose an automatic transformation 
system to build Web Ontology Language OWL ontologies from 
a relational model written in Structured Query Language
SQL. Our system also uses metadata, which helps to extract 
some semantic aspects which could not be inferred from the 
SQL. Our system analyzes database tuples to capture these 
metadata. Finally, the outcome ontology of the system is 
validated manually by comparing it with a conceptual model of 
the database (E/R diagram) in order to obtain the optimal 
ontology.

Keywords - reverse engineering, ontology, conceptual models, 
ontology learning, information extraction,  Deep Web, 
Semantic Deep Web annotation. 

Introduction  

Today, the semantic web is gaining a significant amount of 
attention from researchers, because it has the ability to solve 
complicated problems such as data integration. The core of 
the semantic web is ontologies.  An ontology is an explicit 
specification of a conceptualization [1]. Also it can be 
defined as a formally explicit set of terms formed in 
hierarchically structured way for describing concepts in a 
domain of discourse which can be used as a skeletal 
foundation for a knowledge base [2].  Ontologies play an 
important role in realizing the idea of database 
interoperability because of significant characteristics [3] such 
as: 

Adding rich, machine- readable semantics to data. 
Sharing the semantic perspective of the information 
structure with people or software agents. 
Separating domain knowledge from operational 
knowledge.  
Making explicit assumptions for a domain. 

 Although the use of an ontology is not proposed as a 
substitute for database technology, a database is still more
powerful than an ontology for storing large-scale data sets. 

However, an ontology can be used with a database to provide 
a conceptual vision of heterogeneous data sources distributed 
in a number of databases with an interface built on an 
ontological model.

Thus, we need a system that utilizes both database and 
ontology techniques. However, while databases are widely 
available, the corresponding ontologies are not. Furthermore,
constructing an ontology from scratch is tedious, time-
consuming, error-prone and labour-intensive, while building 
one by hand presents the same difficulties [4] [5]. 

The proposed solution therefore starts by transforming a 
given database to an ontology with some rules as guidelines, 
which can be used for manual transformation or as the basis 
for an automatic transformation process [6]. Before going 
further, we have to clarify the difference between the terms 
‘transformation’ and ‘mapping’. The transformation of a 
database to an ontology means creating an ontology from the 
rules, either manually or by using a system, whereas in 
mapping, the database and the ontology both exist [7] [8].  

This paper is organized as follows: we explain the 
motivation for our work in Section II, then offer an overview 
of relational databases and OWL ontologies in Section III 
and an outline of our approach in Section IV. Section V 
describes the overall rules for constructing an ontology 
(classes, object properties, datatype properties and instances) 
with a walkthrough example. The implementation is 
explained in Section VI. The validation and evaluation of 
instances in Section VII show that the transformation is 
correct. We present related work in Section VIII, then a
summary of our contribution, a conclusion and suggestions 
for future work in Section IX. 

I. MOTIVATION

Most approaches fail in their rules to differentiate entities 
having an ‘IS-A’ relationship from fragmented entities, such 
as [4] [5], or not mention it, such as [7]. Some use specific 
examples as rules, which can be misleading in respect of the 
results and can affect both the generalization of the rules and 
the accuracy of the system.  Furthermore, some approaches 
avoid some circumstances, by making unrealistic 
assumptions such as no ternary relationships, no IS-A
relationships or no fragmentation of tables. Others fail to 
cover some issues such as multi-valued attributes and 
composite attributes from the relational database side or 
cardinality restrictions, has-value restrictions and enumerated 
properties on the ontology side. 
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In our approach, we test different situations with our 
rules to cover different circumstances and we combine the 
benefits of the relational model, the conceptual (E/R) model 
and the analysis of database tuples. 

II. RELATIONAL DATABASES AND OWL ONTOLOGIES:
AN OVERVIEW

In the last 30 years, the relational model, which is the core of 
any relational database, has become more widely accepted 
than older approaches such as the hierarchical and network 
models. This applies even to the new models, such as object-
relational or object-oriented databases, because relational 
databases are widely accepted by users, designers and 
vendors. More than three-quarters of the data on the current 
Web are stored in relational databases [9]. Both functional
and domain expertise are also widely available for relational 
databases, but not for new models such as object-relational 
or object-oriented databases. 
 There are many advantages in using databases. For 
example, data need storing only once, multiple locations can 
be used, they are easy to back up, can have multiple layers of 
security and are scalable; and standards are enforceable.
These advantages of databases are opposed by some general 
limitations, such as meaningless table or attribute names, 
poor semantics, bad design and poor performance.   

However, the most serious limitation lies in database 
design, which goes through two phases: building the 
conceptual model in the entity relationship model (E/R
diagram), then converting it to the relational model 
constructs typically found in Structured Query Language-
Data Definition Language (SQL-DDL). The problem is the 
heavy semantic losses during the process of converting an 
E/R model to SQL [5]. 
 Hence, the solution to database limitations and the 
shortcomings of the relational model is to move to an 
ontological model, using one of the ontology languages. 
Web Ontology Language (OWL) is the latest standard of 
W3C; it facilitates greater machine interpretability of web 
content than that supported by XML, RDF or RDF Schema, 
by providing additional vocabulary along with formal 
semantics. OWL has three sublanguages: 

OWL Lite is designed for a simple class hierarchy and 
simple constraints. 
OWL DL is based on description logics and is more 
expressive than OWL-Lite. Moreover, the reasoning 
software is able to support complete reasoning for every 
feature of OWL-DL. This paper focuses on OWL-DL. 
OWL Full is designed for high expressiveness. However, 
it does not have a computational guarantee [10].

III. DATABASE INTEGRATION APPROACH
We assume complete cooperation from database owners 
who choose to participate in integrating their databases with 
others. The architecture of our approach is depicted in Fig.1. 

Our system is divided into four phases: (i) generating the 
OWL ontology from SQL statements; (ii) validating and 
refining the ontology produced, by a comparison with the 
E/R diagram; (iii) mapping the ontology produced (local 

ontology) to a global ontology and (iv) integrating the global 
ontology by linking it with the database.  

Mapping

Phase 3

Validating and
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ontology

Phase 2

Generating
OWL
ontology

Phase 1

Ontology Ontology

Global
OntologyER

diagram

Relational
Database
SQL

Phase 4

Global
Ontology

Relational
Database

Local
Ontology

Figure 1.  Database Integration Framework

Therefore our system needs to be provided with two 
inputs. The first input for the first phase is in SQL-DDL and 
SQL-DML. We can obtain this information from the 
database dump, which is a way of finding the structure of the 
table and the data in the tuples. Thereafter, our system 
applies the rules explained in Section V of this paper to 
generate a complete OWL ontology without instances, by 
parsing the SQL/DDL sentences. At this point the first phase 
is complete.

The second input is the E/R diagram of the database for 
the second phase, whose purpose is to refine and validate the 
OWL ontology produced in the first phase. In this second 
phase the database owner must supply our system with the 
E/R model. If this is not available, the database administrator 
is responsible for analyzing the system and producing the 
E/R model, although there are some programs, such as 
Power Design, which help database administrators to
produce E/R models. Alternatively, they can use the 
techniques in [11] [12]. After the E/R diagram has been 
supplied or produced, the rules in Section V are applied. 
Next, the system will produce a refined and complete OWL 
ontology for the database. The goal of this second phase is to 
reach an optimal result without the need for a domain expert. 

Finally, in the third phase, an expert will choose an 
appropriate global ontology designed for the domain.  

In this paper, we concentrate on the first two phases,
leaving the third and fourth phases to future work. 

IV. RULES FOR TRANSFORMATION OF SQL-DDL TO 
OWL ONTOLOGY

This section gives formal rules for transforming relational 
databases to OWL ontologies. In subsection A we define our 
predicates, then we introduce an example in subsection B.
An ontology is built in four stages. The first stage, building 
classes with their datatype properties, is explained in 
subsection C, while subsections D and E respectively explain 
how object properties are created and instances migrated .

We adopt the assumptions of most of the work done in 
the transformation rules for our methodology:  

(i)  Relations are in third normal form (3NF), available in 
SQL-DDL [14].
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(ii) New tuples added to the database are consistent with 
the derived metadata [11].  

A.  Notations 
We denote by Dom(x) the set of all possible values of a 
single or composite attribute x. We adopt the following 
predicate symbols: 

PK(x, R): x is the (single or composite) primary key of 
the relation R and is represented as a set of attributes. 

OCC(v, x, R): there is a tuple in R for which the value of 
x is v ∈ Dom(x). 

FK(x, R, y, S): x is a (single or composite) foreign key in 
relation R and references a primary key y in relation S. 

IsFK(x, R) =ෝ ∃ y, S: FK(x, R, y, S). 
IsFK (x, R) means that x is a (single or composite) 
foreign key in the relation R. 

NonFK(x, R): x is an attribute in relation R that does not 
participate in any foreign key. 

Attr(x, R): x is an attribute in relation R. 

B. Running Example 
The example in Table I shows a university database of SQL 
statements. This database covers different cases for entities 
and relationships, such as relation built from strong entity, 
relation built from weak entity, relation for a multi-valued 
attribute, IS-A relationship, binary relationship and ternary 
relationship. 

TABLE I. THE UNIVERSITY SQL-DDL Department table:
Create table department(dept_id int, dept_name varchar(70) not 
null,dept_phone varchar(20),
primary key(dept_id));
staff table:
Create table staff(staff_id int, staff_name varchar(70) not null,dept_id int, 
manger_id int,
primary key(staff_id),
foreign key (dept_id) references dept(dept_id)
foreign key (manger_id references staff(staff_id));
Staff-details table:
Create table staff-details(staff_id int,staff_firstname varchar(10), 
staff_midname varchar(5), staff_familyname varchar(20), DOB 
date,address varchar(50),email varchar(50),memo varchar(120),homepage 
varchar(20),
primary key(staff_id),
foreign key (staff_id) references staff(staff_id));
Academic-staff table:
Creat table academic-staff(staff_id int, 
specialty varchar check in (‘Demonstrator’, ‘Instructor’,‘Assistant 
professor’, ‘Associate professor’, ‘Professor’)
research_area varchar (40),
primary key(staff_id),
foreign key (staff_id) references staff(staff_id) );
student table:
Create table student(st_id int, st_name varchar(70) not null,sex char(1),
dept_id int,
primary key(st_id),
foreign key (dept_id) references dept(dept_id) );
Graduate-student table:
Create table graduate-student(st_id int, research_area varchar(70),
primary key(st_id),
foreign key (st_id) references student(st_id));

Dependent table:
Create table dependent(staff_id int, d_id int, depdent_name varchar (20) 
not null,sex char(1),DOB date, relationship varchar(40),
primary key(Staff_id, d_id),
foreign key (Staff _id) references staff (staff _id));
course table:
Create table course(c_id int, course_name varchar(70) not null, dept_id int,
primary key(c_id),
foreign key ( dept_id) references dept(dept_id));
registered table:
Create table registered(st_id int, c_id int,
primary key(st_id,c_id),
foreign key (st_id) references student(st_id),
foreign key (c_id) references course(c_id));
Teach table:
Create table teach (st_id int, c_id int, staff_id int,
primary key(st_id,c_id,staff_id),
foreign key (st_id) references student(st_id),
foreign key (c_id) references course(c_id),
foreign key (staff_id) 
references academic-staff (staff_id));

C. Class and Datatype property Creation Rules 
Our transformation rules have the form: IF condition THEN 
action. In the following rules, relation symbols are assumed 
to be universally quantified. 

1) Fragmentation rules 

a) Rule C1: Fragmentation class rule 
If the information of one entity is spread across more than 
one relation, which is known as fragmentation (vertical 
partitioning of a table), then it should be integrated into one 
class, as follows:  

 
1ܥ_݈݁ݑܴ

⎩

− Class condition                                                                                                                       
,1ݔ∃ …,2ݔ , ݊ݔ ∶ ൮(ܽ)⋀ 1=݅݊)ܭܲ ݅ݔ , ܴ݅))  ∧ ,1ݔ)ܭܨݏ݅   1ܴ )  ∧                                    (ܾ)⋀ 2=݅݊)ܭܨ ݅ݔ , ܴ݅ , ,1ݔ 1ܴ ) ∋ ݒ ∀(ܿ)                                                           ∧  :(1ݔ)݉݋ܦ ,ݒ)ܥܥܱ) (1ܴ,1ݔ ⇒ ⋀ ,ݒ)ܥܥܱ  ݅ݔ ,݊݅=2 ܴ݅ ))൲−  − Class action                                                                                                                       ܿ݁ݐܽ݁ݎ ݏݏ݈ܽܿ  ݊݋݅ݐ݈ܽ݁ݎ ℎ݁ݐ  ݉݋ݎ݂ ܥ   ൬ራ ܴ݅݊݅=1 ൰

  (1)
To apply this rule, all participating relations must satisfy 

all the conditions to be merged into one class. 
1. There are two or more relations sharing the same 

primary key. 
2. There is a master relation where 

a. its primary key is not a foreign key. 
b. the primary keys of all the remaining relations 

also act as foreign keys referring to the master 
relation. 

3. All the primary key values present in the master 
relation must exist in all remaining relations. 

 If all three of these conditions are satisfied then we can 
merge these tables into one class in the ontology. 

This relationship is of the one-to-one type, with a
cardinality ratio (participation constraint) of (1, 1) on each 
side. 

24



b) Rule DP1: Fragmentation datatype property rule 
All attributes present in each relation participating in the 
fragmentation rule and not forming a foreign key will be 
allocated to the integrated class created from Rule C1, as 
depicted in equation 2. For example, the table staff has the 
attributes (staff_id, staff_ family_name) which do not form 
foreign keys. Similarly, the table staff-details has the 
attributes (staff_first_name, staff_mid_name, DOB, address,
email, memo, homepage) which also do not form foreign 
keys, except that any repeated attribute will appear once in 
the integrated class. A datatype property is then created for 
each attribute in these two relations and allocated to the class 
staff which corresponds to the tables staff and staff_details.
These datatype properties will consider the class staff as their 
domain and the corresponding datatype in Table II as their 
range; we refer to them by dom(x) in our rules. For example, 
staff_first_name will have the range of xsd: string.

1ܲܦ݈݁ݑܴ ⎩⎨
− Datatype condition:                                                            ሥ((ܴ݅,ݔ)ݎݐݐܣ݊

݅=1   ∧ ൯− Datatype action(ܴ݅,ݔ)൫ܭܨ݊݋ܰ ݁ݐܽ݁ݎܿ                                                                   ∶ ݊݅ܽ݉݋ܦ ℎݐ݅ݓ (ݔ)ܲܦ  ܥ    ܽ݊݀  ܴܽ݊݃݁ (ݔ)݉݋݀ 
(2)

TABLE II. DATATYPE BETWEEN DATABASE AND XML 

Type DB XML/ OWL
number integer/int Xsd: integer

float Xsd: float
Char char /varchar/vchar Xsd:string
date/Time time Xsd:time

date Xsd:date
datetime Xsd: datetime

Boolean boolean Xsd:boolean

2) Hierarchy rules 

a) Rule C2: Hierarchy class rule 
One of the most important stages in building the ontology 
is constructing the hierarchy. The term ‘hierarchy’ refers to 
the specification of the relationships between classes and 
subclasses. The class-subclass relationship appears as an IS-
A relationship between entities in the E/R model. To extract 
the inheritance relationship, we require the analysis of tuples 
in each relation.  

 For example, some approaches [4] [5] fail to distinguish 
between the fragmentation of one entity into more than one 
relation and the IS-A relationship, which represents two 
different entities with the idea of superentity and subentity 
(generalization /specialization). Other approaches let the user 
decide [6]. The condition and the action below illustrate the 
rules for inheritance. 

2ܥ_݈݁ݑܴ

⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ − Class condition:                                                                                         

,ݔ∃ ݕ ∶ ቌ(ܽ)ܲ(1ܴ,ݔ)ܭ)  ∧ (2ܴ,ݕ)ܭܲ ,2ܴ,ݕ)ܭܨ(ܾ)                                            ∧   ,ݔ 1ܴ) ∋ ݒ ∃(ܿ)                                                             ∧ :(ݔ)݉݋ܦ ,ݒ)ܥܥܱ)) ,ݔ 1ܴ) ∧ ,ݒ)ܥܥܱ  ݁ݐܽ݁ݎܿ (2   1ܴ ݉݋ݎ݂ 1ܥ ݏݏ݈ܽܿ  ݁ݐܽ݁ݎܿ (ቍ− Class Action:                                                                                                    ቌ1((2ܴ,ݕ ݏݏ݈ܽܿ  ݁݇ܽ݉ (3  2ܴ ݉݋ݎ݂ 2ܥ ݏݏ݈ܽܿ     1ቍܥ (݂ܱܾݑݏ) 2ܥ 
    (3)

 To apply this rule, all participating relations must satisfy 
all the conditions to create two classes (superclass, subclass). 

1. There are two relations sharing the same primary 
key. 

2. There is a master relation where 
a. its primary key is not a foreign key, in which 

case it becomes a master relation. Otherwise 
there will be multiple inheritances. 

b. the primary key of the other relation also acts 
as a foreign key (referring to the master 
relation or to the sub-master).

3. Not all the primary key values present in the master 
relation must exist in the other relation. 

When this rule applies, we can build a superclass from 
the master table and the other table will be a subclass in the 
ontology. 

We consider this relationship to have one-to-one 
cardinality. The participation ratio must be (1, 1) in the 
master relation and (0, 1) in the other relation. 

b) Rule DP2: Hierarchy datatype property rule 
Rule 4 demonstrates the datatype property rule for relations 
participating in hierarchy rules. From the class hierarchy rule 
(C2) we create two classes, one for the master relation and 
the other for the subrelation. Here we have to ensure that all 
the attributes present in each relation will be moved to the 
corresponding class. For example, the tables student and 
graduate_student form a superclass and subclass 
respectively. Therefore, all the attributes in the table student
do not form a foreign key which will be allocated to the class
student. In our example (Table I) the attributes (st_id
st_name, sex) will have the class student as their domain, 
while the class graduate_student will be the domain for the 
attribute research_area. Furthermore, all the attributes 
present in the class student will be inherited automatically by 
the class graduate_student.

2ܲܦ݈݁ݑܴ
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧− Datatype condition:                                                                    ቆݔ)ݎݐݐܣ, 1ܴ) ∧ ܭܨ݊݋ܰ ,ݔ)  1ܴ) (2ܴ,ݕ)ݎݐݐܣ∧ ∧ ܭܨ݊݋ܰ (2ܴ,ݕ)  ቇ− Datatype action ∶                                                                          

ቆܿ݁ݐܽ݁ݎ ݊݅ܽ݉݋ܦ ℎݐ݅ݓ (ݔ)ܲܦ  ݀݊ܽ  1ܥ   ܴܽ݊݃݁ ݁ݐܽ݁ݎܿ(ݔ)݉݋݀  ݊݅ܽ݉݋ܦ ℎݐ݅ݓ (ݕ)ܲܦ  ݀݊ܽ 2ܥ   ܴܽ݊݃݁ ቇ(ݕ)݉݋݀ 
(4)

25



Some approaches mix ontology design and database 
design. For example, if there are two classes represented in a 
hierarchy, the subclass will inherit all the datatype properties 
present in the superclass, so there is no need to define the 
datatype property domain from the union of the superclass 
and the subclass. The example below shows this inaccuracy. 

<owl:DatatypeProperty rdf:ID="staff_id"> 
      <rdfs:domain> 
         <owl:Class> 
            <owl:unionOf rdf:parseType="Collection"> 
             <owl:Class rdf:about="#Staff"/> 
                    <owl:Class rdf:about="#Acadimac_staff"/> 
               </owl:unionOf> 
           </owl:Class> 
        </rdfs:domain> 
       <rdfs:range rdf:resource="&xsd;int"/> 
    </owl:DatatypeProperty> 

3)  Multi-valued rules 
a) Rule C3: Multi-valued class rule 

Databases cannot deal with a multi-valued attribute 
efficiently, while ontologies have an efficient way to deal 
with them. For example, if the student relation has the 
attribute hobbies as in Fig. 2, then the database designer has 
a choice of two ways to represent this attribute. The first is to 
put all the hobbies into one attribute, separated by commas 
(see Fig. 2A). Our system rejects this as bad design, adopting 
instead the second choice, which is to put the multi-valued 
attribute in separate relations to avoid duplicating tuples. The 
designer links each multi-valued relation with the master 
relation by placing the primary key of the master relation as 
part of the primary key of the multi-valued attribute. 

ST_id

1

2

3

4

… Hobbies

Reading

Writing

Drawing, Photography

Skiing, Cooking, Travel

Student relation with bad design

A

Hobbies

B

Student

0..M
FK

St_id Hobbies

1 Reading

2 Writing

3 Drawing

3 Photography

4 Skiing

4 Cooking

4 Travel

PK

St_id

PK

Name Sex M_id Dept_id

St_id Hobbies...

1..1

  
Figure 2. Representation of Multi-Valued Attributes  

Thus, in our example, the attributes (st_id, hobby) will 
form the primary key of the hobbies relation. Hence, the 
multi-valued attribute relation appears as a weak entity. 
However, the difference between the weak entity and the 
multi-valued attribute relation is simple, because the multi-
valued attribute relation has just one attribute beside the 
primary key of the master relation. Conversely, the weak 
relation has more than one attribute to describe the relation 
as well as the primary key of the master relation.  

Therefore, in order to represent an entity with a multi-
valued attribute, we merge the two relations representing the 

master relation and the multi-valued relation into one class.
This is facilitated by the ability of OWL to combine a single 
valued attribute with a multi-valued attribute in the same 
instance. Rule C3 is as follows: 

3ܥ_݈݁ݑܴ
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧− Class condition:                                                    ∃ݕ,ݔ ∶ ቌ(ܽ)  ܲ(2ܴ,ݕ⋃ݔ)ܭ) ݖ∃  (ܾ)                         ∧  ∶ 2ܴ,ݔ)ܭܨ , ,ݖ 1ܴ) (2ܴ,ݕ)ݎݐݐܣ  (ܿ)               ∧  ∧ ݁ݐܽ݁ݎܿ                                                           :ቍ−Class Action(2ܴ,ݕ))ܭܨ݊݋ܰ ݏݏ݈ܽܿ  ܥ  ) ݉݋ݎ݂  1ܴ⋃ܴ2)

  (5)
The difference between this case and that of the 

fragmentation rule is the type of relationship involved. In the 
fragmentation case, the relationship is of the one-to-one type, 
while in case of multi-valued attribute, the relationship will 
be of the one-to-many type.  

b) Rule DP3: Multi-valued datatype property rule 
The multi-valued relation has two attributes, one holding the 
relationship with the master relation and the other 
representing the multi-value attribute. Here we integrate the 
multi-value attribute to the class which corresponds to the 
master relation. In our example, the relation hobby represents 
the multi-valued attribute which contains the attributes 
(st_id, hobby_name), where the relation hobby ramifies from 
the relation student. Thus, the attribute hobby_name will 
have the class student as its domain. 

⎨⎪⎩ 3ܲܦ݈݁ݑܴ
⎪⎧− Datatype condition:                                                                     ሥ(2(ܴ݅,ݔ)ݎݐݐܣ

݅=1   ∧ ݁ݐܽ݁ݎܿ                                                                          :൯− Datatype action(ܴ݅,ݔ)൫ܭܨ݊݋ܰ ݊݅ܽ݉݋ܦ ℎݐ݅ݓ (ݔ)ܲܦ  ݀݊ܽ  ܥ   ܴܽ݊݃݁ (ݔ)݉݋݀ 
(6)

4) Default rules 
a) Rule C4: Default  class rule 

The condition and the action below demonstrate the default 
rule. Where rules C1, C2 and C3 are inapplicable, then all 
remaining relations not representing a binary relationship 
with many-to-many cardinality will form a class. The default 
rule will form classes for strong and weak entities. 

4ܿ_݈݁ݑܴ
⎩⎪⎪
⎨⎪
⎪⎧− Class condition:                                                                                                    ∃ݔ, ݕ ∶ ቌ(ܽ)  ܲ(ܴ,ݕ⋃ݔ)ܭ)  ∧ (ܴ,ݔ)ܭܨݏ݅   ∧ (ܴ,ݕ)ܭܨݏ݅   ∧        (ܾ)   x⋂ y =  ∅ ∧ ݖ∀ ∶ (ܴ,ݖ)ܭܨݏ݅ ) ⇒ ∋ ݖ ݔ , ݕ  ) ∧ (ܿ)   ∀t ∶ (ܴ,ݐ)ݎݐݐܣ) ⇒ ∋ ݐ ݔ  ∪ ܴ ݉݋ݎ݂ ܥ ݏݏ݈ܽܿ ݁ݐܽ݁ݎܿ                                                                                                         :ቍ− Class action                                  (ݕ

(7)
This rule will include more cases than strong and weak 

entities, such as the two following cases. 

CASE 1: BINARY RELATIONSHIPS WITH ADDITIONAL 
ATTRIBUTES

Most approaches do not assume the existence of additional 
attributes describing a relationship, such as the result relation 
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having many-to-many cardinality with the grade attribute 
(see Table III for the schema). 

TABLE III. SCHEMA FOR ATTRIBUTES ON RELATIONSHIP

Relation Primary
Key(s)

Foreign
Key(s)

Result (st_id, c_id, grade ) St_id, c_id, st_id (Student)
c_id  (Course)

We propose to create a new class for this kind of 
relationship with two pairs of inverse object properties and to 
create a datatype property for the additional attribute (see 
Fig. 3). The creation of object properties is discussed in 
detail in subsection D. 

Course
entityResult

MM

Course
Class

Result Class

Grade Data type property

Has_course Object property

Has_student Object property

Domain: Result
Range: integer

Domain: Result
Range: Course

Domain:Result
Range: Student

Ontological Model

ER Model

Grade
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Figure 3. Many-to-many relationships with additional attributes 

Note: We have chosen to deal with the number of 
referenced relations instead of the number of attributes in the 
foreign key. This will remove any confusion with a foreign 
key having composite attributes.  

[4] and [6] fail to provide a general rule to decide 
whether a relationship is of the type (N-M) or not, because 
their rules suppose that each relation has just one attribute for 
the primary key. Thus, they do not consider the many-to-
many relationship between a strong entity whose primary 
key has one attribute and a weak entity with a primary key 
having composite attributes.

CASE 2: N-ARY RELATIONSHIPS
OWL does not deal with n-ary relationships when n>2, so 
some approaches such as [4] [5] suggest decomposing any 
ternary or n-ary relationship to a binary relationship. Our 
approach first creates a class to deal with ternary or higher 
relationships, then decomposes these to binary relationships.
This is the only way to ensure that such a relationship exists 
as a whole. 

An example will explain the necessity to create a class 
for an n-ary relationship. Suppose we have the ternary 
relationship teach. When we decompose this to binary 
relationships, we will get three relations (see Fig. 4). The 
figure illustrates the repetition of data in all three tables, 
which violates the characteristic of the relational model by 
duplicating tuples, thus affecting the design of the ontology. 
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Figure 4. Ternary relation after decomposing 

b) Rule DP4: Default datatype property rule 
For all relations not participating in any of the rules DP1, DP2
or DP3, datatype properties can be created from their 
attributes which do not form foreign keys. Then each class 
will be allocated to its corresponding datatype properties. 

ܦ_݈݁ݑܴ ૝ܲ ⎩⎨
⎧ − Datatype condition:                                                            (ܴ,ݔ)ݎݐݐܣ  ∧ ൯− Datatype action(ܴ,ݔ)൫ܭܨ݊݋ܰ) ݁ݐܽ݁ݎܿ                                                                   ∶ ݀݊ܽ  ܥ ݊݅ܽ݉݋ܦ ℎݐ݅ݓ (ݔ)ܲܦ   ܴܽ݊݃݁ (ݔ)݉݋݀  (8)

We do not use a general rule for all cases such as in 8. 
Instead, we make specific datatype property rules for each 
class rule for more accuracy. 

c) Applying other SQL aspects  to datatype property 
rules 
Table IV shows the rules for creating some SQL aspects. 

TABLE IV. RULES FOR SOME SQL ASPECTS

Sql aspect OWL
Primary Key Functional, Cardinality is 1
Not Null minCardinality  is1
Unique maxCardinality is 1
Check in owl : oneOf
5) Applying classes and datatype rules in our example 

The Department and Course relations are strong entities and 
do not satisfy rules C1, C2 or C3.  Even a weak entity can 
form a class unless it represents a relationship with a many-
to-many cardinality. For example, the dependent relation is a 
weak entity, although it can form a class. 

However, the Registered relation violates rule C4,
because it is a relation used to express the (N-M) 
relationship. 

Finally, those classes are created from Table I by class 
creation rules: 

Fragmentation rule  (Staff + staff-details)= Staff
Hierarchy rule  (Academic- Staff, Staff), (Graduate-
student, Student) 

Default rule Department, Course, dependent, teach
 The corresponding code below represents the end of the 
first stage. 

<owl:Class rdf:ID=" Department "/>  
<owl:Class rdf:ID=" Course "/>  
<owl:Class rdf:ID=" dependent "/> 
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 <owl:Class rdf:ID=" Staff "/> 
<owl:Class rdf:ID="Academic- Staff "/> 

 <rdfs:subClassOf rdf:resource="# Staff " /> 
<owl:Class rdf:ID=" Student"/>  
<owl:Class rdf:ID="Graduate-student"/> 

  <rdfs:subClassOf rdf:resource="# Student " />  

 The following example defines a datatype property in a 
class.  

<owl:DatatypeProperty rdf:ID="staff_name"> 
        <rdfs:domain rdf:resource="#Staff"/> 
        <rdfs:range rdf:resource="&xsd;string"/> 
    </owl:DatatypeProperty> 

D. Rules for the creation of object properties  
Properties in OWL are of two types: object properties and 
datatype properties. This subsection presents the rules 
applying to object properties. The rules for creating datatype 
properties have been dealt with above. 

Object properties in OWL are similar to relationships in 
the database. Before going further, we have to distinguish 
between the degree of the relationships and their cardinality. 
For example, a relationship of degree one exists in one 
entity, and is called a unary relationship; a relationship of 
degree two is a binary relationship between two entities and 
so on. In terms of cardinality, relationships can be of three 
types: one-to-one (1-1), one-to-many (1-M), or many-to-
many (N-M). We deal with one-to-one relationships by 
either the fragmentation rule or the IS-A relationship. Rule 
OP1 below concerns many-to-many relationships, while rules 
OP2 and OP3 apply to different cases representing one-to-
many relationships, including n-ary relationships. 

 In fact, the general rule is that each relationship can be 
represented by a pair of inverse object properties or by two 
pairs of inverse object properties with a class.  

1) Rule OP1: Object property rules for binary 
relationships (many-to-many) 

This rule is applied to relations built on top of a binary 
relationship with many-to-many cardinality. In an informal 
way, we check the primary key of a relation to see if it also 
plays the role of foreign key for this relation and then 
whether the foreign key attributes refer to the primary keys 
of two different relations. We ensure that there is a many-to-
many relation where their attributes are a concatenation of 
the primary keys of two different relations.   

1݌݋_݈݁ݑܴ

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
݊݋݅ݐ݅݀݊݋ܿ ݐ݆ܾܱܿ݁⎪ ,ݔ∃                                                                                                                ′ݔ,ݕ , ′ݕ ∶ ቌ(ܽ)  ݔ)ܭܨ,ܴ, ′ݔ , 1ܴ))  ∧ ,ܴ,ݕ)ܭܨ  ′ݕ ,ܴ2)  ∧ (ܴ,ݕ⋃ݔ)ܭܲ ݔ   (ܾ) ∧  ݕ⋂ =  ∅ ∧ ݖ∀ ∶ (ܴ,ݖ)ܭܨݏ݅ ) ⇒ ∋ ݖ ݔ , ݕ ) ݐ∀   (ܿ)            ∧ ∶ (ܴ,ݐ)ݎݐݐܣ) ⇒ ∋ ݐ ݔ  ݊݋݅ݐܿܣቍ                                             (ݕ⋃                                                                                                                       (10)1− ݐ݆ܾܿ݁݋ ݊ܽ ݁ݐܽ݁ݎܥ  ܱ ݊݅ܽ݉݋݀ ℎݐ݅ݓ 1ܲ ) ݋ݐ ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ 1ܥ ݏݏ݈ܽܿ  ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ 2ܥ ݏݏ݈ܽܿ ݃݊ܽݎ ݀݊ܽ(1ܴ  (ܴ2)                                                     2− ݐ݆ܾܿ݁݋ ݊ܽ ݁ݐܽ݁ݎܥ  ܱ ݊݅ܽ݉݋݀ ℎݐ݅ݓ 2ܲ ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ  2ܥ ݏݏ݈ܽܿ  1ܥ ݏݏ݈ܽܿ ݃݊ܽݎ ݀݊ܽ(2ܴ) ݋ݐ  ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ    (ܴ1)                                                     3− ܱ 1ܲ ܽ݊݀ ܱ ݏ݁݅ݐݎ݁݌݋ݎ݌ ݁ݏݎ݁ݒ݊݅ ݁ݎܽ  2ܲ .                                                         

 

2) Object property rules for one-to-many relationships 

There are two cases in this type of relationship. 

a) Rule OP2: Object property rules for a relation with 
unary relationship 
For a relation R having a foreign key referencing the primary 
key of R itself (Fig. 5), we create two inverse object 
properties, as shown in the condition and action below. This
is because this case has the one-to-many cardinality, 
regardless of the degree of the relationship.  

staff MANAGES

Subordinate N

Superior 1

  

Figure 5. Relationships in the same relation 

2݌݋_݈݁ݑܴ

⎩⎪⎪⎪
⎪⎨
⎪⎪⎪⎪
⎧ Object condition ,ݔ∃                                                                                                             ∶ ݕ ∶ ൭ (ܴ,ݔ)ܭܲ (ܽ) ,ܴ,ݕ)ܭܨ(ܾ)∧ (ܴ,ݔ ∧   xሩ y =  ∅ ൱Action ∶                                                                                                                          (11)1 − ݁ݐܽ݁ݎܥ ݐ݆ܾܿ݁݋ ݊ܽ   ܱ 1ܲ ݊݅ܽ݉݋݀ ℎݐ݅ݓ  ݏݏ݈ܽܿ  ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ ܥ  ݏݏ݈ܽܿ ݃݊ܽݎ ݀݊ܽ(ܴ) ݋ݐ  ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ ܥ  −12 ݕݐ݈݅ܽ݊݅݀ݎܽܿ ݀݊ܽ (ܴ)  ݐ݆ܾܿ݁݋ ݊ܽ ݁ݐܽ݁ݎܥ  ܱ 3                                                             (ܴ) ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ ܥ ݏݏ݈ܽܿ ݃݊ܽݎ ݀݊ܽ            (ܴ) ݋ݐ ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ ܥ ݏݏ݈ܽܿ ݊݅ܽ݉݋݀ ℎݐ݅ݓ 2ܲ − ܱ 1ܲ ܽ݊݀ ܱ ݏ݁݅ݐݎ݁݌݋ݎ݌ ݁ݏݎ݁ݒ݊݅ ݁ݎܽ 2ܲ                                                           

The corresponding OWL descriptions are as follows.  

<owl:ObjectProperty rdf:ID="has_subordinate"> 
         <rdfs:domain rdf:resource="#Staff"/> 
         <owl:inverseOf rdf:resource="#has_superior"/> 
         <rdfs:range rdf:resource="# Staff "/> 
    </owl:ObjectProperty> 
    <owl:ObjectProperty rdf:ID="has_superior"> 
         <rdfs:domain rdf:resource="# Staff "/> 

         <owl:inverseOf 
rdf:resource="#has_subordinate"/> 

         <rdfs:range rdf:resource="# Staff "/> 
    </owl:ObjectProperty> 
    <owl:Restriction> 
   <owl:onProperty rdf:resource="#has_ superior "/> 
   <owl:cardinality rdf:datatype="&xsd;int">1 
</owl:cardinality> 
    </owl:Restriction> 

b) Rule OP3: Object default rule 
For relations R1 and R2, if there is an attribute A part of R1
referencing R2, and regardless of whether A is part or not 
part of the primary key of R1, then an object property (OP1)
and the inverse of the object property (OP2) can be created 
between the classes C1 and C2 corresponding to R1 and R2
respectively. The OP1 domain is C1 and the range is C2, and 
vice versa for OP2. 
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Some approaches such as [4] differentiate between a 
relationship existing between two relations R1 and R2, when 
an attribute A, a subset of the primary key of R1, refers to the 
primary key of R2, or if A is not part of the R1 primary key. 
For the former case they create two object properties, OP1
and OP2. For the second case they create just one object 
property, OP, with domain C1 and range C2. We choose to 
represent each relationship by a pair of inverse object 
properties because this allows more semantic detail to be 
held. 

This is the description in OWL of the objects Staff work 
in Department and Department has worker Staff: 

<owl:ObjectProperty rdf:ID=" work_in">  
    <rdfs:domain rdf:resource="# Staff "/>  
         <owl:inverseOf rdf:resource="# has _worker "/> 
 <rdfs:range rdf:resource="# department "/>  

</owl:ObjectProperty>  
<owl:ObjectProperty rdf:ID=" has _worker"> 
         <rdfs:domain rdf:resource="# department "/> 
         <owl:inverseOf rdf:resource="# work_in"/> 
         <rdfs:range rdf:resource="# Staff "/>  
</owl:ObjectProperty>  

This rule will also include the cases of: 
Binary relationships of cardinality (many-to-many) with 
additional attributes.   
Ternary and higher relationships. 
In the case of the binary relationship (many-to-many) 

with additional attributes, we have already created a class to 
represent the binary relationship relation rule (C4). Then the 
relationship will be changed to two one-to-many 
relationships between the three classes, as shown in Fig. 6. 
Thus, in this case, the relationship shows two pairs of inverse 
object properties with a class.  

Course
Class

Student
Class

M11M Result
Class

Figure 6.  Binary Relationship with additional attribute 

This rule will also treat a ternary or higher relationship in 
the same manner. For example, when we have a ternary 
relationship, we first create a class for it, using rule C4, then 
we decompose the ternary relationship to a binary one,
before creating two inverse object properties between each of 
the corresponding classes. The number of object properties 
in the n-ary relationship will be: 

 N*(N-1). 

E. Rules for instances 
This step is optional in our system because we prefer that the 
data stay in the database, which is more powerful for storing 
large-scale data sets than the ontology. The system also 
considers moving queries from the global ontology website 
to the database tuples. However, if we need to create a 
knowledge base for the ontology produced by our system, 
we can use a two-step algorithm to migrate database tuples to 
ontological instances: 

1-  Each tuple is given a unique label name and migrated 
with all its data attributes except for the foreign keys. 

2-  A natural join link between the label tables and the 
foreign keys to instantiate each object property with 
its corresponding individual.  

V. IMPLEMENTATION

 ER diagram and ontology have a similar structure.
However, starting with E/R is difficult for many reasons for 
instances, the ER diagram is not available, the attributes do 
not have domain and there is no instances. So we generate 
our OWL ontology from SQL-DDL. We have designed and 
built a prototype system for our approach. This applies all 
the rules for creating classes, object properties and datatype 
properties. We have added an option for migrating data in 
tuples to the ontology instances. Our prototype is also 
flexible; For example, if a user prefers to use the SQL 
structure without any analysis of database tuples, our system 
gives him the choice of omitting the optional fragmentation 
rule. Therefore, there is the option of following a user-
defined order of class creation rules (see Fig. 7). For 
example, if the user specifies the order of 2-3-4 for the 
creation of a class, this means applying the hierarchy rule for 
both first rule cases (fragmentation relations and multi-
valued attribute relations). 

Figure 7. Screenshot of SQL2OWL Prototype  

One of the characteristics of our system is that it shows 
the user the status of each table after applying the rules. For 
example, as each relation is converted to a class its type also 
changes to a class. Conversely, for a relation which has not 
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been converted to a class, the type stays as a relation in the 
Registered relation. The system also shows the user that 
classes have been integrated together by the combination of 
their names. Furthermore, we add to each object property the 
class names which relate to it.

VI. VALIDATION 

Because the validation process is still not automated in our 
system, we suggest involving domain experts in validation to 
help refine the ontology produced. The process uses a 
comparison between the E/R model of the database and the 
OWL ontology with these characteristics: 

The number of entities with relationships of the n-ary 
type where (n>2) in the E/R must be equal to the number 
of classes in the ontological model. 
A binary relationship with additional attributes must be 
counted as an entity.
The IS-A relationship between two entities must be 
demonstrated between the classes derived from those 
entities by subClassOf. 
For each one-to-many relationship between two entities, 
two inverse object properties must exist.  
In each many-to-many relationship, two inverse object 
properties exist without a class.  
If any n-ary relationships exist where n>2, then there are 
two inverse object properties for each foreign key. The 
same applies to any binary relationship with an additional 
attribute. 
In the example given in Table I, counting the entities in 

the E/R model and those in the ontological model will show 
them to be equal (see Table V). The reason is that both 
models draw on the conceptual model shown in Fig. 8. 

TABLE V. E/R AND ONTOLOGY ELEMENTS

E R model no Ontology model no
Entity + ternary 
relationships

6+1 Classes 7

Binary relationships
(foreign key)

2 Two inverse object 
properties

2

Ternary relationships
(foreign keys)

3 Two inverse object 
properties for each foreign 
key in the n-ary 
relationship

3

(1-M) strong-weak entity 1 Two inverse object 
properties

1

(1-M) foreign keys 4 Two inverse object 
properties

4

IS-A relationships 2 subClassOf 2

The remaining semantic features which should be 
transferred manually from the E/R to the ontology are as 
follows: 

If an entity contains a composite attribute, the user must 
build a class for it, then add an object property to link the 
sub-attribute to the main class. For example, the attribute 
Name has sub-attributes (first name, middle name, family 
name) in the Staff class. We create a class for the name,
then create the datatype properties for the first name, 
middle name and family name. Next, we create a 

functional object property relating the Name class to the 
Staff class, such as has_name, and inverse functional 
object properties, to ensure that the relation is of the one-
to-one type. All attributes in the Name class will also 
have a cardinality of one. Thus we ensure that each 
appears once [12].
We then add the cardinality participation for each object 
property, because the cardinality restrictions cannot be 
obtained from SQL [13].
We add the quantifier restrictions “allValuesFrom” or 

“someValuesFrom”, depending on the semantics, because 
these could not be inferred from the SQL statements. 

Work related to our approach can be found in the 
community of the semantic web known as semantic 
annotation. However, the database community considers it to 
be reverse engineering of a database [6].  
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Figure 8. E/R Diagram for university (the attributes and keys are omitted 
for simplicity) 

VII. RELATED WORK
Many approaches rely on a variety of sources, such as E/R
diagrams, extended E/R, relational schemata, SQL-DDL, 
database tuples, analysis of user queries and analysis of 
HTML, to construct the rule for the transformation of a
relational database into an ontology. Most of these 
approaches use a combination of sources.

The idea of transformation was first applied to that from 
a relational model to an object-oriented model, then from a 
relational to (RDF) model which is an ontological model.  

Stojanovic and others [6] established the rules for 
transforming databases to Frame Logics. However, their 
rules are manual and do not produce OWL ontologies. Also 
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they do not cover in their rules the issues of composite 
attribute or multi valued attribute. In [13], Bucella and others 
present global rules which cannot be implemented.  
In [7], Astrova and others ignore the hierarchy rule or the 
fragmentation rule in their table mapping. Furthermore, they 
concentrate mostly on mapping constraints. 

In [4] [12] [14] [15] the rules for transformation to OWL 
are specified. However, some rules in these approaches are 
not global, as they fail to cover certain types of entity or 
relationship, such as unary or binary relationships with 
additional attributes, or ternary and higher relationships. 

Many approaches [4] [5] [13] [14] [16] have misleading 
rules in case of fragmentations and IS-A relationships (class 
hierarchies). There are many mistakes in their rules, such 
that they cannot be applied to all cases which may be 
presented in different databases.  

The method in [11] [12] extracts a conceptual model 
(E/R diagram) from the source, then builds the 
transformation rule. The drawback of such approaches is that 
they build the ontology in the absence of necessary metadata 
from relations. In [5], the approach is based on the idea that 
the semantics extracted by analyzing HTML forms will be 
used to restructure and enrich the relational schema. The 
limitation of this work is that it involves a great deal of 
human participation. Also, ontologies can break down after 
any modification to the structure of the HTMLs on which 
they are based. Our approach, by contrast, deals successfully
with complicated problems, such as distinguishing between 
fragmentations and IS-A relationships. We also deal with 
unary and binary relationships with additional attributes, 
ternary relationships, higher relationships and multi-valued 
attributes in our approach, whereas most previous 
approaches have failed to do so. 

We utilize three techniques in our approach: the E/R
model, the relational model and the analysis of database 
tuples. 

VIII. CONCLUSION AND FUTURE WORK

Many approaches are currently used to investigate the 
transformation of a relational model into an ontological one;
these use either a relational schema or an E/R diagram. We 
have succeeded in combining the benefits of the relational 
model and the conceptual (E/R) model, by applying rules to
the SQL statements and the inference of some metadata from 
the database tuples. We have then validated the resulting 
ontology with a conceptual E/R model of the database. It 
should also be mentioned that we have covered situations 
such as the relation with itself, and additional attributes of 
binary relationships ignored in other approaches. The 
dynamic aspects of SQL, such as triggers, assertions and 
referential actions, will be treated in future work. 
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