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Abstract

The research communities, technologies, and tools for image formation are diverse.
On the one hand, computer vision and graphics researchers analyze incoherent light
using coarse geometric approximations from optics. On the other hand, array signal
processing and acoustics researchers analyze coherent sound waves using stochas-
tic estimation theory and diffraction formulas from physics. The ability to inex-
pensively fabricate analog circuitry and digital logic for millimeter-wave radar and
ultrasound creates opportunities in comparing diverse perspectives on image forma-
tion, and presents challenges in implementing imaging systems that scale in size. We
present algorithms, architectures, and abstractions for image formation that relate
the different communities, technologies, and tools. We address practical technical
challenges in operating millimeter-wave radar and ultrasound systems in the presence
of phase noise and scattering.

We model a broad class of physical phenomena with isotropic point sources. We
show that the optimal source location estimator for coherent waves reduces to pro-
cessing an image produced by a conventional camera, provided the sources are well-
separated relative to the system resolution, and in the limit of small wavelength and
globally incoherent light. We introduce quasi light fields to generalize the incoherent
image formation process to coherent waves, offering resolution tradeoffs that surpass
the traditional Fourier uncertainty principle by leveraging time-frequency distribu-
tions. We show that the number of sensors in a coherent imaging array defines a stable
operating point relative to the phase noise. We introduce a digital phase tightening
algorithm to reduce phase noise. We present a system identification framework for
multiple-input multiple-output (MIMO) ultrasound imaging that generalizes existing
approaches with time-varying filters. Our theoretical results enable the application
of traditional techniques in incoherent imaging to coherent imaging, and vice versa.
Our practical results suggest a methodology for designing millimeter-wave imaging
systems. Our conclusions reinforce architectural principles governing transmitter and
receiver design, the role of analog and digital circuity, and the tradeoff between data
rate and data precision.

Thesis Supervisor: Gregory W. Wornell
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Two imaging communities meet

Mankind has manipulated electromagnetic radiation to form images for millennia,
yet the definition of an image today is broad and context-dependent. Images were
originally physically-based visual representations that reflect how the human visual
system perceives the world. The camera obscura, a dark room with a small hole in a
wall to admit outside light, was the first man-made image formation device [1]. By
looking at the illuminated wall opposite the hole, one could view an inverted image
of the outside scene. Much later, Leonardo da Vinci drew an analogy between the
operation of the camera obscura and the eye, which we now know functions in a
similar way by using a lens to focus the scene onto the retina. Physical images, such
as those produced by a conventional camera or the eye, attempt to accurately reflect
how we physically see the world.

Despite the physical roots of image formation, today an image can refer to any
type of two-dimensional representation, such as an abstract painting or the visualiza-
tion of quantitative data. Sometimes different image types are overlaid, for example
when a color flow map depicting blood velocity is superimposed on a physical ultra-
sound image of the human body [2]. These images are designed to satisfy application
requirements, such as those for diagnosing specific medical conditions. An ultrasound
machine can process pressure field measurements to estimate specific parameters of
interest, such as blood velocity, rather than to create what the human eye would see
if it could perceive pressure waves as it does visible light. Unlike physical images,
such task-oriented images incorporate estimated parameters in a manner that aids
the completion of a specific task.

We distinguish between two broad communities that research image formation.
The coherent community studies coherent waves, such as the electromagnetic waves
in radar and the pressure waves in ultrasound, that can be directly produced, manip-
ulated, and measured by today’s technology using electronic circuits. The incoherent
community studies incoherent waves, such as the light from the sun, that cannot
yet be directly produced, manipulated, or measured. The distinction between these
communities disappears as technology evolves; we can produce coherent light with
lasers [3], build nanostructures to manipulate light with precision [4], and infer wave
phase from holograms [5]. Nevertheless, the different roots of the coherent and inco-
herent communities have led to different terminology, tools, and insights, even as the
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communities now overlap to some degree.
Two technological innovations are responsible for the overlap in the applications

that the coherent and incoherent communities study (Figure 1-1). First, we can
now fabricate integrated circuits that operate at high frequencies corresponding to
coherent electromagnetic radiation of millimeter wavelength [6, 7, 8]. Previously,
radar was primarily used to estimate the parameters of a scene, such as the position
of an aircraft [9]. Now, due to the small wavelength, millimeter-wave radar is capable
of forming pictures at a high enough resolution to visualize a scene, representing what
the human eye would perceive if it could process millimeter-wave radiation as it does
light in the visible spectrum. Applications range from automotive collision avoidance
[10] to concealed weapons detection [11]. Second, we now understand how to infer
directional information from incoherent light without having to directly measure the
phase of the underlying electric and magnetic fields [12, 13]. Previously, a camera
was primarily used to produce a physical image of a scene. Now, a plenoptic camera
is capable of estimating depth information and other scene parameters using an array
of lenses, and taking pictures that can be digitally refocused [14]. Evidently, the
coherent and incoherent communities are addressing similar challenges in parameter
estimation and visualization, but have approached the application space in different
ways.

traditional

camera

traditional

radar

plenoptic

camera

millimeter-wave

radar

parameter

estimation
visualization

coherent

technology

incoherent

technology

Figure 1-1: The evolution of coherent and incoherent wave processing technologies has
spanned the same application space but in opposing directions, so that there is limited
overlap between the corresponding tools and research communities. Coherent technology
has evolved from traditional radar for estimating parameters such as aircraft position to
millimeter-wave radar for producing pictures. Incoherent technology has evolved from the
traditional camera for imaging a scene to the plenoptic camera for estimating parameters
such as object depth.



1 Two imaging communities meet 15

Our goal is to unify the coherent and incoherent perspectives of image formation,
so we can apply the insights and techniques developed in one community to the other.
Specifically, our primary theoretical objective is to demonstrate how and under what
conditions the problem of optimally estimating point source locations, using coherent
waves, is mathematically and physically identical to finding the brightest spots on a
conventional photograph, using incoherent light. First, we show how classical coherent
parameter estimation problems can be visualized in Chapter 2. Second, we show how
to process incoherent light to estimate parameters of objects in a scene in Chapter 3.
Third, we introduce a construct called quasi light fields to bridge the visualization of
coherent and incoherent waves in Chapter 4. We achieve our objective by assembling
these pieces.

Once we have established the precise connection between coherent and incoherent
imaging, we address the implementation challenges and practical design considera-
tions that arise in the latest coherent imaging systems, focusing on millimeter-wave
radar and ultrasound. Managing phase noise in millimeter-wave radar circuitry is
challenging and essential for accurate imaging. We explore to what extent large
radar arrays are robust to phase noise in Chapter 5, and propose a digital phase
tightening algorithm to reduce unacceptably high levels of phase noise in Chapter
6. Fast ultrasound systems that produce images at a high frame rate are desirable
for many medical applications, but are challenging to implement due to the slow
speed of sound. We outline new opportunities for fast ultrasound based on ideas
from multiple-input multiple-output (MIMO) radar [15] and system identification in
Chapter 7.

Both radar and ultrasound millimeter-wave imaging systems are uniquely posi-
tioned to benefit from a deeper understanding of the relationship between coherent
and incoherent image formation, because they bridge their roots in coherent process-
ing with an application space that has traditionally been the domain of incoherent
processing. We can therefore translate well-studied problems and solutions from in-
coherent imaging applications to a coherent imaging context, where we typically have
more options and tradeoffs available due to the coherent structure.





Chapter 2

Processing coherent waves

to form images

From an engineer’s perspective, images are used as aids to complete a task. To
make the role of image formation concrete, we explore how images naturally arise
as tools to solve optimization problems using coherent wave measurements as raw
data. Specifically, we introduce source localization as a simple model that illustrates
how low-level image processing can solve higher-level parameter estimation problems,
provided that the imaging system is of sufficiently high quality. In source localization,
M sensors at known positions measure waveforms emitted by P sources at unknown
positions, and we wish to estimate the source locations given the sensor measurements.
The number of sensors indicates the quality of the imaging system, and the number
of sources indicates the complexity of the parameter estimation task to complete. We
can model a broad class of physical phenomena with such point sources. Provided that
the imaging system is of sufficiently high quality relative to the desired resolution, the
optimal source localization algorithm is well-approximated by first forming an image
from the sensor measurements with the conventional beamformer, and then choosing
the P brightest pixels as estimates of the source locations.

We model signal propagation in a way that encompasses both the electromagnetic
waves used in radar [9] as well as the pressure waves used in sonar [16] and ultra-
sound [17]. Depending on their type, the waves are produced and measured by either
antennas or transducers. The sensors measure the amplitude and phase of the waves
at different points in space, and electronic circuits process the measured waveforms.
Early coherent wave processing applications were limited to locating airplanes and
sea vessels. However, circuit technology has been continuously advancing to process
higher frequency waveforms, so that today we can manufacture millimeter-wave ul-
trasound systems [17] and complete millimeter-wave radar systems using inexpensive
silicon fabrication technology [7, 8]. The importance of millimeter wavelength is that
it is small enough to achieve a useful resolution for many imaging applications. The
images produced as aids to solve the source localization problem in conventional radar
are themselves of primary interest in millimeter-wave imaging.

We first relate source localization to scene visualization by formulating the source
localization problem and employing various beamforming algorithms as potential so-
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18 2.1 Visualizing source locations with arrays

lutions (Section 2.1). If there are enough sensors relative to the desired resolution
between sources, then processing the image produced by the conventional beamformer
is approximately optimal. Many alternative coherent wave processing techniques ad-
dress a different scenario, where one or more sources are close together. Some al-
ternative techniques, such as Capon’s method, process different types of images that
achieve better resolution than the conventional beamformer. However, unlike these
alternative techniques, the conventional beamformer forms an image in a manner that
is physically identical to the operation of a conventional camera and the human eye.
Because of its important physical connection to incoherent image formation, we focus
on the conventional beamformer to define performance metrics and address design
tradeoffs in the presence of phase noise and timing inaccuracies (Section 2.2).

We will show how to compute physically-based images with quasi light fields in
Chapter 4, where the choice of quasi light field corresponds to employing a partic-
ular estimate of the correlation structure of the radiation when implementing the
conventional beamformer. A similar choice must be made to implement Capon’s
method, where the resulting tradeoffs have been extensively studied. Therefore, our
primary motivation for introducing alternative techniques such as Capon’s method
is not to catalogue the already well-established strategies for resolving closely-spaced
sources, but rather to emphasize the potential of realizing new tradeoffs in producing
physically-based images using quasi light fields.

2.1 Visualizing source locations with arrays

We relate image formation to parameter estimation through the source localization
problem. We first formulate source localization using an array of sensors. We then
derive the deterministic maximum likelihood location estimator (Section 2.1.1). We
show that when the sources are far apart, the maximum likelihood estimate is equiv-
alent to forming an image using the conventional beamformer and finding the bright-
est pixels (Section 2.1.2). It is our thesis that the image formed by the conventional
beamformer has a physical basis related to conventional photography. The maximum
likelihood location estimator corresponds to a quasi light field that produces one type
of physically-based image, and other choices of quasi light field lead to other types
of physically-based images. The choice of quasi light field corresponds to a choice of
how to estimate the correlation structure of the radiation. Alternative beamformers,
such as Capon’s method, attempt to overcome the conventional beamformer’s limited
resolution, but do not produce images that have the same physical interpretation. We
describe how the same choice of correlation structure estimate impacts the robust-
ness of Capon’s method, motivating the importance of quasi light field choice (Section
2.1.3).

We formulate the source localization problem by considering P isotropic point
sources and M isotropic point sensors. Point sources and sensors are simple to an-
alyze, yet serve as building blocks for more complicated scenarios. For example, we
can formulate the higher-level edge detection problem by determining the boundary
of a large number of point sources. More generally, the number of sources P indicates
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the complexity of the parameter estimation task, and the number of sensors M indi-
cates the amount of data available, which affects the quality of the estimates. We can
model complicated scenarios that exhibit anisotropic behavior and directional radia-
tion sources in both the near and far zone by assembling an appropriate collection of
isotropic point sources. We limit our discussion here to perfectly coherent radiation,
although we will show how to generalize our results to any state of partial coherence
in Chapter 4.

The sources emit waveforms x1(t), . . . , xP (t) in free space, and the sensors measure
the responses y1(t), . . . , yM(t) (Figure 2-1). We may think of the sources as airplanes
and the sensors as a set of isotropic antennas organized in an array. For simplicity, we
assume that the sensors are equally spaced every distance d along a linear array, at
positions rM

1 , . . . , r
M
M . We assume that the sources emit their waveforms isotropically

from positions rP
1 , . . . , r

P
P , but it will be convenient to also consider the far-zone case

where the jth source lies far away with respect to the array size, along angle θP
j with

respect to the array. In the far-zone case, the spherical wavefronts of the source
waveforms are approximately planar at the array.

r
M
i

yi(t)

r
P
j

xj(t)

M sensors

P sources

d

r
M
1 r

M
M

r
P
1

r
P
P

x1(t)

xP (t)

θP
P

Figure 2-1: In the source localization problem, we estimate the position r
P
j or direction of

arrival θP
j of each of P sources emitting waveforms xj(t), using a linear array of M sensors

equally spaced every distance d at positions r
M
i that measure and record waveforms yi(t).

In this example, the P th source is in the far zone.

In general, the emitted waveforms may have arbitrary spectral content. Without
loss of generality, we make a narrowband assumption to simplify the physics and
model wave propagation as a linear operation on the waveform envelopes. Specif-
ically, we assume that the emitted waveforms are narrowband about some carrier
frequency ωc so that xj(t) represents the envelope of the complex analytic signal that
is physically transmitted (Appendix A.1). That is, the jth source gives rise to the
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scalar field U , which at position r and time t is

U(r, t) = Re







xj

(

t− |r− rP
j |
k

ωc

)

exp
[

i(k|r − rP
j | − ωct)

]

|r − rP
j |







. (2.1)

The scalar field U solves the scalar wave equation, either as a component of the
electric field according to Maxwell’s equations [18], or as a pressure field according
to the laws of acoustics [19]. In (2.1), k = 2π/λ is the wave number and λ is the
wavelength, so that the wave travels at speed c = ωc/k. The narrowband assumption
implies that the envelope xj(t) remains constant over the time it takes the wave to
propagate, so that we may approximate

xj

(

t− |r − rP
j |
k

ωc

)

≈ xj(t) (2.2)

in (2.1). Consequently, the waveform emitted by a source is simply attenuated and
phase-shifted when measured at a remote sensor, and we may ignore the time de-
pendence exp(−iωct). The narrowband assumption therefore allows us to work ex-
clusively with the complex envelopes xj(t) and model propagation by multiplication
with a complex constant.

We apply the above propagation model to complete our formulation. For a single
source, each sensor records the propagated waveforms corrupted by additive white
complex Gaussian noise vi(t) of zero mean and variance σ2

v . The noise at different
sensors is uncorrelated. For a single source at rP

j , we express the output at all sensors
in vector form by

y(t) = a(rP
j )xj(t) + v(t), (2.3)

where y(t) = [y1(t) · · ·yM(t)]t, v(t) = [v1(t) · · · vM(t)]t, and a(rP
j ) is the steering

vector that reflects the propagation of xj(t) to each sensor in the array. Specifically,
the nth component of a(rP

j ) is

an(rP
j ) =

exp
(

ik|rM
n − rP

j |
)

|rM
n − rP

j |
. (2.4)

We will frequently ignore the attenuation when the signal power drop across the
sensor array is negligible, and instead use:

an(rP
j ) = exp

(

ik|rM
n − rP

j |
)

. (2.5)

We may at times further make a far-zone approximation and ignore a constant phase
offset when the source is far away, so that

an(rP
j ) = an(θP

j ) = exp(−iknd cos θP
j ). (2.6)
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We add the contributions from all P sources to obtain

y(t) = Ax(t) + v(t), (2.7)

where A = [a(rP
1 ) · · ·a(rP

P )] and x(t) = [x1(t) · · ·xP (t)]t. The source localization
problem is to determine the source positions rP

j given the sensor measurements in
(2.7).

Our formulation assumes perfectly coherent radiation, as the scalar field U(r, t) is
a deterministic function in both space and time. The scalar field is more accurately
modeled by a random process, especially at optical frequencies, where random fluc-
tuations due to the spontaneous emission of radiation from atoms or the mechanical
vibrations of the mirrors at the end of a laser cavity result in an uncertain field [91].
In order to relate coherent and incoherent image formation within this stochastic
framework, we use the tools of optical coherence theory to make the intuitive notion
of coherence mathematically precise.

When one says that a radiation source is temporally or spatially coherent, the
implication is that the field at the source possesses a statistical similarity in either
time or space that will result in interference if the field is allowed to recombine after
propagation. There are many details left unspecified, such as whether there is a
statistical similarity at other points in space and time away from the source, and the
precise measure of the degree of statistical similarity. The mutual coherence function
serves as a single precise specification of the coherence structure of the scalar field,
and is defined as the ensemble average of the product of the field at different points
in space and time (Appendix A.4):

Γ(r1, r2, τ) = 〈U(r1, t+ τ)U∗(r2, t)〉. (2.8)

Classical interference effects are expressed in terms of time-averaged intensity mea-
surements, which can be expressed in terms of Γ for ergodic fields [91]. Although
the mutual coherence function ultimately allows us to treat coherent and incoherent
image formation with a common framework, the key concepts are more transpar-
ent without the additional stochastic baggage that comes with Γ. Therefore, when
we consider coherent image formation, we assume that the field is deterministic ev-
erywhere. And when we consider incoherent image formation, we assume that the
sources are spatially incoherent so that their contributions at a remote sensor add
in intensity. Throughout our treatment, the mutual coherence function serves as the
underlying formalism that allows us to rigorously relate these two types of image
formation (Appendix B.2).

2.1.1 Deterministic maximum likelihood estimation

We derive the well-known deterministic maximum likelihood estimator for source
location, so named because we assume that the source signals x(t) are deterministic
yet unknown [20]. We assume we know the sensor positions rM

i , but not the noise
variance σ2

v . We seek the maximum likelihood estimator of the unknown source
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positions RP = {rP
1 , . . . , r

P
P} given N time samples of all sensor measurements y(t).

The likelihood function is

L(RP,x(t), σ2
v) =

N
∏

t=1

(

πσ2
v

)−M
exp

(

−|y(t) −Ax(t)|2
σ2

v

)

, (2.9)

so that the log-likelihood function is

l(RP,x(t), σ2
v) = −NM log(πσ2

v) −
1

σ2
v

N
∑

t=1

|y(t) − Ax(t)|2. (2.10)

The desired position estimates R̂P maximize (2.10).

First, for fixed σ2
v and RP, the source signals x(t) that maximize (2.10) are those

that minimize |y(t) − Ax(t)|2 at each t. This minimization is a classic linear least-
squares problem from linear algebra, whose solution follows from the normal equa-
tions:

x̂(t) = (A∗A)−1
A∗y(t). (2.11)

Next, substituting the optimal source signals x(t) = x̂(t) into (2.10) yet still keeping
σ2

v fixed, we note that the source positions RP that maximize (2.10) are those that
minimize

N
∑

t=1

∣

∣

∣y(t) −A (A∗A)−1
A∗y(t)

∣

∣

∣

2
. (2.12)

We recognize
ΠA = A (A∗A)−1

A∗ (2.13)

in (2.12) as a projection onto the columns of A. Therefore, minimizing (2.12) is
equivalent to maximizing the energy in the projected subspace, so that

R̂P = arg max
RP

N
∑

t=1

|ΠAy(t)|2 . (2.14)

Intuitively, the maximum likelihood estimator in (2.14) identifies the steering vec-
tors that define a signal subspace that best contains the measurements y(t). While
the maximum likelihood estimator provides optimal source location estimates, it is
generally computationally complex to calculate, requiring a multidimensional search.

2.1.2 Conventional beamforming

We show that the maximum likelihood estimator reduces to an efficient search of an
image produced by the conventional Bartlett beamformer when the sources are far
apart. We first consider the scenario for a single source, to understand how the con-
ventional beamformer focuses at a point and maximizes the expected energy emitted
from a source at the point of focus. Additionally, we show that the conventional
beamformer corresponds to a particular way of estimating the correlation structure
of the radiation, which we will later connect to a specific choice of quasi light field in
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Chapter 4. In the far zone, the image produced by the conventional beamformer is
a visual representation of the spatial spectrum of the scene, so that image resolution
is limited by the Fourier uncertainty principle. When the sources are far apart com-
pared with beamformer resolution, the conventional beamformer solves the source
localization problem for multiple sources.

To interpret source localization as an image search, we first rewrite (2.14) to
express the maximum likelihood estimator as a bilinear function of the measured
signals:

R̂P = arg max
RP

N
∑

t=1

[ΠAy(t)]∗ ΠAy(t)

= arg max
RP

N
∑

t=1

y∗(t)ΠAy(t)

= arg max
RP

N
∑

t=1

y∗(t)A (A∗A)−1
A∗y(t). (2.15)

When there is only a single source, then A = a(r) is a single steering vector, so that

r̂P
1 = arg max

r

N
∑

t=1

|a∗(r)y(t)|2
a∗(r)a(r)

. (2.16)

Furthermore, if we ignore signal attenuation across the sensor array, a∗(r)a(r) = M
is constant per (2.5), so that

r̂P
1 = arg max

r

1

N

N
∑

t=1

∣

∣

∣

∣

∣

a∗(r)y(t)

M

∣

∣

∣

∣

∣

2

. (2.17)

Equation (2.17) links parameter estimation to image formation. The maximum likeli-
hood estimate of the position of a single source is found by computing an image with
pixel values of

PCBF(r) =
1

N

N
∑

t=1

∣

∣

∣

∣

∣

a∗(r)y(t)

M

∣

∣

∣

∣

∣

2

(2.18)

at each position r, and then choosing the brightest pixel. The image is the objective
function, parameterized by the potential locations of the source.

The quantity (1/M)a∗(r)y(t) is the conventional Bartlett beamformer focused at
point r, which we now generalize to show that (2.18) implicitly assumes a particular
estimate of the correlation structure of y(t). The conventional beamformer maximizes
the power emitted from a source at r [21], by choosing weights w that optimize:

max
w

E
[

|w∗y(t)|2
]

such that |w|2 = 1. (2.19)

We compute
E
[

|w∗y(t)|2
]

= E
[

|x1(t)|2
]

|w∗a(rP
1 )|2 + σ2

v |w|2, (2.20)
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so that by the Cauchy-Schwarz inequality, the optimal weights are

w =
a(rP

1 )
√

a∗(rP
1 )a(rP

1 )
, (2.21)

which substituting into E [|w∗y(t)|2] and scaling by 1/M yields the spectrum

PGBF(r) = E





∣

∣

∣

∣

∣

a∗(r)y(t)

M

∣

∣

∣

∣

∣

2


 . (2.22)

If we estimate the correlation matrix E[y(t)y∗(t)] in (2.22) by averaging N samples
of y(t)y∗(t), we obtain the image formed by the conventional beamformer in (2.18).
We will show how to compute other physically-based coherent images with other
estimates for the correlation matrix in Chapter 4.

We now illustrate how the conventional beamformer (1/M)a∗(r)y(t) focuses on
the point r. The measured signals for a single source are

y(t) = a(rP
1 )x1(t) + v(t). (2.23)

When the beamformer is focused on the source, r = rP
1 , so a∗(r)a(rP

1 ) = M is
maximized. For values of r further away from rP

1 , the beamformer is focused on empty
space, so a∗(r)a(rP

1 ) is diminished. The beamformer performs generalized spatial
Fourier analysis on the measured signals, as a∗(r)y(t) reduces to the space-domain
version of the discrete-time short-time Fourier transform in the far-zone per (2.6). The
resulting image in (2.18) is consequently the time average of spatial periodograms of
the measured signals [22]. The spatial resolution of the periodograms is directly
related to the resolution of the image produced by the beamformer. The performance
of the beamformer is therefore limited by the Fourier uncertainty principle. Although
the resolution may be improved by increasing the size of the sensor array to widen
the window, no amount of time averaging will improve the resolution.

We now consider the maximum likelihood estimator for multiple sources. The
matrix product A∗A in (2.15) has a constant diagonal of maximal value M , while the
off-diagonal entries have the form a∗(ri)a(rj). Each off-diagonal entry indicates the
response of a conventional beamformer focused at one position ri when the source is
at another position rj . Therefore, when the maximum likelihood objective function
is evaluated near the true source locations, every pair of sources that are far apart
from each other relative to the beamformer’s resolution contributes two zero entries
in A∗A. The sources can be reindexed and clustered into groups that are far apart
from each other, so that A∗A is block-diagonal. If all the sources are far apart from
each other, then

A∗A ≈ MI (2.24)

when evaluated near the true source locations. We substitute (2.24) into (2.15) to
obtain an approximation to the maximum likelihood estimator for well-separated
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sources:

R̂P = arg max
RP

1

P

P
∑

j=1

1

N

N
∑

t=1

∣

∣

∣

∣

∣

a∗(rP
j )y(t)

M

∣

∣

∣

∣

∣

2

. (2.25)

Equation (2.25) estimates the source locations by the P brightest pixels of the image
formed by the conventional beamformer in (2.18). We conclude that the conventional
beamformer produces an image that is suitable to locate well-separated point sources.

2.1.3 Alternative beamformers and images

The conventional beamformer cannot resolve closely-spaced sources as well as the
maximum likelihood estimator. However, the maximum likelihood estimator is com-
putationally complex to implement directly. Researchers have therefore developed
alternative beamformers that, like the conventional beamformer, efficiently process
an image, but unlike the conventional beamformer, achieve resolution that is not
limited by the Fourier uncertainty principle. We describe two alternative beamform-
ers: Capon’s method that actively blocks interference from those sources not at the
point of focus, and the multiple signal classification (MUSIC) algorithm that lever-
ages assumptions about the correlation structure of the sources. Neither Capon’s
method nor the MUSIC algorithm produces a physically-based image described by
quasi light fields, which offer different tradeoffs in resolving the position and direction
of the radiation that are not limited by the Fourier uncertainty principle. However,
implementing both Capon’s method and the MUSIC algorithm requires the selection
of an estimator for the correlation structure of y(t), which corresponds to select-
ing a particular quasi light field when implementing the conventional beamformer in
(2.22). Evidently, at least one aspect of the choice of quasi light field has been previ-
ously studied in alternative beamforming contexts, where the choice has a significant
practical impact.

In contrast with the conventional beamformer that maximizes filter output power,
Capon’s method [23] minimizes output power, subject to the constraint that any
signal from the point of focus r is undistorted:

min
w

E
[

|w∗y(t)|2
]

such that w∗a(r) = 1. (2.26)

With this constraint, minimizing output power reduces noise and interference. The
optimal weights are found using Lagrange multipliers:

w =
[E [y(t)y∗(t)]]−1

a(r)

a∗(r) [E [y(t)y∗(t)]]−1
a(r)

. (2.27)

We use the optimal weights to compute the filter output power E [|w∗y(t)|2] to obtain
an image of the scene:

PCAP(r) =
1

a∗(r) [E [y(t)y∗(t)]]−1
a(r)

. (2.28)
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Unlike the image produced by the conventional beamformer in (2.18), the image
produced by Capon’s method is not a true frequency spectrum. Capon’s method
is able to achieve better resolution than the conventional beamformer by adaptively
blocking interfering signals arriving from locations other than the point of focus [21,
20]. However, Capon’s method is sensitive to errors in estimating the correlation
matrix E [y(t)y∗(t)] in (2.28), and performs poorly when the estimate is inaccurate.
Capon’s method can be made more robust by applying tapers to the correlation
matrix estimate, resulting in design features such as diagonal loading [24]. In Chapter
4, we show that applying these same tapers to the correlation matrix estimate in (2.22)
corresponds to choosing alternative quasi light fields.

In order to resolve closely-spaced sources, Capon’s method blocks interfering
sources, while the MUSIC algorithm instead leverages assumptions on the correla-
tion structure of the sources. Intuitively, the optimal maximum likelihood source
location estimator identifies the steering vectors that span a subspace that best con-
tains the measured signals. In fact, the noise subspace is orthogonal to the steering
vectors at the true source locations. This observation leads to a number of signal
subspace techniques for source localization, including the MUSIC algorithm [21, 20].
The MUSIC algorithm estimates the noise subspace, and then identifies source lo-
cations that yield steering vectors orthogonal to the noise subspace. Provided that
the source signals are not coherent and that there are more sensors than sources, the
MUSIC source location estimates converge to the true values. The MUSIC algorithm
thereby performs well when the source assumptions are valid, and poorly otherwise.
The MUSIC algorithm chooses the brightest pixels in the image

PMUS(r) =
a∗(r)a(r)

a∗(r)Π̂⊥a(r)
, (2.29)

where Π̂⊥ is an estimate of the projection onto the noise subspace. While estimating
the noise subspace to compute Π̂⊥, the MUSIC algorithm implicitly estimates the
correlation matrix E [y(t)y∗(t)], just like the conventional beamformer and Capon’s
method. The MUSIC algorithm also illustrates the opportunities available when the
sources are uncorrelated. While it may seem unreasonable to assume that the sources
are uncorrelated in a coherent imaging context, we have some control over the source
signals in active imaging, which we address in Chapter 7.

2.2 Beamformer performance and tradeoffs

We can visualize any objective function and call it an image, and Section 2.1.3 re-
vealed a taste of the many possible formulations. We focus our attention on the con-
ventional beamformer, because of all the coherent images we have so far discussed,
those produced by the conventional beamformer have a deep physical connection to
incoherent image formation. By focusing on one beamformer, we can precisely define
performance metrics and evaluate design tradeoffs in the presence of phase noise and
timing inaccuracies. First, we characterize beamformer performance by describing
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the tilt, sidelobe suppression, and width of the beamformer’s beam pattern (Section
2.2.1). Second, we model phase noise and begin to explore its potential impact on
performance (Section 2.2.2). Third, we discuss implementing the beamformer with
time delays at both the carrier and intermediate frequencies (Section 2.2.3).

2.2.1 The beam pattern characterizes tradeoffs

The conventional beamformer maximizes the output power when a single source is
present at the point of focus. However, to characterize the beamformer’s performance,
we must understand the output when a waveform is emitted from all other points
in space. Due to constructive interference at the carrier frequency, the magnitude
of the beamformer response is greatest when the source lies at the point of focus,
and drops off as the source moves further away, tracing out a multilobed response.
The beamformer response magnitude is therefore shaped like a beam when viewed
as a function of source position. The response amplitude, called the beam pattern,
characterizes the beamformer’s performance.

The beam pattern is a function of three spatial variables and can be shaped
through the design of the sensor array geometry and additional amplitude weights.
In general, the beam pattern must be computed numerically. For simplicity, we
restrict our attention to sources far away from a regularly-spaced linear array and do
not apply amplitude weights. With these restrictions, the beam pattern is a function
of just one variable, the direction of arrival of an incoming waveform, and the major
tradeoffs are governed by coarse design parameters such as array size and wavelength.

We now examine the constructive interference at work in beamformer operation.
We use a linear array of equally-spaced sensors to estimate the envelope of a nar-
rowband plane wave arriving from a particular angle θT at an angular frequency ωc

(Figure 2-2). Say there is a single source in the far zone in direction θP
1 with envelope

x1(t). We ignore additive receiver noise, setting σ2
v = 0. The beamformer computes

g(t) =
1

M
a∗(θT)y(t) =

1

M
a∗(θT)a(θP

1 )x1(t). (2.30)

The beamformer delays the signals recorded at each sensor so that the wavefronts
from a hypothetical plane wave propagating along the target angle θT are aligned,
and then averages the results. If the only observed signal is in fact a single plane wave
propagating along the steering angle so that θP

1 = θT, then a∗(θT)a(θP
1 ) = M and the

beamformer will recover the source signal x1(t). However, other waves arriving from
different angles will be attenuated by harmonic interference. This interference at the
carrier frequency is how the beamformer achieves directional selectivity and is able
to focus at a specific point or in a specific direction.

To quantify the beamformer’s directional selectivity, we substitute the steering
vector (2.6) into (2.30), and recognize that the beamformer output g(t) is a geometric
series:

g(t) =
1

M

M−1
∑

n=0

exp
[

iknd(cos θT − cos θP
1 )
]

x1(t) (2.31)
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0 d 2d (M − 1)d
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1

d cos θP
1

d cos θP
1

Figure 2-2: When steered in the direction of an incoming plane wave along angle θP
1 , the

conventional beamformer estimates the wave’s envelope by delaying the signal measurements
made at each sensor to align their wavefronts, and then averaging the results.

=
1

M

1 − exp
[

iMkd
(

cos θT − cos θP
1

)]

1 − exp [ikd (cos θT − cos θP
1 )]

x1(t)

=
1

M
exp

[

i(M − 1)
kd

2

(

cos θT − cos θP
1

)

]

sin
[

Mkd
2

(

cos θT − cos θP
1

)]

sin
[

kd
2

(cos θT − cos θP
1 )
] x1(t).

Thus, in the absence of noise, the amplitude of the beamformer output is proportional
to the plane wave signal, by a factor that depends on both the steering direction θT
and the angle of the incoming plane wave θ:

Bθ =
1

M

sin
[

Mπd
λ

(cos θT − cos θ)
]

sin
[

πd
λ

(cos θT − cos θ)
] , (2.32)

where we have used the relation k = 2π/λ. The factor Bθ is called the beam pattern
for the array.

The beam pattern exhibits a multilobed response. From the geometry, θ and θT
take on values between 0 and π, so | cos θT − cos θ| can be as large as 2 in an extreme
steering situation. The beam pattern achieves a maximum when the wave propagates
along the direction the beamformer is steered in, when θ = θT. As θ moves away
from θT, the beam pattern decreases, defining a main lobe of sensitivity pointing in
the steering direction. However, as θ moves even further, the beam pattern increases
again, tracing out a sidelobe. In fact, if d is larger than λ/2, the peaks of these
sidelobes can reach the maximum. These sidelobes are then called grating lobes, and
they represent ambiguities in direction that we are unable to resolve with the array.
We eliminate grating lobes by using a dense array and setting d = λ/2. Although
the beam pattern conveys a lot of information, we focus on three key performance



2 Processing coherent waves to form images 29

metrics: tilt, sidelobe suppression, and beam width (Figure 2-3).

π/2 π

tilt

beam
width

sidelobe
suppression

20 dB

θ = 0

Bθ

Figure 2-3: We characterize the performance of a beamformer by the tilt, sidelobe sup-
pression, and beam width of its beam pattern |Bθ|. This beamformer has M = 10 sensors
and is intended to be steered towards θT = π/2.

The beam pattern can be shaped using amplitude weights and by modifying the
array geometry. Since the beam pattern calculation in (2.31) is a discrete-time Fourier
transform of a rectangular pulse, we can use standard digital filter design techniques to
trade off sidelobe suppression and main lobe width [25]. We can also use irregularly-
spaced arrays to eliminate grating lobes with fewer sensors, but at the expense of
sidelobe suppression [20].

Tilt

Tilt is the offset between the intended steering direction θT and the actual steering
direction where the beam pattern reaches its maximum value. The tilt can only be
nonzero in the presence of noise. We define tilt as the random variable

τ = arg max
θ

|Bθ(t)| − θT. (2.33)
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The tilt may vary rapidly over successive moments in time as noise causes the main
lobe to wobble. But as the beam pattern is averaged over time, this wobbling will
result in a broadened averaged main lobe with a smaller overall steering error. Tilt
is robust to noise for moderate to large array sizes M .

Sidelobe suppression

Sidelobe suppression SSL is the height of the first sidelobe relative to the main lobe,
and indicates the susceptibility of the beamformer to interference from plane waves
arriving from directions other than the steering direction θT. In the absence of noise,
sidelobe suppression depends on the array size M , but becomes relatively constant
at M increases. To compute the sidelobe suppression of the beam pattern for the
unweighted uniform linear array in (2.32), we note that the main lobe maximum is
attained when cos θT−cos θ = 0 and that the first sidelobe peak approximately occurs
when the numerator is −1, when cos θT − cos θ = 3λ/2Md. For large values of M ,
we make a small-angle approximation in the denominator of (2.32), so that the first
sidelobe peak is

∣

∣

∣

∣

∣

−1

M πd
λ

(cos θT − cos θ)

∣

∣

∣

∣

∣

=
2

3π
, (2.34)

which is 13.46 dB down from the maximum. Engineers apply amplitude weights to
further reduce the sidelobe suppression in beamformer implementations. Sidelobe
suppression is only a useful performance metric when the beam pattern has not been
corrupted by too much noise. At excessive noise levels, the shape of the beam pattern
may not be clear enough to discern the first sidelobe, let alone its peak.

Beam width

Beam width is the width of the main lobe, and indicates the resolution at which the
beamformer can discern two waves propagating at different angles: a narrow beam
can resolve small differences in the direction of propagation, while a broader beam
will blur a wider range of directions together. Deciding where the main lobe ends is
a matter of convention; we use the half-power beam width, defined as the width of
the interval over the main lobe where |Bθ|2 > 1/2. In the absence of noise, the beam
width across a target is approximately

beam width ≈ ρ

sin θT
θBW, (2.35)

where ρ is the range to the target and θBW is the angular beam width

θBW ≈ λ/Md, (2.36)

which is the inverse of the width of the sensor array measured in wavelengths (Ap-
pendix B.1). Equation (2.35) demonstrates that the beam widens as the target moves
further away and as the beamformer is steered towards the ends of the array [20].
Like sidelobe suppression, the beam width is only a useful metric when the beam
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pattern has not been corrupted by too much noise, so that the main lobe structure
of the beam pattern is clearly evident. The application requirements for beam width
and tilt are usually related; we typically wish to be able to steer the beam at the
same resolution that the beam can resolve.

2.2.2 Modeling phase noise

Phase noise is introduced by timing jitter in the receiver circuitry at each sensor and
interferes with the coherent combination responsible for the beamformer’s directional
selectivity. Large sensor arrays are robust to phase noise and exhibit a threshold
effect, so that exceeding a certain noise level negatively impacts beamformer perfor-
mance. We will quantitatively explore the impact of phase noise in Chapter 5. For
now, we incorporate phase noise into our source localization model and indicate the
complications that arise.

To incorporate phase noise into our source localization model, we assume that
the underlying timing jitter is small enough that the envelope is unchanged. Conse-
quently, we model phase noise with a diagonal matrix

Φ = diag
(

eiφ1(t), . . . , eiφM (t)
)

(2.37)

so that
y(t) = ΦAx(t). (2.38)

We have omitted the additive noise term v(t) in (2.7) for simplicity, and we assume
that each φi(t) is an ergodic noise process with zero mean and variance σ2

φ.

We generalize (2.32) to compute the beam pattern with phase noise. Setting
d = λ/2, the beam pattern

|Bθ(t)| =
1

M

∣

∣

∣

∣

∣

M−1
∑

n=0

exp {i [nπ (cos θT − cos θ) + φn(t)]}
∣

∣

∣

∣

∣

(2.39)

is a random process indexed by the parameters θ and θT . For M = 2 sensors, the
beam pattern can be expressed in closed form:

|Bθ(t)| =
1

2
|exp(iφ0(t)) + exp {i [π(cos θT − cos θ) + φ1(t)]}|

=

∣

∣

∣

∣

∣

cos

[

φ0(t) − φ1(t)

2
− π

2
(cos θT − cos θ)

]∣

∣

∣

∣

∣

. (2.40)

For M = 2, the phase noise evidently preserves the shape of the beam pattern but
steers it in an undesirable direction. Although the impact of phase noise on the beam
pattern is more subtle for larger arrays, we can observe a key mechanism at work in
(2.40): the phase noise is averaged, thereby reducing its effective variance.

There are different sources of averaging inherent in beamformer operation that
mitigate the impact of phase noise on performance. First, beamforming across multi-
ple sensors at a single instant in time spatially averages the phase noise, as in (2.40).
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Second, the beamformer output is averaged over multiple (N) time samples that de-
fine a beamforming interval, temporally averaging the phase noise, as in (2.18). To
distinguish between these two averaging effects, we distinguish between the instanta-
neous beam pattern computed at a particular time and the time-averaged beam pattern
computed over the beamforming interval. According to our model, the beam pattern
is ergodic, so that the time-averaged beam pattern converges to the expected beam
pattern E[|Bθ(t)|].

2.2.3 Timing accuracy requirements

Depending on the implementation, it may be desirable to implement the beamforming
algorithm by delaying the measured signals in time. The timing accuracy required
depends on the frequency at which the delay is applied, and timing inaccuracies can
be modeled as additive phase noise. Specifically, according to (2.1) a time delay of
φ/ωc is required to introduce a phase shift of φ radians. The carrier frequency may
be so high that this time delay is too small to be accurately implemented. In this
case, we can modulate the measured signal by exp [i(ω0t+ ζ(t))] to reduce the carrier
frequency down to the intermediate frequency ωI = ωc − ω0. We can now introduce
the phase shift of φ radians with less timing precision, by applying the larger time
shift φ/ωI. However, we have introduced additional phase noise ζ(t) in the process.
Phase noise accumulates at the time scale that the processing is performed, and any
phase noise introduced via modulation is additive once converted to radians. The
optimal beamforming implementation will depend on the phase noise characteristics
of the various components.

2.3 Summary and future challenges

We have described how to process coherent waves to locate sources and visualize a
scene. We form images by visualizing objective functions for source location. The
maximum likelihood estimator performs a multidimensional search in general, but re-
duces to searching for the brightest pixels in an image produced by the conventional
beamformer when the sources are well-spaced. When the sources are closer together
than the conventional beamformer’s resolution, alternative techniques such as Capon’s
method and the MUSIC algorithm may resolve them. To circumvent the Fourier un-
certainty principle that constrains the conventional beamformer’s resolution, Capon’s
method attempts to block interfering sources while the MUSIC algorithm leverages
assumptions about the correlation structure of the sources. We have explored the
performance tradeoffs inherent in beamformer design by examining the tilt, sidelobe
suppression, and beam width of the beam pattern of the conventional beamformer.
Our model incorporates phase noise and timing inaccuracies.

The source localization problem provides enough structure to relate the low-level
imaging of points to high-level visualization tasks. The number of sensors indicates
the quality of the imaging system by specifying the beam width and thereby the
resolution of the conventional beamformer. The number of sources indicates the
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complexity of the visualization task. We can discretize a continuous scene according
to the beamformer resolution, and represent objects with point sources of varying
amplitudes. We interpret a high-level visualization task, such as the detection of
an edge, as a source localization problem of locating the boundary of a collection of
point sources. We solve the source localization problem by forming images composed
of pixels computed by a beamformer.

The images produced by the conventional beamformer are physically related to
conventional photography. In the thesis, we generalize image formation using quasi
light fields, allowing us to view the conventional beamformer as a specific type of
time-frequency distribution that makes a specific tradeoff between localizing energy
in position and direction. We can therefore implement alternatives to the conven-
tional beamformer to make different tradeoffs when forming images to solve high-level
visualization problems. The choice of quasi light field corresponds to the choice of
estimator of the correlation matrix E[y(t)y∗(t)]. Although both Capon’s method and
the MUSIC algorithm do not produce physically-based images from quasi light fields,
implementing them involves making the same choice of correlation matrix estimate,
which has a significant practical impact on performance.





Chapter 3

Manipulating incoherent light

to form images

Having described coherent image formation in Chapter 2, we next describe how to
manipulate incoherent light to form images, allowing us to compare coherent and in-
coherent image formation. Image formation from visible incoherent light differs from
the coherent wave processing used in radar and ultrasound. A major difference is that
the wavelength of the visible spectrum varies from 380 nm to 750 nm, corresponding
to frequencies around 500 terahertz, which is too high to directly measure and ma-
nipulate with electronic circuits. Consequently, instead of measuring the amplitude
and phase of the electric field with antennas, lenses focus light from a scene onto a
plane, where photodetectors measure the energy distribution and compute the pixel
values of the resulting image. Due to the physical limitations of lenses, there are ap-
proximations and tradeoffs inherent in this classical perspective on image formation
that are absent in coherent wave processing.

The consumer market demand for digital cameras has fueled the emerging field of
computational photography, which extends the classical optics perspective on image
formation to enable technologies such as refocusing and dynamic viewpoint generation
[26]. These technologies leverage the directional information of traveling waves, and
were previously the exclusive domain of coherent wave processing. In computational
photography, directional information is extracted from visible light without having
to measure the phase, for example by using arrays of lenses [14]. An abstraction
called the light field represents the directional power flow of incoherent light. From
the light field, we can simulate different traditional cameras and estimate object
parameters such as depth [27]. The light field thereby enables for incoherent light
many applications familiar in coherent wave processing.

The light field is a common currency for camera comparison that invites us to
rethink the conventional beamformer’s role in image formation. Specifically, the light
field decouples information capture and image formation: a generalized camera mea-
sures the light field, and a computer subsequently generates the desired image. We
can therefore compare cameras by their ability to capture the light field. Although
the traditional light field is only valid for incoherent light, we can interpret the beam-
former as a device that captures a coherent light field. The light field captured by the

35
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beamformer motivates the search for a universal light field that can relate coherent
wave processing to conventional computational photography.

We first introduce the classical optics perspective on incoherent image formation
(Section 3.1). Next, we discuss how computational photography generalizes incoher-
ent image formation using the light field (Section 3.2). We then derive a coherent light
field captured by the conventional beamformer, from which we construct the image
for an ideal single-lens camera (Section 3.3). We explain why the typical tools from
optics are inadequate for deriving a universal light field (Section 3.4), in preparation
for unifying image formation in Chapter 4.

3.1 Classical optics maps a scene to an image plane

Classical optical image formation involves using an optical system, such as a lens, to
direct the light radiating from a portion of a scene onto a surface, where the intensi-
ties corresponding to individual pixels are measured. The optical system establishes
a connection between object points comprising the scene and image points on the sur-
face [18]. Forming an image of a complicated scene thereby reduces to the problem of
forming an image of a point. After describing how to perfectly image a point (Section
3.1.1), we make several conventional approximations to define the ideal single-lens
camera (Section 3.1.2).

3.1.1 A Cartesian oval perfectly images a point

The simplest type of optical system is a single refracting surface, which is a discon-
tinuity between media of different refractive indices n1 and n2. Only one type of
surface, the Cartesian oval, can form a perfect image of a point, for the following
reason. To create a perfect image of an object point rP, we must translate any cone
of rays diverging from rP into a cone of rays converging to an image point rM; that
is, wavefronts leaving rP must converge at rM (Figure 3-1). Any ray from rP to rM

must traverse the same optical path length

n1|a− rP| + n2|rM − a| = constant (3.1)

for an arbitrary point a on the surface [28]. Equation (3.1) defines a Cartesian oval
in a.

3.1.2 The ideal camera perfectly images multiple points

An ideal camera perfectly images multiple points in a scene simultaneously; real
cameras are approximations that deviate from this ideal. The difficulty in realizing
an ideal camera is that a surface must be a Cartesian oval to perfectly image a
single point, yet this surface will not perfectly image neighboring points, as each
neighboring point would require its own incompatible Cartesian oval. Because we
seek a single refracting surface to image a collection of points in a scene, we must
settle for an approximate, rather than a perfect, image. Spherical surfaces both create



3 Manipulating incoherent light to form images 37

r
P

r
M

a

n1 n2

Figure 3-1: A refracting surface in the shape of a Cartesian oval perfectly images a point
r
P onto a point r

M. The transition to an optically denser material with index of refraction
n2 > n1 bends the light so that any ray from r

P to r
M traverses the same optical path

length regardless of the point of intersection a with the surface.

a reasonable image of flat scene elements and are easy to manufacture, for which they
are widely used in optical systems. The spherical surface approximately images each
object point rP

i onto a corresponding image point rM
i , as the surface is similar to that

of a Cartesian oval for rays that intersect at a small angle with respect to the surface
normal (Figure 3-2). In this manner, the spherical refracting surface approximately
images a small spherical patch σo onto a small spherical patch σi. If the points on σo

are close to each other, then the surfaces σo and σi are approximately flat. We then
say that σo lies in the object plane and σi in the image plane [28].
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Figure 3-2: A refracting surface in the shape of a sphere with center C approximately
images points r

P
1 , r

P
2 , and r

P
3 lying on a spherical patch σo onto points r

M
1 , r

M
2 , and r

M
3 lying

on a spherical patch σi. The point images are not perfect because the transition to a higher
index of refraction n2 > n1 is only similar to that of a Cartesian oval for rays that intersect
the surface at a small angle with respect to the surface normal. When all points on σo are
close to each other, the spherical patches are approximately flat. We then say that σo lies
in the object plane and σi in the image plane.

The spherical surface construction defines an ideal camera that forms an image
of the entire object plane at a specified distance away, called the focus range. The
pixel value indicating the power radiating from σo towards the optical system is given
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by the flux through σi, as might be measured by a photodetector. We introduce
approximation errors by limiting the optical system to a single physical refracting
surface. The approximation errors, called aberrations, are non-negligible and the
subject of much analysis and practical concern [18]. Multiple lenses are typically
used to build a larger optical system to manage the tradeoffs between different types
of aberrations for a specific application, all to compensate for the simple physical
limitation of only being able to place one lens at each location.

Practically, we do not place a photodetector inside the medium of greater refractive
index n2, which is usually a solid material such as glass. Instead, we shape the material
at both ends, so that the light returns to the original medium, which is typically air.
The resulting lens can be thought of as two refracting surfaces. If the first surface is
designed to form a virtual image and the second surface a real image, then the lens
will mimic the behavior of our original single refracting surface, to which our analysis
above is applicable [28].

3.2 The light field in computational photography

The computational photography perspective on image formation is a simplified ab-
straction of classical optics; we work with ideal camera models using the light field,
but the resulting power calculations are limited in applicability and greatly simplified
compared with the underlying physics. The light field grew out of a desire to index all
the potential visual stimuli presented to the human visual system. Light field calcu-
lations are based on radiometry, a phenomenological theory of energy transport that
models optical power flow along rays in space. By integrating appropriate bundles
of light field rays, one can simulate the image formation process of many different
conventional cameras. The light field therefore acts as an intermediary between two
stages of image formation: first a camera captures the light field by manipulating in-
coherent light and measuring its intensity distribution, and then a computer processes
the captured light field to compute the pixel values of the desired image.

We first describe how the light field emerged from an image indexing problem
(Section 3.2.1). Next, we formulate the traditional light field for incoherent light
and review the laws of radiometry as applied to light fields (Section 3.2.2). Then we
process the light field to form various images (Section 3.2.3).

3.2.1 The light field represents potential images

Motivated by a desire to understand human vision, Adelson and Bergen introduced
the plenoptic function to represent all potential input to the visual system [29]. Specif-
ically, the plenoptic function describes the two-dimensional image viewed by an ob-
server placed at a specific position, and is a function of 7 parameters:

L(θ, φ, λ, t, Vx, Vy, Vz). (3.2)
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The observer is located at the three-dimensional position (Vx, Vy, Vz). The spherical
coordinates θ and φ specify a direction from the observer’s position that indicates a
pixel. The wavelength λ and time t further parameterize the visual stimuli.

We obtain the light field from the plenoptic function by sampling or integrat-
ing over two parameters, time and wavelength [12]. The light field L(r, s) specifies
radiance for every position r and every unit direction s; that is, for every ray in three-
dimensional space. Radiance is power per unit projected area per unit solid angle,
and has SI unit W/(m2-sr), watts per meter square per steradian. The light field
has a physical interpretation: L(r, s) is the nonnegative output of a photodetector at
position r looking back along direction s. Formally, spectral radiance is used when
considering emissions at a particular wavelength, and radiance is spectral radiance
integrated over all wavelengths, but we will not make this distinction. Radiometry
is similar to geometric optics in that they both model light as traveling along rays,
but radiometry further models power transport and only makes accurate predictions
when the light is incoherent and the wavelength is small. Under such conditions,
radiance is constant along rays in a lossless medium [30], which allows us to eliminate
a redundant light field parameter. We thereby obtain a 4-dimensional light field from
the 7-dimensional plenoptic function.

3.2.2 Pixel values are integrals of traditional light field rays

The light field is a useful tool for incoherent imaging because it acts as an inter-
mediary between the camera and the picture, decoupling information capture and
image production: the camera measures the light field, from which many different
traditional pictures can be computed. We define a pixel in the image of a scene by a
surface patch σ and a virtual aperture (Figure 3-3). Specifically, we define the pixel
value as the power P radiated by σ towards the aperture, just as an ideal single-lens
camera would measure. According to radiometry, P is an integral over a bundle of
light field rays [30]:

P =
∫

σ

∫

Ωr

L(r, s) cosψ d2s d2r, (3.3)

where L(r, s) is the radiance at position r and in unit direction s, ψ is the angle that
s makes with the surface normal at r, and Ωr is the solid angle subtended by the
virtual aperture at r. The images produced by many different conventional cameras
can be computed from the light field using (3.3) [31].

Since the light field is constant along rays in a lossless medium, we can measure
the light field remotely. To measure the light field on the surface of a scene, we follow
the rays for the images we are interested in, and intercept those rays with our camera
hardware (Figure 3-3). However, our hardware must be capable of measuring the
radiance at a point and in a specific direction; a conventional camera that simply
measures the irradiance at a point is insufficient. We can discern directional power
flow using a lens array, as is done in a plenoptic camera [14].
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Figure 3-3: We can compute the value of each pixel in an image produced by an arbitrary
virtual camera, defined as the power emitted from a scene surface patch towards a virtual
aperture, by integrating an appropriate bundle of light field rays that have been previously
captured with remote hardware.

3.2.3 Simulating cameras from the light field

We generalize the notion of a camera as a device that measures the light field, and
we generalize the notion of a picture as an estimate of the light field. From this per-
spective, any image produced by a conventional camera can be computed on demand
from a captured light field, well after the generalized picture is taken and the data is
collected [12, 13]. For example, the plenoptic camera estimates the light field, from
which one can compute images that different single-lens cameras focused at different
depths could have produced [14]. We simulate the ideal single-lens camera by com-
puting image pixel values from the light field and relating the camera’s parameters
to the light field geometry.

We simulate the ideal single-lens camera in two dimensions with three parameters:
the camera is focused at range R, has aperture width A, and resolution V (Figure
3-4). We select coordinates so that the center of the aperture, which coincides with
the center of the camera hardware, is on the z-axis at (0, R). Let B denote the
bundle of rays corresponding to the pixel centered at rP = (y0, 0), and let L(y, ψ)
denote the light field on the sensor array, at position (y, R) and angle ψ. The power
corresponding to the pixel value at rP is

P =
∫ A/2

−A/2

∫ π/2

−π/2
B(y, ψ)L(y, ψ) cosψ dψ dy, (3.4)

where B(y, ψ) is an indicator function for the region of integration. The pixel values
are therefore integrals of bundles of light field rays, and different camera parameters
correspond to different ray bundles.

We relate the camera parameters to the ray bundle B using the two-plane param-
eterization of the light field [12]. The ideal single-lens camera maps the object plane
onto the image plane (Figure 3-5a). Pixels correspond to scene surface patches in



3 Manipulating incoherent light to form images 41

y

z

R

A

ψ

B

σ

V

r
P = (y0, 0)

Figure 3-4: We define the ideal single-lens camera, which associates a pixel value with a
flat scene surface patch of interest σ that is parallel to the aperture. The camera integrates
the light field over the bundle of rays B to determine the pixel value associated with σ. We
show representative rays from r

P, the center of σ, to each sensor in a hypothetical array.
We represent a ray pointing to (y,R) that makes an angle ψ with respect to the z-axis by
the coordinate pair (y, ψ). The camera is parameterized by the aperture diameter A, focus
range R, and resolution V .

the object plane that are imaged onto photodetectors in the image plane. Each pixel
value is the energy measured at the corresponding photodetector, which is equivalent
to the energy emitted from the corresponding surface patch towards the lens. The
bundle of rays B consists of those rays that pass through both the scene surface patch
and the lens.

We represent each ray as a two-dimensional point using a two-plane parameteri-
zation. We define the first plane a as the plane in which the lens lies. We define the
second plane b parallel to plane a, a fixed distance R0 away. A given ray then inter-
sects the two planes, say at points a0 and b0. We plot each ray using (a, b) coordinates
(Figure 3-5b). The bundle of rays corresponding to each pixel is given by a different
parallelogram in this two-plane parameterization. We can compute the pixel values
by integrating the light field over the parallelograms. A ray intersects the planes at
points related by

b =
R0

R
v +

R− R0

R
a. (3.5)

From (3.5), we see that the parallelograms in the two-plane parameterization have
height A, width (R0/R)V , and slope R/(R − R0). Therefore, by integrating over
parallelograms of different shapes, we can effectively change the simulated camera’s
focus range, aperture width, and resolution.
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Figure 3-5: The pixel values for an ideal single-lens camera are each determined by in-
tegrating the light field over a bundle B of rays that (a), in the scene, are directed from
a surface patch to the lens, and (b), in the two-plane parameterization, correspond to a
parallelogram. The camera focus range R, aperture width A, and resolution V determine
the shape of the parallelogram. Each pixel corresponds to a different scene surface patch
and therefore a different parallelogram.

3.3 Beamformer versus incoherent technology

The classical optics and computational photography perspectives on image forma-
tion invite comparisons with the coherent wave processing discussed in Chapter 2.
Compared with classical optics, the coherent array processor is not physically limited
to using a single lens system to image an entire scene. Rather, the processor can
simulate the propagation of light through a different lens for each pixel in the image.
We demonstrate that the conventional beamformer is a special case that simulates a
Cartesian oval that perfectly images the point of focus (Section 3.3.1).

Compared with computational photography, coherent image formation can be
interpreted as light field processing. The light field serves as a common currency for
camera comparison: while it is difficult to compare a camera with a telephoto lens
with one with a wide-angle lens, it is natural to compare how two different cameras
estimate the light field, from which both telephoto and wide-angle images can be
computed [27]. We view the beamformer as a device that captures a coherent light
field, and use this light field to compute an ideal single-lens camera image to compare
with the image produced by the conventional beamformer (Section 3.3.2).
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3.3.1 The beamformer simulates a Cartesian oval

In both classical optics and coherent wave processing, forming an image of a scene
reduces to the problem of forming an image of a point. Although it may appear that
the similarities between classical optics and coherent wave processing end here, the
operation of the conventional beamformer mimics the mathematics that a refracting
surface implicitly performs on electromagnetic waves. In general, sampling the scalar
field with a sensor array offers many possibilities: we can simulate the effect of ar-
bitrarily complicated optical systems on the waves we measure, swapping lenses in
the middle of a calculation, all on a computer and without having to face any of the
physical layout and manufacturing limitations in classical optics. In particular, we
can perfectly image each point r in a scene by simulating a Cartesian oval focused at
r (Figure 3-6). This would be physically impossible with classical optics, as we could
not simultaneously pick a different lens for each point of interest in the scene.

r
P

r
M

n1 n2

measurement 
plane

r

Figure 3-6: The conventional beamformer simulates a Cartesian oval by regressing signals
measured at each sensor back in time so that the wavefronts align at the point of focus r,
and then adding the resulting waveforms. A physical Cartesian oval would similarly process
the signals by aligning their wavefronts and combining at r

M instead.

Provided that the scalar field is coherent, the beamforming algorithm is a shortcut
for simulating a Cartesian oval. Specifically, by computing the inner product a∗(r)y(t)
in (2.18) using the phase shifts in (2.5), the conventional beamformer regresses the
measured signals back in time so that the wavefronts align at the point of focus r, and
then adds the resulting waveforms. Apart from a delay, this processing is equivalent
to what a physical Cartesian oval would do to light emitted from r, by aligning the
wavefronts along each direction and combining them at rM.

We now compare the beamformer with a Cartesian oval when the source is at rP,
away from the point of focus. On the one hand, a physical Cartesian oval would steer
a ray from rP away from rM so it would not contribute to the image there, at least in
the geometric optics limit as λ → 0. On the other hand, even though an individual
sensor cannot distinguish between a ray arriving from r and one arriving from rP,
the beamformer will attenuate the signal from rP through destructive interference.
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Intuitively, the end result is similar because the beamformer enforces the constant
optical path length condition in (3.1), from which the shape of the Cartesian oval is
determined.

It is convenient to associate the sensors used by a beamformer with a virtual lens
(Figure 3-7). If we use the entire sensor array as a beamformer, differences in viewing
angle are averaged away, as if a single large lens were imaging the point. If instead we
use a smaller subarray as a beamformer, we can select specific viewing angles, but at
the cost of worse resolution due to a wider beam width per (2.36). A correspondingly
smaller lens would match the viewing angle of the smaller beamformer, but would
collect less light and produce a dimmer image than a large lens.

(b)(a)

Figure 3-7: We associate a virtual lens with the sensors used by a beamformer. The
beamformer (a) averages over different viewing angles when using a large array but (b) can
select a specific viewing angle at the cost of worse resolution when using a smaller subarray.

3.3.2 The beamformer acts as a light-field camera

Although the traditional light field and radiometry only apply to incoherent radiation,
we can interpret the beamformer as a device that measures a coherent light field. A
beamformer estimates a spherical wave diverging from the point of focus, which we
can decompose into the directional power flow represented by the light field using the
laws of radiometry. The radial symmetry ensures that we avoid the difficulties we
would otherwise encounter if we attempted a similar construction with an arbitrary
coherent field, as we shall see in Chapter 4. After we derive the light field captured
by the beamformer, we use it to simulate an ideal single-lens camera. We call the
result the beamformer camera with pixel values PBFC.

In two dimensions, the beamformer estimates a cylindrical wave U radiating from
a point source r (Figure 3-8). We choose coordinates so that the origin is at r, and we
assume that the beamformer’s sensor array is located a distance ρ away in direction s.
The beamformer is focused at r and has a beam width of ρθBW secψ at r per (2.35).
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Figure 3-8: In two dimensions, a beamformer estimates a cylindrical wave radiating from a
point source r, from which we infer a coherent light field L(r, s). The sensor array is located
a distance ρ away from r in direction s. We first compute the flux through a small portion
of a sphere with differential area dA that subtends a differential solid angle dΩ at r. I(s)
is then flux per unit solid angle. The beamformer views the point source through a beam
of width ρθBW secψ at r, so that the light field is simply I(s) divided by ρθBW secψ.

At frequency ν, wave number k, and for sufficiently large ρ the scalar field is

U(ρs, t) =
C√
ρ

exp [i(kρ− 2πνt)] , (3.6)

for some complex constant C. Neglecting variations in distance between r and each
of the individual sensors in the array, the magnitude of the beamformer output, |g|,
provides an estimate of |C|/√ρ, the magnitude of U .

To compute the light field for the cylindrical wave, we first use scalar field theory
to calculate the radiant intensity, which we then distribute over the source plane (the
y-axis) to deduce the radiance. The energy flux density vector for scalar fields is

F(ρs, t) = − 1

4πkν

[

∂U∗

∂t
∇U +

∂U

∂t
∇U∗

]

. (3.7)

We substitute (3.6) into (3.7) to obtain the energy flux density vector

F(ρs) =
|C|2
ρ

s. (3.8)

The differential flux dΦ at ρs through a spherical surface of differential area dA is
therefore

dΦ =
|C|2
ρ

dA. (3.9)
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The differential solid angle dΩ subtended by the surface is

dΩ =
dA

ρ
. (3.10)

Thus, as we vary s and move the sensor array along the circular arc of radius ρ, we
measure a constant flux per unit solid angle, which is known in radiometry as radiant
intensity I(s) [30]:

I(s) =
dΦ

dΩ
= |C|2. (3.11)

The point source at r is an idealized abstraction that is useful for understanding
beamformer behavior. Radiometry requires a more realistic model, where the source
is distributed over a plane instead of consolidated at a point. Since the beamformer
incorporates contributions from all points within its beam, it is natural to replace the
point source with an equivalent planar source that has projected area equal to the
beam width at r. We distribute I(s) uniformly over this beam width ρθBW secψ =
ρθBW/sz, so that the radiance is

L(r, s) =
1

θBW
sz
|C|2
ρ
. (3.12)

Having derived the light field for a cylindrical wave, we now express the light field
in terms of the beamformer output and integrate the light field per (3.4) to compute
PBFC for the ideal single-lens camera. If the resolution V is small enough, we may
assume that over the ray bundle B, |C|2/ρ is a constant given by the value at the point
of focus rP. Recalling that |g|2 is the beamformer’s estimate of |C|2/ρ, and switching
to (y, ψ) coordinates, we conclude that the light field on B for the beamformer camera
is

LBFC(y, ψ) =
cosψ

θBW

|g|2. (3.13)

We substitute (3.13) into (3.4) to evaluate the pixel values of the beamformer camera,

PBFC = K|g|2 (3.14)

for the constant

K =
1

θBW

∫ A/2

−A/2

∫ π/2

−π/2
B(y, ψ) cos2 ψ dψ dy. (3.15)

Evidently, each beamformer camera pixel value is a scaled version of the energy of
the beamformer output, consistent with how beamformers are conventionally used to
form images.

3.4 In search of a universal light field

We have used the beamformer to capture a light field for coherent waves, allowing
us to relate and compare cameras for incoherent light and coherent waves through
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their light field estimates. We seek a universal light field that can be computed from
physical quantities such as the electric field that (i) incorporates the information from
sensor measurements without presuming a beamforming algorithm and (ii) describes
both coherent and incoherent image formation using the same framework. The quasi
light fields, which we present in Chapter 4, are the proper universal generalization of
the light field. In the remainder of this chapter, we discuss how traditional tools in
optics are inadequate for describing a universal light field. We consider both geometric
optics [18] and Fourier optics [32].

3.4.1 Geometric optics explains rays

The idea that light travels along rays dates back to Euclid [33]. Although geometric
optics accounts for light traveling along rays in the limit λ → 0, it does not account
for the directional energy distribution at each point in space that the light field
represents. Geometric optics is rigorously grounded in electromagnetic field theory
(Appendix A.2). We define a scalar optical path function S(r) and assume that the
electric and magnetic fields at a specific frequency ν have the form

E(r, t) = e(r) exp [i2πν(S(r) − t)] ,

H(r, t) = h(r) exp [i2πν(S(r) − t)] . (3.16)

In the limit as the wavelength λ → 0, the optical path function S obeys the eikonal
equation

∇2S = n2, (3.17)

so that light bends when the index of refraction n changes. The level sets of S rep-
resent wavefronts. The time-averaged Poynting vector points in the direction of the
gradient ∇S of the optical path function, which defines oriented curves called geo-
metrical light rays (Figure 3-9). The eikonal equation (3.17) predicts how wavefronts
refract and the light rays bend as the index n varies. In a homogeneous medium,
n is constant so that the light rays are straight lines. Thus while electromagnetic
energy does not in general flow along a straight line according to the Poynting vector,
it approximately does in a macroscopic sense in a homogeneous medium, for small
wavelengths when averaged over time.

We can construct a degenerate light field from the optical path function, where
energy is concentrated in a single direction ∇S(r) at each point r:

L(r, s) = |〈S(r, t)〉|δ
(

s − ∇S(r)

|∇S(r)|

)

, (3.18)

where 〈·〉 denotes the time average and δ is the Dirac delta function. Geometric optics
allows for many wavefronts to overlap, each pointing in a different direction, but it is
the coherence structure of the radiation that determines how overlapping waves are
superimposed to yield a directional energy distribution. Thus without a means to
model coherence, geometric optics does not account for the light field.
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S(r) = C1 S(r) = C2

r1

r2
∇S(r1) ∇S(r2)

geometrical 
light ray

wavefronts

Figure 3-9: Geometric optics predicts that light travels along curved rays along the gradient
of the optical path function S and orthogonal to the wavefronts.

3.4.2 Fourier optics extracts direction from phase

We noted that the conventional beamformer extracts directional information from
coherent waves when focused in the far zone, by performing a Fourier transform on
the scalar field (Section 2.1.2). More generally, the two-dimensional spatial Fourier
transform of the scalar field U(r) over any plane z = z1 is

a(s) =

(

k

2π

)2
∫

U(r) exp(−iks · r)d2r, (3.19)

so that the inverse transform

U(r) =
∫

a(s) exp(iks · r)d2s (3.20)

decomposes the scalar field into the sum of plane waves with amplitude a(s) prop-
agating into the half-space z > z1. Equation (3.20) thereby provides an angular
decomposition of the field in terms of plane waves [32].

Although the Fourier transform connects two different representations of the scalar
field, one in terms of position and the other in terms of direction, it does not account
for the light field, which simultaneously decomposes energy in both position and
direction. However, modern time-frequency representations in signal processing [34,
35] do provide this accurate description of the light field.

3.5 Summary and future challenges

We have described the classical optics perspective on image formation and how the
field of computational photography has enabled new applications for incoherent light
by introducing the light field. The light field decouples data collection from image
production, and serves as a common currency for camera comparison. Specifically, the
computational photography perspective invites us to recast the conventional beam-
former as an estimator of a coherent light field, and to search for a universal light
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field that can describe both beamformer operation as well as incoherent imaging. Ge-
ometric optics and Fourier optics do not explain light field behavior, which requires
more sophisticated tools to unify the coherent and incoherent perspectives on image
formation. We present the relevant research in optics, quantum mechanics, and sig-
nal processing to extend the light field to coherent radiation with quasi light fields in
Chapter 4.





Chapter 4

Unified theory of image formation

based on quasi light fields

We have described both coherent and incoherent image formation, and have made sev-
eral preliminary comparisons in Chapter 3. We now present a unified theory of image
formation that incorporates both the coherent and incoherent perspectives. Imag-
ing technologies such as dynamic viewpoint generation are engineered for incoherent
light using the traditional light field, and for coherent waves using electromagnetic
field theory. We present a model of coherent image formation that strikes a bal-
ance between the utility of the light field and the comprehensive predictive power
of Maxwell’s equations. We synthesize research in optics and signal processing to
formulate, capture, and form images from quasi light fields, which extend the light
field from incoherent to coherent radiation [36]. Our coherent cameras generalize the
conventional beamforming algorithm in sensor array processing, and invite further
research on alternative notions of image formation.

We motivate the application of quasi light fields to sensor array processing by
using the conventional beamformer in (2.18) to operate directly on the scalar field U
at a single time instant (N = 1), resulting in pixel values

P
(

rP
)

=

∣

∣

∣

∣

∣

1

M

∑

n

a∗n
(

rP
)

U
(

rM
n

)

∣

∣

∣

∣

∣

2

. (4.1)

We have previously noted that the summation in (4.1) is the space-domain version of
the discrete-time short-time Fourier transform in the far zone (Section 2.1.2), and that
the spatial Fourier transform decomposes the scalar field into plane wave components
(Section 3.4.2). We therefore interpret (4.1) as the value of a coherent light field
L(r, s), where the position r is the location of the sensor array, and the direction
s is the direction from the point of focus rP towards the sensor array. In fact, we
will show that the conventional beamformer in (4.1) computes the spectrogram quasi
light field. By processing the scalar field measurements in different ways, we obtain
other quasi light fields that exhibit different properties. In this chapter, we express
the quasi light fields as functions of the scalar field samples, which can readily be
computed to form images using sensor arrays, as with the conventional beamformer
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in (4.1).

4.1 Previous work and historical context

The light field represents radiance as a function of position and direction, thereby
decomposing optical power flow along rays. The light field is an important tool used
in many imaging applications in different disciplines, but is traditionally limited to
incoherent light. In computer graphics, a rendering pipeline can compute new views
at arbitrary camera positions from the light field [12]. In computational photography,
a camera can measure the light field and later generate images focused at different
depths, after the picture is taken [14]. In electronic displays, an array of projectors
can present multiple viewpoints encoded in the light field, enabling 3D television [37].
Many recent incoherent imaging innovations have been made possible by expressing
image pixel values as appropriate integrals over light field rays.

For coherent imaging applications, the value of decomposing power by position
and direction has long been recognized without the aid of a light field, since the
complex-valued scalar field encodes direction in its phase. A hologram encodes multi-
ple viewpoints, but in a different way than the light field [38]. An ultrasound machine
generates images focused at different depths, but from air pressure instead of light
field measurements [17]. A Wigner distribution function models the operation of op-
tical systems in simple ways, by conveniently inferring direction from the scalar field
instead of computing nonnegative light field values [39]. Comparing these applica-
tions, coherent imaging uses the scalar field to achieve results similar to those that
incoherent imaging obtains with the light field.

Our goal is to provide a model of coherent image formation that combines the
utility of the light field with the comprehensive predictive power of the scalar field.
The similarities between coherent and incoherent imaging motivate exploring how
the scalar field and light field are related, which we address by synthesizing research
across three different communities. Each community is concerned with a particular
Fourier transform pair and has its own name for the light field. In optics, the pair is
position and direction, and Walther discovered the first generalized radiance function
by matching power predictions made with radiometry and scalar field theory [40]. In
quantum physics, the pair is position and momentum, and Wigner discovered the first
quasi-probability distribution, or phase-space distribution, as an aid to computing
the expectation value of a quantum operator [41]. In signal processing, the pair is
time and frequency, and while instantaneous spectra were used as early as 1890 by
Sommerfeld, Ville is generally credited with discovering the first nontrivial quadratic
time-frequency distribution by considering how to distribute the energy of a signal
over time and frequency [42]. Walther, Wigner, and Ville independently arrived at
essentially the same function, which is one of the ways to express a light field for
coherent radiation in terms of the scalar field.

The light field has its roots in radiometry, a phenomenological theory of radiative
power transport that began with Herschel’s observations of the sun [43], developed
through the work of astrophysicists such as Chandrasekhar [44], and culminated with
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its grounding in electromagnetic field theory by Friberg et al. [45]. The light field
represents radiance, which is the fundamental quantity in radiometry, defined as
power per unit projected area per unit solid angle. Illuminating engineers would
integrate radiance to compute power quantities, although no one could validate these
calculations with the electromagnetic field theory formulated by Maxwell. Gershun
was one of many physicists who attempted to physically justify radiometry, and who
introduced the phrase light field to represent a three-dimensional vector field analogous
to the electric and magnetic fields [46]. Gershun’s light field is a degenerate version
of the one we discuss, and more closely resembles the time-averaged Poynting vector
that appears in a rigorous derivation of geometric optics [18]. Subsequently, Walther
generalized radiometry to coherent radiation in two different ways [40, 47], and Wolf
connected Walther’s work to quantum physics [48], ultimately leading to the discovery
of many more generalized radiance functions [49] and a firm foundation for radiometry
[45].

Meanwhile, machine vision researchers desired a representation for all the possible
pictures a pinhole camera might take in space-time, which led to the current formula-
tion of the light field. Inspired by Leonardo da Vinci, Adelson and Bergen defined a
plenoptic function to describe “everything that can be seen” as the intensity recorded
by a pinhole camera, parametrized by position, direction, time, and wavelength [29].
Levoy and Hanrahan tied the plenoptic function more firmly to radiometry, by re-
defining Gershun’s phrase light field to mean radiance parametrized by position and
direction [12]. Gortler et al. introduced the same construct, but instead called it the
lumigraph [13]. The light field is now the dominant terminology used in incoherent
imaging contexts.

Our contribution is to describe and characterize all the ways to extend the light
field to coherent radiation, and to interpret coherent image formation using the re-
sulting extended light fields. We call our extended light fields quasi light fields, which
are analogous to the generalized radiance functions of optics, the quasi-probability
and phase-space distributions of quantum physics, and the quadratic class of time-
frequency distributions of signal processing. Agarwal et al. have already extended the
light field to coherent radiation [49], and the signal processing community has already
classified all of the ways to distribute power over time and frequency [35]. Both have
traced their roots to quantum physics. But to our knowledge, no one has connected
the research to show (i) that the quasi light fields represent all the ways to extend
the light field to coherent radiation, and (ii) that the signal processing classification
informs which quasi light field to use for a specific application. We further contextu-
alize the references, making any unfamiliar literature more accessible to specialists in
other areas.

In order to generate coherent images using the framework for incoherent light
described in Chapter 3, we must overcome three challenges. First, we must determine
how to measure power flow by position and direction to formulate a coherent light
field. Second, we must capture the coherent light field remotely and be able to infer
behavior at the scene surface. Third, we must be able to use equation (3.3) to produce
correct power values, so that we can form images by integrating over the coherent
light field. We address each challenge in a subsequent section.
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We formulate the quasi light fields in Section 4.2, by reviewing and relating the
relevant research in optics, quantum physics, and signal processing. In Section 4.3,
we describe how to capture quasi light fields, discuss practical sampling issues, and
illustrate the impact of light field choice on energy localization. In Section 4.4, we
describe how to form images with quasi light fields. We derive a light field cam-
era, demonstrate and compensate for diffraction limitations in the near zone, and
generalize the conventional beamforming algorithm in sensor array processing. We
remark on the utility of quasi light fields and future perspectives on image formation
in Section 4.5.

4.2 Formulating quasi light fields

We motivate, systematically generate, and characterize the quasi light fields by relat-
ing existing research. We begin in Section 4.2.1 with research in optics that frames
the challenge of extending the light field to coherent radiation in terms of satisfy-
ing a power constraint required for radiometry to make power predictions consistent
with scalar field theory. While useful in developing an intuition for quasi light fields,
the power constraint does not allow us to easily determine the quasi light fields.
We therefore proceed in Section 4.2.2 to describe research in quantum physics that
systematically generates quasi light fields satisfying the power constraint, and that
shows how the quasi light fields are true extensions that reduce to the traditional
light field under certain conditions. While useful for generating the quasi light fields,
the quantum physics approach does not allow us to easily characterize them. There-
fore, in Section 4.2.3 we map the generated quasi light fields to the quadratic class of
time-frequency distributions, which has been extensively characterized and classified
by the signal processing community. By relating research in optics, quantum physics,
and signal processing, we express all the ways to extend the light field to coherent
radiation, and provide insight on how to select an appropriate quasi light field for a
particular application.

We assume a perfectly coherent complex scalar field U(r) at a fixed frequency ν
for simplicity, although we comment in Section 4.5 on how to extend the results to
broadband, partially coherent radiation. The radiometric theory we discuss assumes
a planar source at z = 0. Consequently, although the light field is defined in three-
dimensional space, much of our analysis is confined to planes z = z0 parallel to
the source. Therefore, for convenience, we use r = (x, y, z) and s = (sx, sy, sz) to
indicate three-dimensional vectors and r⊥ = (x, y) and s⊥ = (sx, sy) to indicate
two-dimensional, projected versions.

4.2.1 Intuition from optics

An extended light field must produce accurate power transport predictions consis-
tent with rigorous theory; thus the power computed from the scalar field using wave
optics determines the allowable light fields via the laws of radiometry. One way to
find extended light fields is to guess a light field equation that satisfies this power
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constraint, which is how Walther identified the first extended light field [40]. The
scenario involves a planar source at z = 0 described by U(r), and a sphere of large
radius ρ centered at the origin. We use scalar field theory to compute the flux through
part of the sphere, and then use the definition of radiance to determine the light field
from the flux.

According to scalar field theory, the differential flux dΦ through a portion of
the sphere subtending differential solid angle dΩ is given by integrating the radial
component of the energy flux density vector F. From diffraction theory (Appendix
A.3), the scalar field in the far zone is

U∞(ρs) = −2πi

k
sz

exp(ikρ)

ρ
a(s), (4.2)

where k = 2π/λ is the wave number, λ is the wavelength, and

a(s) =

(

k

2π

)2
∫

U(r) exp(−iks · r) d2r (4.3)

is the plane wave component in direction s [32]. Now

F∞(ρs) =
(

2π

k

)2

a(s)a∗(s)
s2

z

ρ2
s, (4.4)

so that

dΦ =
(

2π

k

)2

s2
za(s)a

∗(s) dΩ. (4.5)

According to radiometry, radiant intensity is flux per unit solid angle

I(s) =
dΦ

dΩ
=
(

2π

k

)2

s2
za(s)a

∗(s). (4.6)

Radiance is I(s) per unit projected area [30], and this is where the guessing happens:
there are many ways to distribute (4.6) over projected area by factoring out sz and
an outer integral over the source plane, but none yield light fields that satisfy all the
traditional properties of radiance [50]. One way to factor (4.6) is to substitute the
expression for a(s) from (4.3) into (4.6) and change variables:

I(s) = sz

∫





(

k

2π

)2

sz

∫

U
(

r +
1

2
r′
)

U∗
(

r − 1

2
r′
)

exp (−iks⊥ · r′⊥) d2r′



 d2r.

(4.7)
The bracketed expression is Walther’s first extended light field

LW(r, s) =

(

k

2π

)2

szW(r, s⊥/λ), (4.8)
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where

W(r, s⊥) =
∫

U
(

r +
1

2
r′
)

U∗
(

r − 1

2
r′
)

exp (−i2πs⊥ · r′⊥) d2r′ (4.9)

is the Wigner distribution [34]. We may manually factor (4.6) differently to obtain
other extended light fields in an ad hoc manner, but it is hard to find and verify the
properties of all extended light fields this way, and we would have to individually
analyze each light field that we do manage to find. So instead, we pursue a system-
atic approach to exhaustively identify and characterize the extended light fields that
guarantee the correct radiant intensity in (4.6).

Expressions for quasi light fields, such as that for the Wigner in (4.8), can be used
directly by sensor arrays to form images. For example, instead of computing pixel
values using the conventional beamformer as in (4.1), we can use the Wigner quasi
light field to compute

P
(

rP
)

=
∑

n

U
(

rM
n

)

U∗
(

rM
−n

)

a2n

(

rP
)

. (4.10)

All quasi light fields are similarly easy to implement with sensor arrays. However,
different quasi light fields exhibit different computational structure and properties.
For example, the pixel values in (4.10) can be computed using a discrete Fourier
transform, yet may be negative-valued. We will explore quasi light field properties
and tradeoffs after we formulate the remaining quasi light fields.

Our image formation approach will generally assign complex numbers to image
pixel values. While traditional pixel values are nonnegative and have a physical inter-
pretation in terms of power, negative and complex pixel values do not. Nonetheless,
allowing complex-valued pixels offers other advantages. For coherent radiation, we
discussed how images naturally arise as an intermediate quantity when solving the
source localization problem. The resulting nonnegative pixel values in (2.18) happen
to have a physical power interpretation. For incoherent radiation, we made a similar
arbitrary choice by defining a pixel value in terms of a power quantity in (3.3). If an
image with complex-valued pixels enables a better solution to a problem than an im-
age with nonnegative pixels, then we are justified in allowing complex-valued pixels,
even if doing so precludes a physical interpretation. With this perspective, nonnega-
tivity is just one of many quasi light field properties, whose importance depends on
the particular application.

4.2.2 Generating explicit extensions from quantum physics

The mathematics of quantum physics provides us with a systematic extended light
field generator that factors the radiant intensity in (4.6) in a structured way. Walther’s
extended light field in (4.8) provides the hint for this connection between radiometry
and quantum physics. Specifically, Wolf recognized the similarity between Walther’s
light field and the Wigner phase-space distribution [41] from quantum physics [48].
Subsequently, Agarwal, Foley, and Wolf repurposed the mathematics behind phase-
space representation theory to generate new light fields instead of distributions [49].
We summarize their approach, define the class of quasi light fields, describe how
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quasi light fields extend traditional radiometry, and show how quasi light fields can
be conveniently expressed as filtered Wigner distributions.

Agarwal et al.’s key insight was to introduce a position operator r̂⊥ and a direction
operator ŝ⊥ that obey the commutation relations (Appendix A.5)

[x̂, ŝx] = iλ/2π, [ŷ, ŝy] = iλ/2π, (4.11)

and to map the different ways of ordering the operators to different extended light
fields. This formulation is valuable for two reasons. First, (4.11) is analogous to
the quantum-mechanical relations for position and momentum, allowing us to exploit
the phase-space distribution generator from quantum physics for our own purposes,
thereby providing an explicit formula for extended light fields. Second, in the geo-
metric optics limit as λ → 0, the operators commute per (4.11), so that all of the
extended light fields collapse to the same function that can be related to the tradi-
tional light field. Therefore, Agarwal et al.’s formulation not only provides us with
different ways of expressing the light field for coherent radiation, but also explains
how these differences arise as the wavelength becomes non-negligible.

We now summarize the phase-space representation calculus that Agarwal and
Wolf invented [51] to map operator orderings to functions, which Agarwal et al. later
applied to radiometry [49], culminating in a formula for extended light fields. The
phase-space representation theory generates a function L̃Ω from any operator L̂ for
each distinct way Ω of ordering collections of r̂⊥ and ŝ⊥. So by choosing a specific L̂
defined by its matrix elements using the Dirac notation (Appendix A.5)

〈

rR
⊥

∣

∣

∣L̂
∣

∣

∣rC
⊥

〉

= U
(

rR
)

U∗
(

rC
)

, (4.12)

and supplying L̂ as input, we obtain the extended light fields

LΩ(r, s) =

(

k

2π

)2

szL̃
Ω (r⊥, s⊥) (4.13)

as outputs. The power constraint from Section 4.2.1 translates to a minor constraint
on the allowed orderings Ω, so that LΩ can be factored from (4.6). Finally, there is
an explicit formula for LΩ [51], which in Friberg et al.’s form [45] reads

LΩ(r, s) =
k2

(2π)4
sz

∫∫∫

Ω̃ (u, kr′′⊥) exp [−iu · (r⊥ − r′⊥)] exp (−iks⊥ · r′′⊥)

×U
(

r′ +
1

2
r′′
)

U∗
(

r′ − 1

2
r′′
)

d2u d2r′ d2r′′, (4.14)

where Ω̃ is a functional representation of the ordering Ω.

Previous research has related the extended light fields LΩ to the traditional light
field, by examining how the LΩ behave for globally incoherent light of a small wave-
length, an environment technically modeled by a quasi-homogeneous source in the
geometric optics limit where λ → 0. As λ → 0, r̂⊥ and ŝ⊥ commute per (4.11), so
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that all orderings Ω are equivalent and all of the extended light fields LΩ collapse to
the same function. Since, in the source plane, Foley and Wolf showed that one of
those light fields behaves like traditional radiance [52] for globally incoherent light of
a small wavelength (Appendix B.2), all of the LΩ behave like traditional radiance for
globally incoherent light of a small wavelength. Furthermore, Friberg et al. showed
that many of the LΩ are constant along rays, for globally incoherent light of a small
wavelength [45]. The LΩ thereby subsume the traditional light field, and globally inco-
herent light of a small wavelength is the environment in which traditional radiometry
holds.

To more easily relate LΩ to the signal processing literature, we conveniently ex-
press LΩ as a filtered Wigner distribution. We introduce a function Π and substitute

Ω̃(u,v) =
∫∫

Π(−a,−b) exp [−i(a · u + b · v)] d2a d2b (4.15)

into (4.14), integrate first over u, then over a, and finally substitute b = s′⊥ − s⊥:

LΩ(r, s) =

(

k

2π

)2

sz

∫∫

Π(r⊥ − r′⊥, s⊥ − s′⊥)W(r′, s′⊥/λ) d2r′ d2s′

=

(

k

2π

)2

sz Π(r⊥, s⊥) ⊗ W(r, s⊥/λ). (4.16)

The symbol ⊗ in (4.16) denotes convolution in both r⊥ and s⊥. Each filter kernel Π
yields a different light field. There are only minor restrictions on Π, or equivalently
on Ω̃. Specifically, Agarwal and Wolf’s calculus requires that [51]

1/Ω̃ be an entire analytic function with no zeros on the real component axes.
(4.17)

Agarwal et al.’s derivation additionally requires that

Ω̃(0,v) = 1 for all v, (4.18)

so that LΩ satisfies the laws of radiometry and is consistent with (4.6) [49].
We call the functions LΩ, the restricted class of extended light fields that we have

systematically generated, quasi light fields, in recognition of their connection with
quasi-probability distributions in quantum physics.

4.2.3 Characterization from signal processing

Although we have identified the quasi light fields and justified how they extend the
traditional light field, we must still show that we have found all possible ways to
extend the light field to coherent radiation, and we must indicate how to select a
quasi light field for a specific application. We address both concerns by relating quasi
light fields to bilinear forms of U and U∗ that are parameterized by position and
direction. First, such bilinear forms reflect all the different ways to represent the
energy distribution of a complex signal in signal processing, and therefore contain all
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possible extended light fields, allowing us to identify any unaccounted for by quasi
light fields. Second, we may use the signal processing classification of bilinear forms
to characterize quasi light fields and guide the selection of one for an application.

To relate quasi light fields to bilinear forms, we must express the filtered Wigner
distribution in (4.16) as a bilinear form. Towards this end, we first express the filter
kernel Π in terms of another function K:

Π(a,b) =
∫

K

(

−a +
λ

2
v,−a− λ

2
v

)

exp(−i2πb · v) d2v. (4.19)

We substitute (4.19) into (4.16), integrate first over s′⊥, then over v, and finally
substitute

rR = r′ +
1

2
r′′, rC = r′ − 1

2
r′′ (4.20)

to express the quasi light field as
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We recognize that (4.21) is a bilinear form of U and U∗, with kernel indicated by the
braces.

The structure of the kernel of the bilinear form in (4.21) limits L to a shift-invariant
energy distribution. Specifically, translating the scalar field in (4.21) in position and
direction orthogonal to the z-axis according to

U(r) → U
(

r− r0
)

exp
(

iks0
⊥ · r⊥

)

(4.22)

results in a corresponding translation in position and direction in the light field, after
rearranging terms:

L(r, s) → L
(

r − r0, s− s0
)

. (4.23)

Such shift-invariant bilinear forms comprise the quadratic class of time-frequency
distributions, which is sometimes misleadingly referred to as Cohen’s class [35].

The quasi light fields represent all possible ways of extending the light field to
coherent radiation. This is because any reasonably defined extended light field must
be shift-invariant in position and direction, as translating and rotating coordinates
should modify the scalar field and light field representations in corresponding ways.
Thus, on the one hand, an extended light field must be a quadratic time-frequency
distribution. On the other hand, (4.21) implies that quasi light fields span the entire
class of quadratic time-frequency distributions, apart from the constraints on Π de-
scribed at the end of Section 4.2.2. The constraint in (4.18) is necessary to satisfy the
power constraint in (4.6), which any extended light field must satisfy. The remaining
constraints in (4.17) are technical details concerning analyticity and the location of
zeros; extended light fields strictly need not satisfy these mild constraints, but the
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light fields that are ruled out are well-approximated by light fields that satisfy them.

We obtain a concrete sensor array processing interpretation of quasi light fields
by grouping the exponentials in (4.21) with U instead of K:

L(r, s) =

(

k

2π

)2

sz

∫∫ {

U
(

rR
)

exp
[

iks ·
(

r − rR
)]

}

K
(

rR
⊥ − r⊥, r

C
⊥ − r⊥

)

×
{

U
(

rC
)

exp
[

iks ·
(

r− rC
)]

}∗

d2rR d2rC. (4.24)

The integral in (4.24) is the expected value of the energy of the output of a spatial
filter with impulse response exp(iks · r) applied to the scalar field, when using K to
estimate the correlation E[U(rR)U∗(rC)] by

U
(

rR
)

K
(

rR
⊥ − r⊥, r

C
⊥ − r⊥

)

U∗
(

rC
)

. (4.25)

That is, the choice of quasi light field corresponds to a choice of how to infer coherence
structure from scalar field measurements. The application of the spatial filter exp(iks·
r) is the continuous-time equivalent of the operation of the conventional beamformer
in the far zone in Section 2.1.2. K serves the role of a covariance matrix taper
by inferring the coherence structure, analogous to Guerci’s application of covariance
matrix tapers to Capon’s method [24]. But for our immediate purposes, the sensor
array processing interpretation in (4.24) allows us to cleanly separate the choice of
quasi light field in K from the plane wave focusing in the exponentials.

Several signal processing books meticulously classify the quadratic class of time-
frequency distributions by their properties, and discuss distribution design and use
for various applications [34, 35]. We can use these resources to design quasi light
fields for specific applications. For example, if we desire a light field with fine di-
rectional localization, we may first try the Wigner quasi light field in (4.8), which is
a popular starting choice. We may then discover that we have too many artifacts
from interfering spatial frequencies, called cross terms, and therefore wish to consider
a reduced interference quasi light field. We might try the modified B-distribution,
which is a particular reduced interference quasi light field that has a tunable param-
eter to suppress interference. Or, we may decide to design our own quasi light field
in a transformed domain using ambiguity functions. The resulting tradeoffs can be
tailoring to specific application requirements.

4.3 Capturing quasi light fields

To capture an arbitrary quasi light field, we sample and process the scalar field.
In incoherent imaging, the traditional light field is typically captured by instead
ignoring phase and making intensity measurements at a discrete set of positions and
directions, as is done in the plenoptic camera [14]. While it is possible to apply the
same technique to coherent imaging, only a small subset of quasi light fields can be
captured this way, limiting the available tradeoffs. In comparison, all quasi light
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fields can be computed from the scalar field, as in (4.16). We therefore sample the
scalar field with a discrete set of sensors placed at different positions in space, and
subsequently process the scalar field measurements to compute the desired quasi light
field. We describe the capture process for three specific quasi light fields in Section
4.3.1, and demonstrate the different localization properties of these quasi light fields
via simulation in Section 4.3.2.

4.3.1 Sampling the scalar field

To make the capture process concrete, we capture three different quasi light fields.
Capturing quasi light fields is very similar to the sensor array processing calcula-
tions in (4.1) and (4.10), which we now justify. For simplicity, we consider a two-
dimensional scene and sample an arbitrary scalar field with a linear array of sensors
regularly spaced along the y-axis (Figure 4-1). Our model can account for general
coherent phenomena, but assumes a particular sensor geometry to enable us to ex-
press the captured quasi light fields in a simple form. With this geometry, the scalar
field U is parameterized by a single position variable y, and the discrete light field ℓ is
parameterized by y and the direction component sy. The sensor spacing is d/2, which
we assume is fine enough to ignore aliasing effects. This assumption is practical for
long-wavelength applications such as millimeter-wave radar. For other applications,
aliasing can be avoided by applying an appropriate pre-filter. From the sensor mea-
surements, we compute three different quasi light fields, including the spectrogram
and the Wigner.

optional aperture stop T

sensors

radiation

d/2
y

(y, sy)

sy

s

Figure 4-1: We capture a discrete quasi light field ℓ by sampling the scalar field at regularly-
spaced sensors and processing the resulting measurements. We may optionally apply an
aperture stop T to mimic traditional light field capture, but this restricts us to capturing a
subset of quasi light fields.

Although the spectrogram quasi light field is attractive because it can be captured
like the traditional light field by making intensity measurements, it is inferior to other
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quasi light fields in jointly localizing energy in both position and direction. Zhang
and Levoy explain [53] how to capture the spectrogram by placing an aperture stop
specified by a transmission function T over the desired position y before computing
a Fourier transform to extract the plane wave component in the desired direction sy,
and previously Ziegler et al. used the spectrogram as a coherent light field to represent
a hologram [38]. The spectrogram is an important quasi light field because it is the
building block for the quasi light fields that can be directly captured by making inten-
sity measurements, since all nonnegative quadratic time-frequency distributions, and
therefore all nonnegative quasi light fields, are sums of spectrograms [35]. Ignoring
constants and sz, we compute the discrete spectrogram from the scalar field samples
by

ℓS(y, sy) =

∣

∣

∣

∣

∣

∑

n

T (nd)U(y + nd) exp (−ikndsy)

∣

∣

∣

∣

∣

2

. (4.26)

The Wigner quasi light field is a popular choice that exhibits good energy local-
ization in position and direction [35]. We already identified the Wigner quasi light
field in (4.8); the discrete version is

ℓW(y, sy) =
∑

n

U(y + nd/2)U∗(y − nd/2) exp (−ikndsy) . (4.27)

Evidently, the spectrogram and Wigner distribute energy over position and direction
in very different ways. Per (4.26), the spectrogram first uses a Fourier transform
to extract directional information and then computes a quadratic energy quantity,
while the Wigner does the reverse, per (4.27). On the one hand, this reversal allows
the Wigner to better localize energy in position and direction, since the Wigner is
not bound by the classical Fourier uncertainty principle as the spectrogram is. On
the other hand, the Wigner’s nonlinearities introduce cross-term artifacts by coupling
energy in different directions, thereby replacing the simple uncertainty principle with
a more complicated set of tradeoffs [35].

Although the spectrogram is similar to the traditional light field in having non-
negative values, no quasi light field exhibits all the properties of the traditional light
field [50]. We introduce a third quasi light field to capture, that exhibits a different
traditional light field property. Specifically, the traditional light field is zero where
the scalar field is zero, while the support of both the spectrogram and Wigner spills
over into regions where the scalar field is zero. In contrast, the conjugate Rihaczek
quasi light field, which can be obtained by substituting (4.3) for a∗(s) in (4.6) and
factoring, is identically zero at all positions where the scalar field is zero and for all
directions in which the plane wave component is zero:

LR(r, s) = szU
∗(r) exp(iks · r)a(s). (4.28)

However, unlike the nonnegative spectrogram and the real Wigner, the Rihaczek is
complex-valued, as each of its discoverers independently observed: Walther in optics
[47], Kirkwood in quantum physics [54], and Rihaczek in signal processing [55]. The
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discrete conjugate Rihaczek quasi light field is

ℓR(y, sy) = U∗(y) exp (ikysy)
∑

n

U(nd) exp (−ikndsy) . (4.29)

4.3.2 Localization tradeoffs

Different quasi light fields localize energy in position and direction in different ways,
so that the choice of quasi light field affects the potential resolution achieved in an
imaging application. We illustrate the diversity of behavior by simulating a plane
wave propagating past a screen edge and computing the spectrogram, Wigner, and
Rihaczek quasi light fields from scalar field samples (Figure 4-2). This simple sce-
nario stresses the main tension between localization in position and direction: each
quasi light field must encode the position of the screen edge as well as the downward
direction of the plane wave. The quasi light fields serve as intermediate representa-
tions used to jointly estimate the position of the screen edge and the orientation of the
plane wave. Although simple, our simulation illustrates the tradeoffs in implementing
different quasi light fields with a sensor array, as in (4.1) and (4.10).

spectrogram

Wigner Rihaczek

ideal

opaque 
screen

measurement 
plane

plane wave,

R =

50 m
0 m 3 m

y

u

λ = 3 mm

0

3

0

3

0

u

y 3 0 y 3

u

Figure 4-2: The spectrogram does not resolve a plane wave propagating past the edge of
an opaque screen as well as other quasi light fields, such as the Wigner and Rihaczek. We
capture all three quasi light fields by sampling the scalar field with sensors and processing
the measurements according to (4.26), (4.27), and (4.29). The ringing and blurring in the
light field plots indicate the diffraction fringes and energy localization limitations.

Our simulation accurately models diffraction using our implementation of the
plane-wave propagation method (Appendix C.1), which is the same technique used
in commercial optics software to accurately simulate wave propagation [56]. We
propagate a plane wave with wavelength λ = 3 mm a distance R = 50 m past the
screen edge, where we measure the scalar field and compute the three discrete light
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fields using (4.26), (4.27), and (4.29). To compute the light fields, we set d = λ/10,
run the summations over |n| ≤ 10/λ, and use a rectangular window function of width
10 cm for T . We plot ℓS, |ℓW|, and |ℓR| in terms of the two-plane parameterization
of the light field [12], so that each ray is directed from a point u in the plane of
the screen towards a point y in the measurement plane, and so that sy = (y −
u)/ [R2 + (y − u)2]

1/2
.

We compare each light field’s ability to estimate the position of the screen edge
and the orientation of the plane wave (Figure 4-2). Geometric optics provides an
ideal estimate: we should ideally only see rays pointing straight down (u = y) past
the screen edge, corresponding to a diagonal line in the upper-right quadrant of the
light field plots. Instead, we see blurred lines with ringing. The ringing is physically
accurate and indicates the diffraction fringes formed on the measurement plane. The
blurring indicates localization limitations. While the spectrogram’s window T can be
chosen to narrowly localize energy in either position or direction, the Wigner narrowly
localizes energy in both, depicting instantaneous frequency without being limited by
the classical Fourier uncertainty principle [35].

It may seem that the Wigner light field is preferable to the others and the clear
choice for all applications. While the Wigner light field possesses excellent localization
properties, it exhibits cross-term artifacts due to interference from different plane
wave components. An alternative quasi light field such as the Rihaczek can strike a
balance between localization and cross-term artifacts, and therefore may be a more
appropriate choice, as discussed at the end of Section 4.2.3. If our goal were to
only estimate the position of the screen edge, we might prefer the spectrogram; to
jointly estimate both position and plane wave orientation, we prefer the Wigner;
and if there were two plane waves instead of one, we might prefer the Rihaczek.
One thing is certain, however: we must abandon nonnegative quasi light fields to
achieve better joint localization tradeoffs, as all nonnegative quadratic time-frequency
distributions are sums of spectrograms and hence are constrained by the Fourier
uncertainty principle [35].

4.4 Image formation from quasi light fields

We wish to form images from quasi light fields for coherent applications similarly to
how we form images from the traditional light field for incoherent applications, by
using (3.3) to integrate bundles of light field rays to compute pixel values (Figure 3-3).
However, simply selecting a particular captured quasi light field L and evaluating (3.3)
raises three questions about the validity of the resulting image. First, is it meaningful
to distribute coherent energy over surface area by factoring radiant intensity in (4.6)?
Second, does the far-zone assumption implicit in radiometry and formalized in (4.2)
limit the applicability of quasi field fields? And third, how do we capture quasi light
field rays remotely if, unlike the traditional light field, quasi light fields need not be
constant along rays?

The first question is a semantic one. For incoherent light of a small wavelength,
we define an image in terms of the power radiating from a scene surface towards an
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aperture, and physics tells us that this uniquely specifies the image (Section 4.2),
which may be expressed in terms of the traditional light field. If we attempt to
generalize the same definition of an image to partially coherent, broadband light, and
specifically to coherent light at a non-zero wavelength, we must ask how to isolate the
power from a surface patch towards the aperture, according to classical wave optics.
But there is no unique answer; different isolation techniques correspond to different
quasi light fields. Therefore, to be well-defined, we must extend the definition of
an image for coherent light to include a particular choice of quasi light field, which
corresponds to a particular factorization of radiant intensity.

The second and third questions speak of assumptions in the formulation of quasi
light fields and in the image formation from quasi light fields that can lead to coherent
imaging inaccuracies when these assumptions are not valid. Specifically, unless the
scene surface and aperture are far apart, the far-zone assumption in (4.2) does not
hold, so that quasi light fields are incapable of modeling near-zone behavior. Also,
unless we choose a quasi light field that is constant along rays, such as an angle-impact
Wigner function [57], remote measurements might not accurately reflect the light field
at the scene surface [58], resulting in imaging inaccuracies. Therefore, in general, inte-
grating bundles of remotely captured quasi light field rays produces an approximation
of the image we have defined. We assess this approximation by building an accurate
near-zone model in Section 4.4.1, simulating imaging performance of several coherent
cameras in Section 4.4.2, and showing how our image formation procedure general-
izes the classic beamforming algorithm in Section 4.4.3. We additionally make a more
precise coherent camera comparison in Section 4.4.4.

4.4.1 Near-zone radiometry

We take a new approach to formulating light fields for coherent radiation that avoids
making the assumptions that (i) the measurement plane is far from the scene surface
and (ii) light fields are constant along rays. The resulting light fields are accurate
in the near zone, and may be compared with quasi light fields to understand quasi
light field limitations. The key idea is to express a near-zone light field L(r, s) on
the measurement plane in terms of the infinitesimal flux at the point where the line
containing the ray (r, s) intersects the scene surface (Figure 4-3). First we compute
the scalar field at the scene surface, next we compute the infinitesimal flux, and then
we identify a light field that predicts the same flux using the laws of radiometry. In
contrast with Walther’s approach (Section 4.2.1), (i) we do not make the far-zone
approximation as in (4.2), and (ii) we formulate the light field in the measurement
plane instead of in the source plane at the scene surface. Therefore, in forming an
image from a near-zone light field, we are not limited to the far zone and we need not
relate the light field at the measurement plane to the light field at the scene surface.

The first step in deriving a near-zone light field L for the ray (r, s) is to use the
scalar field on the measurement plane to compute the scalar field at the point rP where
the line containing the ray intersects the scene surface. We choose coordinates so that
the measurement plane is the xy-plane, the scene lies many wavelengths away in the
negative z < 0 half-space, and r is at the origin. We denote the distance between the
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Figure 4-3: To ensure that integrating bundles of remote light field rays in the near zone
results in an accurate image, we derive a light field LR

ρ (r, s) in the measurement plane from

the infinitesimal flux dΦ at the point r
P where the ray originates from the scene surface

patch. We thereby avoid making the assumptions that the measurement plane is far from
the scene and that the light field is constant along rays.

source rP on the scene surface and the point of observation r by ρ. Under a reasonable
bandwidth assumption, the inverse diffraction formula expresses the scalar field at rP

in terms of the scalar field on the measurement plane [59]:

U(rP) =
ik

2π

∫

U(rM)
−zP

|rP − rM|
exp(−ik|rP − rM|)

|rP − rM| d2rM. (4.30)

Next, we compute the differential flux dΦ through a portion of a sphere at rP sub-
tending differential solid angle dΩ. We obtain dΦ by integrating the radial component
of the energy flux density vector

F(rP) = − 1

4πkν

[

∂U∗

∂t
∇U +

∂U

∂t
∇U∗

]

. (4.31)

To keep the calculation simple, we ignore amplitude decay across the measurement
plane, approximating

|rP − rM| ≈ |rP| (4.32)

outside the exponential in (4.30), and

∂

∂|rP| |r
P − rM| ≈ 1, (4.33)

when evaluating (4.31), resulting in

F(−ρs) =
(

2π

k

)2

ã(−ρs)ã∗(−ρs)s
2
z

ρ2
s, (4.34)
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where

ã(−ρs) =

(

k

2π

)2
∫

U(rM) exp(−ik| − ρs − rM|) d2rM. (4.35)

Thus,

dΦ =
(

2π

k

)2

s2
zã(−ρs)ã∗(−ρs) dΩ. (4.36)

Finally, we factor out sz and an outer integral over surface area from dΦ/dΩ to
determine a near-zone light field. Unlike in Section 4.2.1, the nonlinear exponential
argument in ã complicates the factoring. Nonetheless, we obtain a near-zone light field
that generalizes the Rihaczek by substituting (4.35) for ã∗ in (4.36). After factoring
and freeing r from the origin by substituting r − ρs for −ρs, we obtain

LR
ρ (r, s) = szU

∗(r) exp(ikρ)ã(r − ρs)

=

(

k

2π

)2

szU
∗(r) exp(ikρ)

×
∫

U
(

rM
)

exp
(

−ik|r − ρs− rM|
)

d2rM, (4.37)

where the subscript ρ reminds us of this near-zone light field’s dependence on distance.

LR
ρ is evidently neither the traditional light field nor a quasi light field, as it

depends directly on the scene geometry through an additional distance parameter.
This distance parameter ρ is a function of r, s, and the geometry of the scene; it is
the distance along s between the scene surface and r. We may integrate LR

ρ over a
bundle of rays to compute the image pixel values just like any other light field, as
long as we supply the right value of ρ for each ray. In contrast, quasi light fields
are incapable of modeling optical propagation in the near zone, as it is insufficient to
specify power flow along rays. We must also know the distance between the source
and point of measurement along each ray.

We can obtain near-zone generalizations of all quasi light fields through the sen-
sor array processing interpretation in Section 4.2.3. Recall that each quasi light field
corresponds to a particular choice of the function K in (4.24). For example, set-
ting K(a,b) = δ(b), where δ is the Dirac delta function, yields the Rihaczek quasi
light field LR in (4.28). To generalize quasi light fields to the near zone, we focus
at a point instead of a plane wave component by using a spatial filter with impulse
response exp (−ik |r − ρs|) instead of exp(iks·r) in (4.24). The application of the spa-
tial filter exp (−ik |r− ρs|) is the continuous-time equivalent of the operation of the
conventional beamformer in Section 2.1.2. Then, choosing K(a,b) = δ(b) yields LR

ρ ,
the near-zone generalization of the Rihaczek in (4.37), and choosing other functions
K yield near-zone generalizations of the other quasi light fields.

4.4.2 Near-zone diffraction limitations

We compute and compare image pixel values using the Rihaczek quasi light field LR

and its near-zone generalization LR
ρ , demonstrating how all quasi light fields implicitly
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make the Fraunhofer diffraction approximation that limits accurate imaging to the
far zone. First, we construct coherent cameras from LR and LR

ρ . For simplicity,
we consider a two-dimensional scene and sample the light fields, approximating the
integral over a bundle of rays by the summation of discrete rays directed from the
center rP of the scene surface patch to each sensor on a virtual aperture of diameter
A, equally spaced every distance d in the measurement plane (Figure 4-4a). Ignoring
constants and sz, we compute the pixel values for a far-zone camera from the Rihaczek
quasi light field in (4.28),

PR =
∑

|nd|<A/2

{

[

U(nd) exp
(

−ikndsn
y

)]∗∑

m

U(md) exp
(

−ikmdsn
y

)

}

, (4.38)

and for a near-zone camera from the near-zone generalization of the Rihaczek in
(4.37),

PR
ρ =





∑

|nd|<A/2

U(nd) exp (−ik∆n)





∗ [
∑

m

U(md) exp (−ik∆m)

]

. (4.39)

In (4.38), sn denotes the unit direction from rP to the nth sensor, and in (4.39), ∆n

denotes the distance between rP and the nth sensor.

By comparing the exponentials in (4.38) with those in (4.39), we see that the near-
zone camera aligns the sensor measurements along spherical wavefronts diverging
from the point of focus rP, while the far-zone camera aligns measurements along
plane wavefront approximations (Figure 4-4b). Spherical wavefront alignment makes
physical sense in accordance with the Huygens-Fresnel principle of diffraction, while
approximating spherical wavefronts with plane wavefronts is reminiscent of Fraunhofer
diffraction. In fact, the far-zone approximation in (4.2) used to derive quasi light fields
follows directly from the Rayleigh-Sommerfeld diffraction integral by linearizing the
exponentials, which is precisely Fraunhofer diffraction. Therefore, all quasi light fields
are only valid for small Fresnel numbers, when the source and point of measurement
are sufficiently far away from each other.

We expect the near-zone camera to outperform the far-zone camera in near-zone
imaging applications, which we demonstrate by comparing their ability to resolve
small targets moving past their field of view. As a baseline, we introduce a third
camera with nonnegative pixel values PB

ρ by restricting the summation over m in
(4.39) to |md| < A/2, which is a scaled version of the beamformer camera PBFC in
(3.14). Alternatively, we could extend the summation over n in (4.39) to the entire
array, but this would average anisotropic responses over a wider aperture diameter,
resulting in a different image. We simulate an opaque screen containing a pinhole
that is backlit with a coherent plane wave (Figure 4-5). The sensor array is D = 2 m
wide and just R = 1 m away from the screen. The virtual aperture is A = 10 cm wide
and the camera is focused on a fixed 1 mm pixel straight ahead on the screen. The
pinhole has width 1 mm, which is smaller than the wavelength λ = 3 mm, so the plane
wavefronts bend into slightly spherical shapes via diffraction. We move the pinhole to
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Figure 4-4: The near-zone light field results in a camera that aligns spherical wavefronts
diverging from the point of focus r

P, in accordance with the Huygens-Fresnel principle of
diffraction, while quasi light fields result in cameras that align plane wavefront approxi-
mations, in accordance with Fraunhofer diffraction. Quasi light fields are therefore only
accurate in the far zone. We derive both cameras by approximating the integral over a bun-
dle of rays by the summation of discrete light field rays (a), and we interpret the operation
of each camera by how they align sensor measurements along wavefronts from r

P (b).

the right, recording pixel values |PR|, |PR
ρ |, and PB

ρ for each camera at each pinhole
position. Due to the nature of the coherent combination of the sensor measurements
that produces the pixel values, each camera records a multilobed response. The width
of the main lobe indicates the near-zone resolution of the camera.

The near-zone camera is able to resolve the pinhole down to its actual size of 1 mm,
greatly outperforming the far-zone camera which records a blur 66 cm wide, and even
outperforming the beamformer camera. Neither comparison is surprising. First, with
a Fresnel number of D2/Rλ ≈ 1333, the Fraunhofer approximation implicitly made
by quasi light fields does not hold for this scenario, so we expect the far-zone camera
to exhibit poor resolution. Second, the near-zone camera uses the entire D = 2 m
array instead of just the sensors on the virtual aperture that the beamformer camera
is restricted to, and the extra sensors lead to improved resolution.
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Figure 4-5: Images of nearby objects formed from pure quasi light fields are blurry. In the
scene, a small backlit pinhole moves across the field of view of a sensor array that implements
three cameras, each computing one pixel value for each pinhole position, corresponding to
a fixed surface patch. As the pinhole crosses the fixed scene surface patch, the near-zone
camera resolves the pinhole down to its actual size of 1 mm, while the far-zone camera
records a blur 66 cm wide.

4.4.3 Generalized beamforming

We compare image formation from light fields with traditional perspectives on co-
herent image formation, by relating quasi light fields and our coherent cameras with
the conventional beamforming algorithm from Chapter 2. The beamforming algo-
rithm estimates a spherical wave diverging from a point of focus rP by delaying and
averaging sensor measurements. When the radiation is narrowband, the delays are
approximated by phase shifts. With the sensor array geometry from Section 4.4.2,
the beamformer output is

g =
∑

m

T (md)U(md) exp(−ik∆m), (4.40)



4 Unified theory of image formation based on quasi light fields 71

where the T (md) are amplitude weights used to adjust the beamformer’s performance.
As rP moves into the far zone,

∆m − ∆0 → mdsm
y → mds0

y, (4.41)

so that apart from a constant phase offset, (4.40) becomes a short-time Fourier trans-
form

g∞ =
∑

m

T (md)U(md) exp(−ikmds0
y). (4.42)

Evidently, |g∞|2 is a spectrogram quasi light field, and we may select T to be a
narrow window about a point r to capture LS(r, s0). We have already seen how
quasi light fields generalize the spectrogram, and sensor array processors can readily
compute alternative quasi light fields to achieve new tradeoffs for source localization
and imaging performance.

Current beamformer applications instead typically select T to be a wide window
to match the desired virtual aperture, and assign the corresponding pixel value to the
output power |g|2. We can decompose the three cameras in Section 4.4.2 into such
beamformers. First, we write PR

ρ in (4.39) in terms of two different beamformers,

PR
ρ = g∗1g2, (4.43)

where
g1 =

∑

|nd|<A/2

U(nd) exp (−ik∆n) (4.44)

and
g2 =

∑

m

U(md) exp (−ik∆m) , (4.45)

so that the windows for g1 and g2 are rectangular with widths matching the aperture
A and sensor array D, respectively. Next, by construction

PB
ρ = |g1|2. (4.46)

Finally, in the far zone, sn → s0 in (4.38) so that

PR → (g∞1 )∗ g∞2 , (4.47)

where g∞1 and g∞2 are given by (4.42) with the windows T used in (4.44) and (4.45).
In other words, the near-zone camera is the Hermitian product of two different beam-
formers, and is equivalent to the far-zone camera in the far zone.

We interpret the role of each component beamformer from the derivation of (4.39).
Beamformer g∗1 aggregates power contributions across the aperture using measure-
ments of the conjugate field U∗ on the aperture, while beamformer g2 isolates power
from the point of focus using all available measurements of the field U . In this manner,
the tasks of aggregating and isolating power contributions are cleanly divided between
the two beamformers, and each beamformer uses the measurements from those sen-
sors appropriate to its task. In contrast, the beamformer camera uses the same set of
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sensors for both the power aggregation and isolation tasks, thereby limiting its ability
to optimize over both tasks.

The near-zone camera achieves a new tradeoff between resolution and anisotropic
sensitivity. We noted that the near-zone camera exhibits better resolution than the
beamformer, for the same virtual aperture (Figure 4-5). This is not an entirely fair
comparison because the near-zone camera is using sensor measurements outside the
aperture, and indeed, a beamformer using the entire array would achieve comparable
resolution. However, extending the aperture to the entire array results in a different
image, as anisotropic responses are averaged over a wider aperture diameter. We
interpret the near-zone camera’s behavior by computing the magnitude

∣

∣

∣PR
ρ

∣

∣

∣ =
√

|g1|2|g2|2. (4.48)

Evidently, the pixel magnitude of the near-zone camera is the geometric mean of the
two traditional beamformer output powers. |PR

ρ | has better resolution than |g1|2 and
better anisotropic sensitivity than |g2|2.

Image formation with alternative light fields uses the conjugate field and field
measurements to aggregate and isolate power in different ways. In general, image
pixel values do not neatly factor into the product of beamformers, as they do with
the Rihaczek (Appendix B.3.1).

4.4.4 Explicit camera comparison

For clarity of presentation, we ignored the leading constants for the light fields in
our derivation of the cameras in Section 4.4.2. We now restore these constants to
demonstrate the minor differences they represent. We interpret the discretization of
the bundle of rays in Section 4.4.2 by approximating the indicator function B(y, ψ)
in (3.4). For the ideal single-lens camera (Figure 3-4), the bundle of rays corresponds
to the space bounded between the curves y = y0 −V/2 +R tanψ and y = y0 + V/2 +
R tanψ (Figure 4-6). The subset of B defined by the cone of rays with vertex rP

corresponds to the curve y = y0 +R tanψ. We therefore approximate B(y, ψ) with a
Dirac delta function along this curve. We weight the delta function with the width
of the region of integration, V dψ/dy. Since

dψ =
cos2 ψ

R
dy, (4.49)

the region of integration becomes

B(y, ψ) =
V cos2 ψ

R
δ(y − y0 − R tanψ). (4.50)

We substitute (4.50) into (3.4) to obtain

P =
V

R

∫ A/2

−A/2

∫ π/2

−π/2
L(y, ψ)δ(y − y0 −R tanψ) cos3 ψ dψ dy, (4.51)
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and then integrate out ψ:

P =
V

R

∫ A/2

−A/2
L(y, ψy) cos3 ψy dy, (4.52)

where ψy denotes the angle that a ray from rP to (y, R) makes with respect to the
z-axis.

y

ψ

A/2

−A/2

−π/2 π/2

V

dy

V dψ/dy

y0 + R tan ψ
y =

Figure 4-6: We approximate the region of integration of the light field over the bundle of
rays B for the ideal single-lens camera in Figure 3-4. The exact region B(y, ψ) is bounded
between the curves y = y0 − V/2 + R tanψ and y = y0 + V/2 + R tanψ, separated by a
vertical distance V . We collapse the ray bundle to a cone with vertex r

P, corresponding
to the curve y = y0 + R tanψ. We approximate B(y, ψ) by a Dirac delta function on this
curve, weighted by the width of the rectangle, V dψ/dy.

We now use (4.52) to recompute the pixel values for the near-zone camera and
the beamformer camera. For the near-zone camera, we first express the near-zone
generalization of the Rihaczek light field in (y, ψ) coordinates as

LR
ρ (y, ψ) =

k

2π
U∗(y) exp(ik∆y) cosψ

∫

U(y′) exp(−ik∆y′) dy′, (4.53)

where ∆y is the distance between rP and (y, R). We substitute (4.53) into (4.52) and
approximate the integrals with Riemann sums to obtain the near-zone camera pixel
values

PR2
ρ =





1

A/d

∑

|nd|<A/2

KnU(nd) exp(−ik∆n)





∗ [
1

M

∑

m

U(md) exp(−ik∆m)

]

, (4.54)
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where

Kn =
V AD

Rλ
cos4 ψnd (4.55)

and D = Md is the length of the sensor array.

For the beamformer camera, we substitute (3.13) into (4.52) and make a Riemann
sum approximation to obtain PBFC = K|g|2 just as in (3.14), but with a leading
constant

K =
V A

RθBW

1

A/d

∑

|nd|<A/2

cos4 ψnd. (4.56)

According to our approximation for the beam width θBW in (2.36), K is simply the
average of the Kn:

K =
1

A/d

∑

|nd|<A/2

Kn. (4.57)

This averaging is the only effect we have neglected by omitting the light field con-
stants. We can obtain a deeper perspective on camera comparison by using principles
from tomography (Appendix B.3.2).

4.5 Summary and future challenges

We enable the use of existing incoherent imaging tools for coherent imaging applica-
tions, by extending the light field to coherent radiation. We explain how to formulate,
capture, and form images from quasi light fields. By synthesizing existing research in
optics, quantum physics, and signal processing, we motivate quasi light fields, show
how quasi light fields extend the traditional light field, and characterize the properties
of different quasi light fields. We explain why capturing quasi light fields directly with
intensity measurements is inherently limiting, and demonstrate via simulation how
processing scalar field measurements in different ways leads to a rich set of energy
localization tradeoffs. We show how coherent image formation using quasi light fields
is complicated by an implicit far-zone (Fraunhofer) assumption and the fact that not
all quasi light fields are constant along rays. We demonstrate via simulation that a
pure light field representation is incapable of modeling near-zone diffraction effects,
but that quasi light fields can be augmented with a distance parameter for greater
near-zone imaging accuracy. We show how image formation using light fields general-
izes the classic beamforming algorithm, allowing for new tradeoffs between resolution
and anisotropic sensitivity. Quasi light fields play a role similar to the scalar field, as
an abstract representation that describes how sources of radiation interact with the
environment, and that can be processed to form images.

Although we have assumed perfectly coherent radiation, tools from partial co-
herence theory (i) allow us to generalize our results, and (ii) provide an alternative
perspective on image formation. First, our results extend to broadband radiation
of any state of partial coherence by replacing U(rR)U∗(rC) with the cross-spectral
density W (rR, rC, ν). W provides a statistical description of the radiation, indicating
how light at two different positions, rR and rC, is correlated at each frequency ν
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(Appendix A.4). Second, W itself may be propagated along rays in an approximate
asymptotic sense [60, 61], which forms the basis of an entirely different framework for
using rays for image formation, using the cross-spectral density instead of the light
field as the core representation.

We present a model of coherent image formation that strikes a balance between
utility and comprehensive predictive power. On the one hand, quasi light fields offer
more options and tradeoffs than their traditional, incoherent counterpart. In this
manner, the connection between quasi light fields and quasi-probability distributions
in quantum physics reminds us of the potential benefits of forgoing a single famil-
iar tool in favor of a multitude of useful yet less familiar ones. On the other hand,
compared with Maxwell’s equations, quasi light fields are less versatile. Therefore,
quasi light fields are attractive to engineers who desire more versatility than tradi-
tional energy-based methods, yet a more specialized model of image formation than
Maxwell’s equations.

Unlike our treatment of additive noise in Chapter 2, we have neglected to model
sensor measurement error when using arrays to capture quasi light fields. Our empha-
sis reflects the fact that a noise model was instrumental in deriving the conventional
beamformer and its role in image formation, but primarily guides the implementa-
tion when forming images from quasi light fields. Noise analysis is discussed in the
time-frequency distribution literature [35].

Quasi light fields illustrate the limitations of the simple definition of image for-
mation ubiquitous in incoherent imaging. An image is the visualization of some
underlying physical reality, and the energy emitted from a portion of a scene surface
towards a virtual aperture is not a physically precise quantity when the radiation
is coherent, according to classical electromagnetic wave theory. Perhaps a different
image definition may prove more fundamental for coherent imaging, or perhaps a
quantum optics viewpoint is required for precision. Although we have borrowed the
mathematics from quantum physics, our entire discussion has been classical. Yet if
we introduce quantum optics and the particle nature of light, we may unambiguously
speak of the probability that a photon emitted from a portion of a scene surface is
intercepted by a virtual aperture.





Chapter 5

Beamformer performance

in the presence of phase noise

Having presented a unified theory of image formation in Chapter 4, we now address
the practical challenges in implementing millimeter-wave imaging systems, beginning
with the management of phase noise in radar. Specifically, using quasi light fields
for coherent imaging involves coherently combining scalar field measurements. Scalar
field processing extracts direction information from the phase, just as applying phase
shifts electronically steers the conventional beamformer. The addition of phase noise
therefore threatens our ability to extract direction information and form images.
Phase noise is particularly challenging in millimeter-wave radar, where the phase
shifts required to steer the beamformer correspond to timing delays on the order of a
picosecond at the carrier frequency, leading to aggressive noise margin requirements
on today’s technology.

We explore the impact of phase noise on beamformer performance and outline a
methodology for translating application-level requirements to phase noise margins for
the underlying circuitry. For simplicity, we assume a conventional beamformer using
a linear sensor array focused in the far zone, with inter-sensor spacing d = λ/2. As in
Section 2.2.2, we model the phase noise at the ith sensor as an ergodic noise process
φi(t) with zero mean. The three key design parameters are the number of sensors M ,
the phase noise standard deviation σφ, and the beamforming interval N . We base our
performance metrics on the beam pattern magnitude when the beamformer is steered
perpendicular to the array at θT = π/2:

|Bθ(t)| =
∣

∣

∣

∣

1

M
a∗(π/2)Φa(θ)

∣

∣

∣

∣

. (5.1)

Specifically, we consider the sidelobe suppression, tilt, and beam width of both the
expected beam pattern and, where applicable, the sample paths of the instantaneous
beam pattern. We estimate the expected beam pattern using Monte Carlo simulations
(Appendix C.2).

Our strategy is to explore the relationship between the design parameters and
performance metrics through simulations, simplify the results with analytic approxi-
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mations, and support the conclusions with intuition. To simplify the tradeoff space,
we separately analyze how to size the array relative to the phase noise and how many
instantaneous beam patterns |Bθ(t)| to average over. The array size determines the
steady state behavior of the beamformer in the presence of phase noise, which we
coarsely classify into four different regions of operation. No amount of time averaging
can impact the beamformer’s steady state behavior, which we examine by first study-
ing fixed array sizes of M = 10, 100, and 1000, and then generalizing for arbitrary
size. After we size the array to achieve the desired region of operation, we analyze
the second-order effects on performance due to time averaging. Depending on the
application requirements, we may need to increase the array size to compensate for
the lack of a sufficient number of instantaneous beam patterns to average. Therefore,
although the array size, phase noise, and beamforming interval interact with each
other to determine beamformer performance, it is conceptually simpler to postpone
a discussion of time averaging and first study the steady state behavior.

We begin by describing the four stages of beamformer performance degradation
that define four regions of operation (Section 5.1). There are certain noise thresholds,
or breakpoints, at which the beamformer transitions to the next region. We define
and characterize the breakpoints while analyzing the steady state behavior of sidelobe
suppression, tilt, and beam width in the various regions of operation (Section 5.2). We
then analyze how much time averaging is required to guarantee acceptable interference
suppression and resolution within the stable region of operation (Section 5.3).

5.1 Regions of operation for different noise levels

We classify beamformer behavior into four regions of operation, based on both M
and σφ (Figure 5-1). For fixed array size M , the beamformer degrades over the four
regions as the phase noise σφ increases from 0 to ∞ (Section 5.1.1). Larger values of
M push the points of transition between regions, called breakpoints, further out to
higher noise levels. Beamformers thereby become more robust to phase noise as the
number of sensors increases (Section 5.1.2).

5.1.1 Macroscopic beam pattern behavior

We fix the array size M and describe the beamformer’s behavior as σφ increases from
0. For small values of σφ below the sidelobe breakpoint σSB

φ , the expected beam
pattern retains its shape even though the instantaneous beam pattern can be quite
noisy, particularly around the sidelobes. In this stable region of operation, enough
time averaging will virtually eliminate the effect of phase noise on performance. We
therefore desire to operate in the stable region, below the sidelobe breakpoint, for
applications that cannot tolerate any detrimental performance impact due to phase
noise.

As the phase noise increases and surpasses the sidelobe breakpoint σSB
φ , the side-

lobes begin to rise, resulting in greater interference from sources outside the steering
direction. No amount of time averaging prevents the sidelobes from rising. How-
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stable
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Figure 5-1: As phase noise increases, beamformer performance degrades over four different
regions of operation. We illustrate the expected beam pattern along with a noisy sample
path of the instantaneous beam pattern for various values of σφ. At the sidelobe breakpoint
σSB

φ , the sidelobes of the beam pattern begin to increase. At the tilt breakpoint σTB
φ , the

sidelobes begin to compete with the main lobe, causing the beam to wobble. At the collapse
breakpoint σCB

φ , the beam collapses.

ever, if the phase noise remains below the tilt breakpoint σTB
φ , the sidelobes do not

compete with the main lobe. The maxima of the instantaneous beam patterns are
clustered about the main lobe with high probability, so that the tilt exhibits a Gaus-
sian distribution. We therefore desire to operate above the sidelobe breakpoint but
below the tilt breakpoint for applications that do not have aggressive requirements
for interference suppression.

As the phase noise increases further and surpasses the tilt breakpoint σTB
φ , the

sidelobes become so large that they compete with the main lobe, which becomes
difficult to identify in the instantaneous beam patterns. The beam wobbles about the
intended steering direction and can point in an arbitrary direction at any moment
in time, so that the tilt no longer exhibits a Gaussian distribution. If the phase
noise remains below the collapse breakpoint σCB

φ , enough time averaging can still
localize the beam so that the main lobe is evident, but the expected beam pattern
otherwise degrades. We therefore desire to operate above the tilt breakpoint but below
the collapse breakpoint for applications without aggressive performance requirements
where large sensor arrays are prohibitively expensive.

When the phase noise surpasses the collapse breakpoint σCB
φ , the beam collapses

to a random uniform distribution and loses all directional selectivity. Time averag-
ing results in a blank, uniform image. It is useless to operate above the collapse
breakpoint.

Larger arrays are more robust to phase noise. For example, when M = 100 and
σφ = 0.2π, corresponding to 1 ps at 100 GHz, the phase noise is below the sidelobe
breakpoint and the expected beam pattern is stable. The sidelobes would rise for
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the same array with twice the phase noise, when σφ = 0.4π. However, a larger array
with M = 1000 would have a stable beam pattern for phase noise up to σφ = 0.6π,
corresponding to 3 ps at 100 GHz.

5.1.2 Robustness of large arrays

We employ phasors to understand why a beamformer using a large sensor array is
robust to phase noise. The beam pattern is the sum of M complex numbers, each
with a magnitude of 1/M :

Bθ(t) =
1

M
a∗(θT)Φa(θ). (5.2)

As M increases, we add additional sensors to grow the array, with the distance be-
tween adjacent sensors held constant and the beamformer output power normalized
by 1/M . We interpret beamforming as adding the corresponding M phasors together,
positioned head-to-tail, forming a random walk (Figure 5-2). There are M steps of
size 1/M , so that M determines the granularity of the walk. The steering vector a(θ)
is a sequence of phasors with linearly increasing phase, per (2.6). Adding the pha-
sors in a(θ) together forms a segmented arc with a curvature determined by θ. The
beamformer applies a∗(θT) to unwrap the arc according to θT, so that when θT = θ
the arc is completely flattened into a straight line. The phase noise Φ perturbs each
segment of the arc, randomly rotating each phasor with a standard deviation of σφ.
The distance from the origin to the tip of the last phasor indicates the magnitude
of the beam pattern. When phase noise is present, the arc is generally not regularly
curved, so that steering cannot straighten the arc into a line to maximize the beam
pattern. For low values of M , phase noise can dramatically change the curvature of
the arc, while for high values of M , the granularity of the random walk is higher so
that the same level of phase noise has less impact on the curvature. The curvature,
and hence the beam pattern, is therefore better preserved when M is large.

We employ vector spaces to understand how the impact of phase noise on beam-
former steering error diminishes with array size. While the phase noise for an array
with M sensors resides in an M-dimensional space, the application of phase shifts to
steer the array traverses a 1-dimensional subspace. Specifically, the steering subspace
is generated by a sequence of M regularly ascending phase shifts

u = [1 2 · · · M ]t. (5.3)

There is also a 1-dimensional invariant subspace given by

v = [1 1 · · · 1]t, (5.4)

as adding the same phase at every sensor does not change the beam pattern magni-
tude. For two sensors, u and v span the entire space, so that phase noise can always
be interpreted as a change in steering, consistent with (2.40). For arbitrary M , we
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Figure 5-2: We interpret beamforming as unwrapping a segmented arc composed of phasors.
The magnitude of the unwrapped arc corresponds to the magnitude of the beam pattern.
The impact of phase noise is to randomly rotate each phasor. For two sensors (a), the
addition of phase noise can always be interpreted as a change in steering direction (b). For
five sensors, the phasors can generally only be perfectly straightened in the absence of phase
noise (c), but the overall length is not substantially reduced even when significant phase
noise is present (d).

can project the phase noise vector

n = [φ1 φ2 · · · φM ]t (5.5)

onto u to obtain
ntu

utu
u. (5.6)

In (5.6), u is scaled by a random variable with zero mean and a variance that decays
as 1/M3. Thus the impact of phase noise on steering diminishes as M increases.

5.2 The steady state operating point

The size of the sensor array, relative to the phase noise, determines the steady state
operating point. We analyze the behavior of the sidelobe suppression, tilt, and beam
width in the presence of phase noise, and thereby determine the breakpoints at the
boundaries of the regions of operation. We first describe how the sidelobes are stable
for low phase noise but then grow linearly above the sidelobe breakpoint (Section
5.2.1). Next, we characterize the probability distribution of the tilt, which is Gaussian
below the tilt breakpoint and uniform above the collapse breakpoint (Section 5.2.2).
Then, we determine the robustness of the beam width to phase noise (Section 5.2.3).
We postpone a discussion of the role of time averaging until Section 5.3.
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5.2.1 Sidelobe suppression in presence of phase noise

Our simulations indicate that the sidelobes of the expected beam pattern are stable
for low levels of phase noise, but then grow linearly until the sidelobe suppression
is approximately −6.2 dB. We define the level of phase noise at which the sidelobes
begin to grow as the sidelobe breakpoint. We estimate the sidelobe breakpoint and
determine that it increases logarithmically in the array size.

Sidelobes grow above sidelobe breakpoint

To first order, the sidelobe suppression SSL of the expected beam pattern is a piecewise
linear function of the phase noise σφ (Figure 5-3). In the absence of phase noise, SSL is
a function of the array size M that approaches −13.5 dB as M → ∞ (Section 2.2.1).
As σφ increases from zero, SSL remains constant until σφ approaches the sidelobe
breakpoint. The phase noise is small enough that the perturbations in the phasor
sum in Section 5.1.2 are approximately linear, and therefore absent in the expected
beam pattern used to compute SSL. Once the noise exceeds the sidelobe breakpoint,
the phasor addition introduces a bias and the sidelobes grow linearly (in dB) with σφ.
The sidelobe breakpoint increases with M , so that the beam pattern remains stable
in the presence of greater phase noise when using larger arrays. The slope of SSL

versus σφ also increases with array size, from 8.7 to 11.7 dB per radian as M varies
from 10 to 1000.

M = 10 M = 100 M = 1000

SSL

σφ

−6.2

−13.5

σSB
φ = 0.37 π

dB

dB

Figure 5-3: Sidelobe suppression is approximately a piecewise linear function of phase noise
σφ. The sidelobe suppression of the expected beam pattern remains constant until the noise
approaches the sidelobe breakpoint σSB

φ , at which point the sidelobes grow approximately
linearly with σφ. The sidelobe breakpoint increases with the array size M , so that the beam
pattern remains stable in the presence of greater phase noise when using larger arrays.

Estimating the sidelobe breakpoint

To estimate σSB
φ for a particular array size M , we estimate the sidelobe suppression

SSL of the expected beam pattern for each σφ using a Monte Carlo simulation (Ap-
pendix C.2.2), and then fit a piecewise linear function to the resulting data. We then
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estimate σSB
φ to be the point at which the piecewise linear function changes slope.

Empirically, for large values of M , our estimate of the sidelobe breakpoint occurs
when SSL ≈ −12 dB. When fitting the piecewise linear function we must take care
to avoid excessively large values of σφ, since as σφ → ∞ the sidelobe suppression
SSL → 0 dB, and so SSL will eventually no longer grow linearly with σφ as the beam
begins to wobble. However, SSL grows linearly with σφ as long as the sidelobes do
not compete with the main beam, which empirically holds when SSL < −6.2 dB. We
therefore confine the data to SSL < −6.2 dB when fitting the piecewise linear function
to estimate the sidelobe breakpoint.

σSB
φ ≈ 0.698 log10 M − 0.250

σSB
φ

0.6 π

M10 100 1000
0

Figure 5-4: The sidelobe breakpoint grows approximately logarithmically in array size M ,
so that we may approximate the relationship with a line on a semi-log plot.

The sidelobe breakpoint grows logarithmically in array sizeM , especially for larger
values of M (Figure 5-4). We obtain an analytic approximation by performing a least-
squares linear fit of σSB

φ to the logarithm of M :

σSB
φ ≈ 0.698 log10 M − 0.250. (5.7)

Given a model for phase noise, we can use (5.7) to size an array to guarantee that
we operate in the stable operating region, so that the sidelobe suppression of the
expected beam pattern is not significantly impacted by phase noise. Similarly, given
an array of a certain size, we can use (5.7) to place requirements on the phase noise
to guarantee stable operation.

5.2.2 Tilt in presence of phase noise

Our simulations indicate that the tilt exhibits a Gaussian distribution for low levels
of phase noise and a uniform distribution for high levels of phase noise. We define
the level of phase noise at which the tilt distribution ceases to be Gaussian as the
tilt breakpoint, and we define the level of phase noise at which the tilt distribution
becomes uniform as the collapse breakpoint. In between the tilt and collapse break-
points, the tilt exhibits a mixed Gaussian/uniform distribution. We estimate the tilt
breakpoint and determine that it increases logarithmically in the array size. We also
provide intuition for how phase noise impacts tilt through the beam width.
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Tilt is Gaussian below tilt breakpoint

As the phase noise increases so that σφ approaches the tilt breakpoint σTB
φ and SSL

approaches −6.2 dB, the sidelobes begin to compete with the main lobe and the
instantaneous beam pattern wobbles. We analyze this behavior and estimate the tilt
breakpoint through the tilt random variable τ (Section 2.2.1). For fixed array size
M , the probability distribution of τ changes from Gaussian to uniform as the phase
noise increases (Figure 5-5).

−π/2

−π/10 π/10

π/2

−π/2 τ

σφ = 0.2 π

σφ = 0.5 π

σφ = 0.8 π

π/2

Gaussian

uniform

σφ

στ

0.2 π 0.5 π 0.8 πσTB
φ

π/
√

12

Figure 5-5: The distribution of beam pattern tilt τ changes from Gaussian to uniform
as the phase noise σφ increases. When the phase noise is below the tilt breakpoint σTB

φ ,
the beam pattern maximum is locally concentrated about the main lobe. As σφ increases
past σTB

φ , the sidelobes grow so that the maximum can occur elsewhere, resulting in a
mixed Gaussian/uniform distribution. With enough phase noise, the beam collapses and
the maximum is uniformly distributed over the entire steering range. The progression of
the tilt standard deviation στ mirrors the evolution of the distribution of τ .

We define the tilt breakpoint σTB
φ as the smallest value of σφ at which the distribu-

tion of τ is no longer Gaussian. Intuitively, the Gaussian distribution arises because
for low noise levels, only points on the main lobe can compete for the maximum value
of the beam pattern. Once σφ reaches the tilt breakpoint, the sidelobes compete with
the main lobe and the beam pattern maximum can be achieved far away from the
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main lobe. When there is enough phase noise to collapse the beam pattern, the max-
imum is equally likely to be achieved at any direction, so that the tilt has a uniform
distribution. The relationship between the standard deviation of the tilt στ and σφ

mirrors the progression of the tilt distribution. Below the tilt breakpoint, στ increases
linearly with σφ as local competition for the maximum about the main lobe increases,
and the Gaussian distribution widens. Above the tilt breakpoint, στ increases at a
significantly faster rate as the maximum can occur far away from the main lobe, so
that the Gaussian distribution is mixed with a uniform distribution. Ultimately, στ

flattens out at the standard deviation π/
√

12 of a uniform random variable between
−π/2 and π/2.

Estimating the tilt breakpoint

To estimate the tilt breakpoint σTB
φ , we apply the Shapiro-Wilk hypothesis test [62]

to determine the smallest value of σφ at which the distribution of τ is no longer
Gaussian. Specifically, we run the Shapiro-Wilk test on samples of τ generated by a
Monte Carlo simulation (Appendix C.2.1). We begin searching for the tilt breakpoint
at a small value of σφ and then slowly increment σφ. We reject the null hypothesis
that τ has a Gaussian distribution at significance level 0.01. Once we obtain three
such rejections in a row, we declare the corresponding value of σφ to be our estimate
of the tilt breakpoint.

M10 100 1000

0.8 π

σTB
φ

σTB
φ ≈ 0.584 log10 M + 0.681

0

Figure 5-6: The tilt breakpoint grows approximately logarithmically in array size M , so
that we may approximate the relationship with a line on a semi-log plot.

The tilt breakpoint grows logarithmically in the array size M , especially for larger
values of M (Figure 5-6). We obtain an analytic approximation for tilt breakpoint
growth by performing a least-squares linear fit of σTB

φ to the logarithm of M :

σTB
φ ≈ 0.584 log10M + 0.681. (5.8)

Given a model for the phase noise, we can use (5.8) to size an array to guarantee that
we operate where the sidelobes do not interfere with the steering of the main beam.
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Intuition for tilt behavior

We obtain a simple model of the effect of phase noise on tilt below the tilt breakpoint
by analyzing the slope of στ . First, we estimate στ for values of σφ < σTB

φ and for
fixed M . We perform a least-squares linear fit to estimate the slope dστ/dσφ, and
repeat the process for each desired M . Then, we obtain an analytic approximation of
the slope dστ/dσφ as a function of M by performing a least-squares linear fit of the
logarithm of dστ/dσφ to the logarithm of M (Figure 5-7):

log10

dστ

dσφ

≈ −1.216 log10M − 0.255. (5.9)

We thereby obtain an expression for the standard deviation of the tilt in terms of
both the phase noise σφ and the array size M :

στ ≈ 0.556
σφ

M1.216
. (5.10)

M10 100 1000
10−4

100

dστ/dσφ

log10

dστ

dσφ

≈ −1.216 log10 M − 0.255

Figure 5-7: The tilt standard deviation slope decays with array size M , so that we may
approximate the relationship with a line on a log-log plot.

We interpret the impact of phase noise on tilt by noting that στ is approximately
inversely proportional to M in (5.10), and that the angular beam width θBW is also
inversely proportional to M in (2.36). Therefore, we relate the tilt and phase noise
by

στ ∼ σφ θBW. (5.11)

Thus, for phase noise below the tilt breakpoint, the beam pattern maximum is only
likely to be attained on the main lobe, and the array size impacts tilt by determining
the width of that lobe.

5.2.3 Beam width in presence of phase noise

Phase noise does not substantially impact the beam width of the expected beam
pattern when operating below the tilt breakpoint. We compare the half-power beam
width when the phase noise is just below the tilt breakpoint at σφ = 0.9σTB

φ to the
half-power beam width in the absence of phase noise. Our Monte Carlo simulations
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(Appendix C.2.3) indicate that the percentage change
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(5.12)

is bound below 6% for all array sizes M ≤ 1000. Therefore, the beam width of the
expected beam pattern is essentially preserved below the tilt breakpoint.

5.3 The role of time averaging

Our analysis above allows us to size the sensor array relative to the phase noise
to achieve the steady state behavior in the desired region of operation. We now
assume that we are operating in the stable region, below the sidelobe breakpoint.
The sidelobe suppression and beam width of the expected beam pattern are the same
as if there were no phase noise. If the beamforming interval N is large enough so
that the time-averaged beam pattern converges to the expected beam pattern, then
we can effectively average out the phase noise and expect as good performance as
if the noise were absent. However, many applications restrict N . For example, in
imaging applications, N must be low enough so that the scene is stationary over the
beamforming interval relative to the desired resolution, and a still lower N enables
a higher frame rate. To first order, deviations from noise-free behavior decay as
1/
√
N in the number N of independent sensor measurements processed. We make

the dependence on N precise by defining appropriate metrics for sidelobe interference
suppression (Section 5.3.1) and image resolution (Section 5.3.2).

5.3.1 Averaging to suppress sidelobe interference

We desire another metric for interference suppression besides sidelobe suppression,
since SSL of the expected beam pattern is only indicative of actual performance for
large N , and the sidelobes of a noisy instantaneous beam pattern are not clearly
identifiable. We therefore augment the sidelobe suppression metric to incorporate
the variance of the beam pattern at the main lobe and sidelobe peaks. We define the
sidelobe distortion SD, which we subsequently relate to the phase noise σφ, array size
M , and beamforming interval N .

To define the sidelobe distortion, we first express the familiar sidelobe suppression
in convenient notation. In the absence of noise, the beam pattern achieves its maxi-
mum at θ = π/2 and has a first sidelobe peak at θ = θS . The sidelobe suppression
is

SSL = 20 log10





E [|BθS
|]

E
[∣

∣

∣Bπ/2

∣

∣

∣

]



 . (5.13)

We denote the expected values of the main and sidelobe peaks of the beam pattern
by µM = E[|Bπ/2|] and µS = E[|BθS

|], and we denote the standard deviations of the
main and sidelobe peaks of the time-averaged beam pattern by σM and σS. With this
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notation, the sidelobe suppression is

SSL = 20 log10

(

µS

µM

)

. (5.14)

In contrast, we define the sidelobe distortion as

SD = 20 log10

(

µS + σS

µM − σM

)

− SSL

= 20 log10

(

1 + σS/µS

1 − σM/µM

)

. (5.15)

Intuitively, SD is an indication of how much worse sidelobe suppression can become
if our estimates of the beam pattern at the main lobe and sidelobe peaks are off
by one standard deviation. Note that as N → ∞, both σM → 0 and σS → 0, so
that SD → 0. The sidelobe distortion is approximately linear in σφ when operating
below the sidelobe breakpoint (Figure 5-8). We obtain an analytic approximation of
the slope dSD/dσφ as a function of M by performing a least-squares linear fit of the
logarithm of the slope to the logarithm of M :

log10

dSD

dσφ
≈ −0.235 log10M + 1.018. (5.16)

We thereby obtain an expression for the sidelobe distortion in terms of both the phase
noise σφ and the array size M :

SD ≈ 10.43
σφ

M0.235
. (5.17)

We now relate SD to the beamforming interval N to understand the impact of time
averaging. We make several approximations that are valid when σφ is small. First,
we note that for low phase noise, most of the uncertainty in sidelobe suppression
comes from the variability of the sidelobe peak, rather than the main lobe peak. We
therefore assume that σM ≪ µM in (5.15) so that

SD ≈ 20 log10 (1 + σS/µS) . (5.18)

Next, we make the first-order Taylor series approximation log(1 + x) ≈ x to obtain

SD ≈ 20

log 10

σS

µS
. (5.19)

Finally, we note that σS decays by 1/
√
N when we average N independent beam

patterns, while µS remains constant. Therefore, the sidelobe distortion also decays
by 1/

√
N . Together with (5.17), we relate sidelobe distortion to the design parameters
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Figure 5-8: The sidelobe distortion slope decays with array size M , so that we may ap-
proximate the relationship with a line on a log-log plot.

by

SD ∼ σφ

M0.235
√
N
. (5.20)

5.3.2 Averaging for better resolution

We desire another metric for resolution besides the half-power beam width, since θBW

of the expected beam pattern is only indicative of actual performance for large N ,
and the width of the main lobe of a noisy instantaneous beam pattern can be difficult
to identify. We therefore augment the beam width metric to incorporate the variance
of the beam pattern at every direction θ. We define the beam width distortion θD,
which we relate to the phase noise σφ, array size M , and beamforming interval N .

3 dB

σθ

E Bθ

θNB

Figure 5-9: The noisy beam width corresponds to making estimation errors on the order
of one standard deviation, and is defined as the main lobe of E[|Bθ|] + σθ that is greater
than 1/

√
2 times the peak of E[|Bθ|] − σθ.

To define the beam width distortion, we offset the beam pattern magnitude |Bθ|
by the standard deviation σθ of the time-averaged beam pattern at each angle θ
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(Figure 5-9). Recall that the half-power beam width θBW is the width of the main
lobe of E[|Bθ|] that is greater than 1/

√
2 times the peak of E[|Bθ|]. In contrast, we

define the noisy beam width θNB as the width of the main lobe of E[|Bθ|] +σθ that is
greater than 1/

√
2 times the peak of E[|Bθ|]−σθ. The noisy beam width corresponds

to making estimation errors of one standard deviation in one direction at the peak
and one standard deviation in the opposite direction everywhere else.

We define the beam width distortion as the percentage change in the beam width
due to phase noise:

θD =
|θNB − θBW|

θBW
. (5.21)

Note that as N → ∞, we have σθ → 0 so that θD → 0. The beam width distortion
is approximately linear in σφ when operating below the sidelobe breakpoint (Figure
5-10). We obtain an analytic approximation of the slope dθD/dσφ as a function of M
by performing a least-squares linear fit of the logarithm of the slope to the logarithm
of M :

log10

dθD

dσφ
≈ −0.309 log10M + 0.051. (5.22)

We thereby obtain an expression for the beam width distortion in terms of both the
phase noise σφ and the array size M :

θD ≈ 1.123
σφ

M0.309
. (5.23)
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≈ −0.309 log10 M + 0.051
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π/2 σφ

Figure 5-10: The beam width distortion slope decays with array size M , so that we may
approximate the relationship with a line on a log-log plot.

We now relate θD to the beamforming interval N to understand the impact of
time averaging. The standard deviation σθ decays as 1/

√
N at each angle θ. Thus the

vertical spread between the shifted beam patterns E[|Bθ|]−σθ and E[|Bθ|]+σθ decays
as 1

√
N . We assume that the slope of the expected beam pattern is approximately
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constant over the region of variation where the endpoints of the noisy beam width
are defined, so that |θNB − θBW| decays as 1/

√
N , as well. Together with (5.23), we

relate beam width distortion to the design parameters by

θD ≈ 1.123
σφ

M0.309
√
N
. (5.24)

5.4 Summary and future challenges

We have characterized conventional beamformer performance in terms of the number
of sensors M , the phase noise standard deviation σφ, and the beamforming interval
N . As the phase noise increases, performance degrades over four stages, during
which the sidelobes rise until they compete with the main lobe, causing the beam to
wobble and ultimately collapse. We ideally operate the beamformer in the first stage,
below the sidelobe breakpoint, where the expected beam pattern is stable. We then
need only ensure that M is large enough so that σφ lies below σSB

φ , and that N is
large enough so that time averaging keeps the sidelobes sufficiently attenuated and
the beam sufficiently narrow. The tilt standard deviation is related to the product
σφθBW, which is typically much smaller than the beam width and therefore not of
concern.

Our analysis guides design parameter selection and provides an intuitive under-
standing of the tradeoffs inherent in real coherent imaging applications, even though
we have focused on the specific case of a conventional far-zone beamformer for a uni-
form array. It is straightforward to adapt our Monte Carlo simulations (Appendix
C.2) to more accurately model other configurations.





Chapter 6

Digital phase tightening

for reducing phase noise

Coherent image formation requires precise control over the phase of each signal mea-
sured at the sensors. However, the circuitry used to process the signals introduces
phase noise, which can degrade image quality by decreasing the resolution and in-
creasing the susceptibility to interference at each pixel, as seen in Chapter 5. Phase
noise is of particular concern in millimeter-wave radar, where timing jitter on the or-
der of a picosecond can negatively impact performance. We propose a low-complexity
technique, called phase tightening, to reduce the phase noise in each received signal
prior to image formation. Phase tightening is a general technique that oversamples
the data to reduce noise, and is not limited to coherent imaging.

We distinguish between three different types of phase noise. First, the introduction
of a frequency offset causes the phase to drift away from its true value. Compensating
for frequency offsets has been extensively studied, and a phase-lock loop of sufficiently
high order can eliminate the resulting phase drift [63]. Second, the introduction of a
constant phase offset skews the phase from its true value by a fixed amount. Com-
pensating for fixed phase offsets is a relatively simple problem, because phase offsets
can be estimated and corrected for during offline calibration, where the environment
is under control and real-time performance is not required. Third, the introduction of
timing jitter perturbs the phase about its true value. Compensating for timing jitter
can be difficult, which motivates the need for phase tightening. We therefore focus
exclusively on phase noise due to timing jitter, assuming that other measures have
been taken to ensure that the phase noise has zero mean.

We develop phase tightening in discrete time, which although appropriate for use
in a digital coherent imaging system, raises additional concerns about managing high
digital data rates. Digital millimeter-wave radar imaging systems are challenging
to build [64]. Because of the high carrier frequency, the bandwidth of the received
signals typically requires the signals to be sampled at a relatively high rate to faithfully
represent them. Therefore, the data rate from the sensors to the central processor
that forms the image can be high. While phase tightening can produce an output
data rate down to the baseband Nyquist rate for the measured signals, this data rate
may still be challenging to manage.

93



94 6.1 Architecture for phase noise reduction

We first motivate our chosen phase tightening architecture by reviewing the clas-
sical phase estimation theory and comparing alternative architectures for phase noise
reduction (Section 6.1). We then qualitatively describe phase tightening behavior,
placing emphasis on the inherent bias in discrete phase estimation (Section 6.2). We
analyze the performance of our phase tightening algorithm by characterizing loop
stability, computing the state dynamics, and correcting for phase estimation bias
(Section 6.3). Our analysis suggests a design methodology, which we apply to a
millimeter-wave radar design problem. We include functional circuit diagrams for
both phase and amplitude estimation (Section 6.4).

6.1 Architecture for phase noise reduction

We wish to reduce the phase noise in the receiver of an active imaging system emitting
narrowband radiation at a high carrier frequency ωc. Each sensor measures a signal
y(t) that has a slowly-varying amplitude A(t) and phase ψ(t), but that is corrupted
by phase noise φ(t) and additive noise v(t):

y(t) = A(t) sin [ωct+ ψ(t) + φ(t)] + v(t). (6.1)

We assume that A(t) and ψ(t) are deterministic but unknown, that v(t) is additive
white Gaussian noise with zero mean, and that φ(t) is ergodic noise with zero mean.
Phase tightening provides a sequence of estimates of A(t) and ψ(t) at each sensor
(Figure 6-1). If the discrete estimates Ân and ψ̂n are updated at the baseband Nyquist
rate as A(t) and ψ(t) evolve over time, then the underlying envelopes of the received
signals can be reconstructed and used to form an image, as in Chapters 2 and 4.

phase 
tighteningA(t) sin [ωct + ψ(t) + φ(t)] + v(t) Ân, ψ̂n

Figure 6-1: Phase tightening estimates the slowly-varying amplitude A(t) and phase ψ(t)
of a high-frequency narrowband signal corrupted by both phase noise φ(t) and additive
noise v(t).

Phase tightening thereby results in a digital version of the measured signal, with
a lower frequency spectrum and lower phase noise than the original. The phrase
phase tightening arises because as the data rate decreases, the phase is pulled closer
to the true value. The circuit components used to implement phase tightening will
themselves introduce phase noise that must be reduced. We incorporate the impact
of these internal noise sources into ψ(t) throughout our analysis. We confine most
of our analysis to short time scales on which the signal envelopes are approximately
constant, and therefore abbreviate A(t) and ψ(t) with the constant amplitude A and
true phase ψ. We focus on the relationship between phase noise and phase estimation,
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and consequently ignore amplitude estimation (by setting A = 1) and additive noise
(by setting v(t) = 0) when they would otherwise unduly complicate the analysis.

Many practical systems exhibit more complicated types of phase noise φ(t) that
can be addressed by alternative techniques. For example, a free-running oscillator
may oscillate at a frequency that does not exactly match ωc. If such an oscillator
is mixed with a sensor measurement, it will contribute phase noise with increments
φ(t) − φ(t − T ) of unbounded variance in the time increment T . By replacing the
free-running oscillator with a phase-lock loop, the variance of the resulting phase
increment can be bounded [63]. However, even with a phase-lock loop, each sensor
measurement will generally have a different phase offset, so that φ(t) has nonzero
mean. Constant phase offsets can be subtracted out at each sensor by calibrating
the imaging system. Specifically, a calibration system can apply a sequence of phase
adjustments at each sensor, guided by the fidelity of the resulting beam pattern, until
the phase offsets are eliminated when the resulting image is sharp. We assume that
phase-lock loops and calibration techniques have been appropriately utilized, so that
we can assume that φ(t) is ergodic noise with zero mean. Our goal is to reduce the
variance of φ(t).

We first present a classical analog solution to phase noise reduction (Section 6.1.1).
Implementing a digital version of the classical solution requires analog to digital
conversion, which can be done at various stages of processing, with each possibility
resulting in a different architecture. One option results in a digital feedback loop that
forms the basis for our phase tightening technique (Section 6.1.2). We develop the
digital phase tightening algorithm and present a simple state evolution model that
we will use in our subsequent analysis (Section 6.1.3).

6.1.1 Classical analog solution

We decompose the problem of estimating ψ given y(t) into two classic problems: first,
estimating the phase ζ(t) = ψ+ φ(t) from y(t) in additive white Gaussian noise v(t);
and second, estimating the average ψ of the noisy ζ(t). The phase-lock loop (PLL)
is an optimal solution to the phase estimation problem, in both the minimum mean
square error and maximum a posteriori sense, when the loop is locked and under the
appropriate linear approximations [65] (Figure 6-2). The PLL estimates the phase
of its input y(t), and then uses the phase estimate ζ̂(t) to drive a variable phase
oscillator to produce a low-noise complement to y(t), given by cos[ωct + ζ̂(t)]. This
complement is modulated with y(t), producing a term oscillating at 2ωc, another at
ωc, and an error term that is a scaled version of sin[ζ(t)− ζ̂(t)]. The low-pass filter has
a cutoff frequency below ωc and therefore eliminates all but the low-frequency error
term, upon which it acts as an integrator that aggregates the error. The aggregated
error updates the phase estimate, which improves provided |ζ(t) − ζ̂(t)| < π, so that
the sign of the error ζ(t)− ζ̂(t) is preserved in sin[ζ(t)− ζ̂(t)], guaranteeing that the
loop remains locked.

The phase-lock loop operates by comparing the input with a signal generated from
a phase estimate, using the result of the comparison to update the phase estimate,
and then feeding the new phase estimate back to generate a new signal. Real phase-
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low-pass  
filter

variable phase 
oscillator

ζ̂(t)
A sin [ωct + ζ(t)] + v(t)

cos ωct + ζ̂(t)

Figure 6-2: The phase-lock loop optimally estimates the phase under the appropriate linear
approximations. The PLL produces a phase estimate ζ̂(t) which is used to construct a low-
noise complement to the input. The complement is modulated with the input, and the
low-pass filter eliminates all resulting terms except an error term, which it integrates to
update ζ̂(t).

lock loops vary in complexity and implement the overall input-output relationship
described above in different ways. For example, practical implementations employ a
voltage-controlled oscillator rather than a variable phase oscillator, so that the voltage
controls the oscillator frequency instead of the phase [65].

Once we have a phase estimate ζ̂(t), we need only average it to estimate ψ. The
averaging can be implemented by appending another filter to the output of the PLL,
or even incorporated into the low-pass filter in the loop itself, as long as the resulting
loop dynamics are acceptable.

6.1.2 Architectural decisions on converting to digital

We seek a digital version of the classical phase-lock loop to use as the basis for phase
tightening. There are four clear interfaces in the generalized PLL architecture at
which to convert from an analog to a digital representation (Figure 6-3). At one
extreme, we can convert the output to obtain the pure analog system from Section
6.1.1, which poses a significant analog circuit design challenge at high frequencies. At
the other extreme, we can convert the input to obtain a pure digital system, which
could require high bit precision at a high sampling rate to adequately represent the
input y(t). Another natural conversion point is after the phase estimation, resulting
in an analog PLL followed by digital averaging, which presents similar analog circuit
design challenges as the pure analog architecture. We instead make the unconven-
tional choice of converting to digital in the middle of the PLL loop. Although we
sample at a high rate to get as much phase information as possible from the input
waveform, we do not require high bit precision and can keep the digital logic simple to
minimize cost and power consumption. In an imaging system, the circuit components
used to implement phase tightening are replicated per antenna array sensor, so that
savings in cost and power scale.
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Figure 6-3: Of the four clear interfaces at which to convert the classical phase-lock loop
architecture from analog to digital, we convert in the middle of the loop. Although we
sample at a high rate, we do not require high bit precision and can keep the digital logic
simple.

6.1.3 Phase tightening algorithm

We develop the phase tightening algorithm by converting from analog to digital inside
the PLL loop and selecting simple digital logic to implement the core PLL functions
of comparison, phase estimation, and averaging (Figure 6-4). Converting to digital
requires an analog-to-digital converter (ADC). The simplest comparison we can per-
form is comparing samples of the input y(t) to zero using a 1-bit ADC. When the
PLL converges, the comparison should result in equality, so that the PLL locks onto
the zero-crossings of the input at the ADC sampling instants. Therefore, the feed-
back path should adjust the ADC sampling instants to find the zero-crossings. We
can equivalently fix the ADC sampling rate at the Nyquist rate, so that the sampling
interval is T = π/ωc, and use feedback to delay the input. We accumulate the ADC
outputs in a counter with Q states and output un, which indicates the delay to apply
to y(t) for the next sample at index n + 1. We need to adjust the delay in different
directions for rising and falling zero-crossings, so we toggle the sign of the ADC out-
put by (−1)n. We scale un by the quantization step size ∆ = 2π/Q to convert to
radians and obtain a coarse instantaneous phase estimate un∆, which we average to
obtain the improved output phase estimate ψ̂n. We scale un∆ by 1/ωc to convert to
a time delay to apply to y(t). The state update rule is therefore

un+1 = un + (−1)n sgn
[

y
(

nT − un
∆

ωc

)]

. (6.2)

Although the digital logic in the phase tightening algorithm is simple, the analog
components are nontrivial. The variable delay, when either applied to the input or
the ADC clock, should be consistent while the averaging is being performed. Any
drift in delay should correspond to a phase drift significantly smaller than the desired
precision of the phase estimation. Both the variable delay block and the ADC clock
can introduce timing jitter; as long as the jitter is ergodic noise with zero mean,
it can be incorporated into the phase noise φ(t) and reduced through averaging.
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ψ̂n
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1/ωc

Figure 6-4: The phase tightening algorithm uses a 1-bit ADC to lock onto the zero-crossings
of the input y(t) by applying a variable feedback delay. A counter with Q states accumulates
the zero-crossing errors to update the delay applied to the input at the next sampling instant.
Converting the counter output un to radians un∆ and averaging yields the phase estimate
ψ̂n.

Digital phase tightening is therefore advantageous when the required cost and power
consumption compares favorably with that of an alternative analog architecture that
achieves similar overall performance.

Phase tightening operates on the input signal by applying a delay to directly
modify the phase, providing us with a simpler model for analysis (Figure 6-5). To
derive the simpler model, we substitute the expression in (6.1) for the input y(t) into
(6.2), ignore the additive noise v(t), and set A = 1 to obtain

un+1 = un + (−1)n sgn
{

sin
[

ψ + ωc

(

nT − un
∆

ωc

)

+ φ
(

nT − un
∆

ωc

)]}

= un + sgn
{

sin
[

ψ − un∆ + φ
(

nT − un
∆

ωc

)]}

, (6.3)

where we have used the fact that ωcT = π at the Nyquist sampling rate. The samples

φn = φ
(

nT − un
∆

ωc

)

(6.4)

form a discrete-time ergodic noise process with zero mean. We thereby simplify (6.3)
to

un+1 = un + sgn(ψ + φn − un∆), (6.5)

keeping in mind that all calculations with phases are performed modulo 2π and all
calculations with counter values are performed modulo Q. We use the model in (6.5)
extensively in our subsequent analysis.

6.2 Phase tightening behavior

For the phase tightening algorithm to be effective, the coarse phase estimates un∆
must track the true phase ψ so that enough averaging can reduce the noise variance to
an acceptable level. We first require the system to lock onto the zero-crossings of the
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Figure 6-5: The evolution of un in the phase tightening algorithm is governed by a simple
model that uses the phase ψ, instead of the received sinusoid y(t), as input.

input signal y(t), so that successive values of un∆ move towards ψ. Then, averaging
will converge to the expected value E[un]∆. Ideally, we would like E[un]∆ = ψ,
so that the bias of the phase estimate is zero. While a constant bias that we can
estimate or calibrate is acceptable, a large bias that depends on ψ or drifts on a time
scale shorter than the time window required to average out the phase noise is not
acceptable.

The state update equation in (6.5) embodies the phase tightening algorithm’s
behavior. Although phase tightening utilizes feedback in similar manner as other
algorithms (Section 6.2.1), there are important subtleties, particularly involving bias.
We describe how phase estimation bias is inherent in our discrete phase tightening
system (Section 6.2.2), and then describe how to compensate for the bias by operating
in the low-bias noise range (Section 6.2.3).

6.2.1 Similar feedback systems

Our update equation in (6.5) shares the recursive structure of the Kalman filter [66].
Though unlike the Kalman filter, our update is constrained to be one of a small set of
quantized values. When applied to a constant signal, the Kalman filter converges to
the true value by making successively finer updates, while our updates remain coarse,
and we rely on further averaging downstream for accuracy.

Our update equation applies one bit of feedback at a high rate, similar to the
operation of a Delta-Sigma converter [67]. Though unlike a Delta-Sigma converter,
in phase tightening the ADC quantizes the error before the counter integrates it,
rather than after. Consequently, the feedback loop in phase tightening does not
shape the noise present in the input or the noise introduced by the ADC clock. The
phase tightening loop processing is deliberately simple; alternative designs may add
complexity to increase accuracy, by basing the error computation at each sample on
a more accurate phase estimate rather than the coarse un∆.

6.2.2 Inherent phase estimation bias

The stochastic process un∆ makes a discrete random walk about the true phase value
ψ, and, when averaged, provides an estimate of ψ. The phase estimate would ideally



100 6.2 Phase tightening behavior

be unbiased,
E[ψ̂n] = E[un]∆ = ψ, (6.6)

so that ψ̂n → ψ provided we average over enough samples. Unfortunately, our dis-
cretization of the phase estimation problem imposes a nonzero bias that can render
phase tightening ineffective if not properly accounted for. The bias is determined by
the noise distribution pφ, the true phase ψ, and the number of quantization steps
Q. The bias we discuss is restricted to the inherent bias introduced by quantizing
a continuous phase estimation problem; other sources of bias in a phase tightening
implementation, such as phase noise with nonzero mean, can have a similarly catas-
trophic effect on phase tightening and must be addressed separately.

The bias is a result of our imperfect and asymmetric discretization of a continuous
phenomenon, and is most easily observed when there is no phase noise. From our
simplified phase tightening model (Figure 6-5), the update equation for un in (6.5)
when φn = 0 is

un+1 = un + sgn(ψ − un∆). (6.7)

Unless ψ is an exact multiple of ∆, the instantaneous phase estimates un∆ will
oscillate about ψ, and averaging enough samples produces a phase estimate midway
between (Figure 6-6). The resulting bias can be as high as ∆/2.

n even n odd
ψ

bias error

un∆ = q∆ un∆ = (q + 1)∆
ψ̂n → (q + 1/2)∆

Figure 6-6: In the steady state with no phase noise when ψ is not an exact multiple of ∆,
the instantaneous phase estimates oscillate about the true value and result in a bias error
as high as ∆/2.

There are two important properties evident in the simple case of no phase noise
that also hold in more complicated scenarios. First, the bias is inherently a result
of the discrete quantization. As we increase the number of quantization steps to
approach a continuous model, ∆ → 0 and the bias disappears. Second, the bias is
minimized when a certain minimum level of phase noise is present, which is similar
to the dithering effect observed in many-threshold systems [69]. Without noise, the
simple update rule for un does not account for the fine positioning of ψ; we observe the
same oscillatory behavior regardless of where ψ lies between the two endpoints. But
noise may push us to different estimates, in a manner that takes this fine positioning
into account. The bias can be improved by adding noise, and for some noise profile
edge cases, eliminated completely.
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6.2.3 Intuition for the low-bias noise range

Before proceeding with detailed analysis, we describe intuitively how the bias de-
pends on the noise, true phase, and quantization step size. The quantization points
are spaced every ∆ in distance. Samples are drawn from the noisy distribution of
ψ + φn, but we only determine if each sample falls to the left or right side of the
current quantization point. If the phase noise is very low, we will always make the
same determination with respect to a particular quantization point, so that the best
estimate of ψ is midway between the two nearest quantization points (Figure 6-6).
As the phase noise increases, samples of ψ+ φn will begin to fall on the other side of
the nearest quantization point (for example, to the left of the qth quantization point
in Figure 6-6). The frequency with which the sample falls on the opposing side of
the nearest quantization point provides information about how close ψ is. Therefore,
when the noise is large enough to reach the nearby quantization points, ψ can be
accurately estimated and the bias is low (Figure 6-7). However, once the phase noise
is large enough to wrap around by π radians so that samples fall on both sides of all
quantization points, the samples become misleading and the bias increases. When the
phase noise is very high, the coarse estimates un∆ spend roughly equal time at each
quantization point, with a slight preference for the point q∆ closest to ψ. Averaging a
uniform distribution centered at q∆ results in a phase estimate of q∆. Thus, for high
phase noise, φ̂n converges to the quantization point closest to φ. Therefore, the phase
estimate has low bias for a significant range of noise levels that depends on both the
true phase ψ and the quantization step size ∆, called the low-bias noise range.

ψ

σφ

σφ

σ̂BE[ψ̂]

numerical precision 
of simulation

(dB)

quantization point

∆

∆/
√

12

low-bias 
noise range

Figure 6-7: The phase tightening phase estimates only exhibit low bias for moderate levels
of phase noise relative to the distance from the true phase ψ to the nearest quantization
point. For low phase noise σφ, the asymptotic estimate E[ψ̂] lies midway between the
nearest quantization points, while for high phase noise, the asymptotic estimate lies at
the nearest quantization point. At either extreme of low or high phase noise, the sample
standard deviation σ̂B of the bias as a function of ψ is bound by the quantization step size.

The quantization step size ∆ is the primary design parameter, and our intuition
suggests to select ∆ no larger than the expected noise standard deviation σφ to achieve
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low bias, so that samples fall on the opposing side of at least one quantization point
regardless of where ψ is located. However, it may be difficult to implement an accurate
delay of such a small time step ∆/ωc. Effective phase tightening is still possible in
this case, by using a coarse quantization step size ∆ but also adding noise to ensure
low bias. Dithering comes with a cost, as any additional phase noise will require
more averaging to achieve the same noise target level at the output, requiring either
a greater sampling rate or a longer averaging window.

6.3 Performance analysis of phase estimation

We analyze phase tightening performance in three stages. First, we assess the stabil-
ity of the loop and the conditions required to maintain a lock on the zero-crossings
(Section 6.3.1). Provided that the phase noise is not too large, the loop is stable. Sec-
ond, we analyze the dynamics of the state stored in the counter (Section 6.3.2). When
Q is even and under modest assumptions on the support of the noise distribution, the
evolution of un is accurately modeled by an ergodic Markov chain. We provide ana-
lytic solutions for the steady-state probability vector of the Markov chain. Third, we
compute and correct for the bias inherent in discrete phase estimation (Section 6.3.3).
The bias is only low over a moderate range of σφ. The bias is a complicated function
of the true phase ψ, but can be simplified for a special noise edge configuration. We
show that the bias decays exponentially in Q for the noise edge configuration. Conse-
quently, our analysis provides guidance for selecting the number of quantization steps
Q to provide an operating range for σφ under which phase tightening achieves the
desired reduction in phase noise.

6.3.1 Stability of feedback loop

We analyze the state update equation to assess loop stability. We ignore the additive
noise v(t) and set A = 1 to obtain the state update equation from (6.3),

un+1 = un + sgn [sin (ψ − un∆ + φn)] . (6.8)

The fixed-point solutions for un occur when the argument of the sine is a multiple of
π. In the absence of phase noise, the fixed points are therefore at

un =
ψ +mπ

∆
, (6.9)

for any integer m. The fixed point is stable for even m: if un∆ is slightly below
ψ + mπ, our update will increase un per (6.8), and similarly for un∆ slightly above
ψ+mπ. However, the fixed point is unstable for odd m, as then the update will push
un in the opposite directions. Therefore, modulo 2π, un∆ will step steadily towards
ψ until reaching it. Assuming that ψ is not an exact multiple of ∆, the un∆ will
oscillate about ψ, locked onto this target phase. Once locked, the phase noise must
exceed π − ∆ to cause un to step in the wrong direction.
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6.3.2 State dynamics

The quality of the phase estimate provided by phase tightening depends on the proba-
bility distribution of the state un. We model the evolution of un with a cyclic Markov
chain, and compute the steady-state distribution of un. We first prove general prop-
erties about the symmetry and support of the transition probabilities of the Markov
chain. These properties allow us to both classify the recurrence of the chain and
explicitly compute the steady-state distribution in an important special case.

Q − 1

0 1

2

λ0 λ1

λ2

λQ−1

λQ−2

λ̄Q−1

λ̄0
λ̄1 λ̄2

λ̄3

Figure 6-8: A Markov chain of order Q describes the state evolution of un.

We model the evolution of un with a finite state Markov chain (Figure 6-8). We
denote the probability of increasing the counter and moving from state k to state
k + 1 by λk, and the probability of decreasing the counter and moving from state
k to state k − 1 by λ̄k. From the update equation in (6.5) for our simplified phase
tightening model (Figure 6-5), the transition probabilities are

λk =
∑

m∈Z

Pr (2πm < ψ + φn − k∆ < 2πm + π)

=
∑

m∈Z

Pr (2πm+ k∆ < φn + ψ < 2πm+ k∆ + π) ,

λ̄k = 1 − λk, (6.10)

for k ∈ {0, . . . , Q− 1}.
We conveniently express the transition probabilities as samples of a circular con-

volution of period 2π between the probability density for φn + ψ and a rectangle
function, as

λk = pφ(x− ψ) ⊛ [u (x+ π) − u(x)]|x=k∆ , (6.11)

where pφ denotes the probability density for φn and u(·) denotes the unit step func-
tion. We visualize the transition probabilities for an example where φn is uniformly
distributed between −W and W , and Q = 10, in Figure 6-9.

Symmetry and support of transition probabilities

The transition probabilities exhibit a symmetry and have concentrated support. We
prove two such properties using the convolution interpretation in (6.11). Recall that
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pφ(x − ψ)

W
1

2W

xψ x

1

λ0

λ1

λ2 λ3

λQ

2
−1

λQ

2

λQ−1
λQ−2λQ−3

λQ

2
+1

λQ

2

λk

W

∆
ψ

1/2

1

k∆

=

u(x + π) − u(x)

−π

π−π

Figure 6-9: The transition probabilities λk for the Markov chain are samples of the circular
convolution of the noise distribution and a rectangle function. In this example, φn is
uniformly distributed between −W and W , and Q = 10.

all index arithmetic and comparisons with elements from the set {0, . . . , Q − 1} are
made modulo Q, so that, for example, k +Q/2 ∈ {0, . . . , Q− 1}.

Claim 6.3.1. If Q is even, then λ̄k = λk+ Q

2
.

Proof. We compute

λk+ Q

2
= pφ(x− ψ) ⊛ [u (x+ π) − u(x)]|x=k∆+π

= pφ(x− ψ) ⊛ [u (x+ 2π) − u (x+ π)]|x=k∆

= pφ(x− ψ) ⊛ [u (x+ 2π) − u(x)]|x=k∆

− pφ(x− ψ) ⊛ [u (x+ π) − u(x)]|x=k∆

= 1 − λk

= λ̄k.

Claim 6.3.2. The indices where λk = 0 are consecutive. The indices where λ̄k = 0
are also consecutive. These two sets of indices do not overlap.

Proof. From (6.11), we have λk = 0 when the support of pφ lies outside an interval
of length π. Two different intervals of length π that are wrapped into [−π, π) must
either abut each other or overlap. Hence if the corresponding indices are k1 and k2,
and λk1

= λk2
= 0, then λk = 0 for k1 ≤ k ≤ k2. That is, the indices where λk = 0
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are consecutive. A similar argument shows that the indices where λk = 1, and hence
where λ̄k = 0, are also consecutive. Since λk + λ̄k = 1, these sets of indices do not
overlap.

Classifying the Markov chain

The properties of the transition probabilities allow us to classify the Markov chain and
deduce its recurrence structure. First, we recall some useful terminology for Markov
chains [68]. A class of states is a maximal set where there is a path between the states
in each pair. A state is recurrent if there is some return path from any other accessible
state. A class is recurrent if all its states are. A state that is not recurrent is called
transient, and a class is transient if all its states are. Finally, recurrent and transient
states cannot mix in a single class; every class is either recurrent or transient.

Claim 6.3.3. The Markov chain contains a single recurrent class. This class is either
aperiodic or periodic with period 2, depending on whether it contains an odd or even
number of states.

Proof. If all the λk or all the λ̄k are nonzero, then there is a path from every state
to every other, and the chain forms a single recurrent class. Otherwise, Claim 6.3.2
implies that we have a configuration similar to the one shown in Figure 6-10. The
states between the consecutive zeros for λ̄k and those for λk form a single recurrent
class, and all other states are transient. Equivalently, we can identify the recurrent
class from the transition between 1 and 0 in the convolution diagram. In Figure 6-9,
the indices from Q − 2 through 2 correspond to the states that form the recurrent
class.

1
2

0

3
456

7

8
9

recurrent class

Figure 6-10: The Markov chain contains a single recurrent class. The chain shown here
corresponds to the uniform noise example in Figure 6-9.

The noise distribution determines the number of states in the recurrent class, and
thereby whether the class is periodic.
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Steady-state distribution formulas

We now compute the steady-state distribution for un for a special case of interest.
Since the Markov chain contains a single recurrent class, the Perron-Frobenius theory
[68] guarantees the existence of a unique steady-state probability row vector solution
π to

π = π P, (6.12)

where P is the Q×Q matrix of transition probabilities:

P =



















0 λ0 λ̄0

λ̄1 0 λ1

. . .

λ̄Q−2 0 λQ−2

λQ−1 λ̄Q−1 0



















. (6.13)

We can explicitly solve (6.12) under certain conditions.

Claim 6.3.4. When
Q−1
∏

i=0

λi =
Q−1
∏

i=0

λ̄i, (6.14)

then

πk =











∏Q+k−1
i=M λi

∏M−1
i=k+1 λ̄i, k < M

∏k−1
i=M λi

∏M+Q−1
i=k+1 λ̄i, k ≥M

, (6.15)

for k ∈ {0, . . . , Q−1}, is a scaled version of the steady-state probability vector solution
to (6.12). In (6.15), M ∈ {0, . . . , Q− 1} denotes the index k of the nonzero λk after
one that is zero: the k such that λk 6= 0 and λk−1 = 0. If no such k exists, we set
M = 0.

Proof. First we argue that M is well-defined. Due to Claim 6.3.2, the indices for
which λk = 0 are consecutive. It is impossible for all the λk to be zero, as that would
contradict the convolution relationship in (6.11). Thus if λk = 0 for some k, then
there is a unique index M such that λM 6= 0 and λM−1 = 0.

Similar reasoning shows that the π specified by (6.15) is nonzero. For if all the
λk are nonzero, then all the πk are nonzero. Otherwise, let M ′ denote the index k of
the zero λk after one that is nonzero, λk−1 6= 0. M ′ is uniquely determined, just like
M . Now, πM ′ is equal to the product of nonzero numbers. Thus π is nonzero. All
the πk are nonnegative, so π can be scaled to be a probability vector.

Finally, we show that (6.15) solves (6.12), which will complete the proof. The
matrix equation in (6.12) aggregates the scalar equations

πk = λk−1πk−1 + λ̄k+1πk+1. (6.16)

There are 9 different cases to consider, and we defer the calculations to Appendix
B.4.1.
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The condition in (6.14) encompasses two special cases of interest. First, (6.14)
is automatically satisfied when Q is even, by the symmetry in Claim 6.3.1. Second,
(6.14) is also satisfied if the support of the noise distribution is not too large, so that
some λk1

= 0 and another λk2
= 1. The first special case where Q is even allows us

to simplify our expression for the steady-state distribution.

Claim 6.3.5. If Q is even, then

πk =
k−1
∏

i=k−Q

2
+1

λi, (6.17)

for k ∈ {0, . . . , Q−1}, is a scaled version of the steady-state probability vector solution
to (6.12).

Proof. We apply the symmetry result in Claim 6.3.1 to the general solution in (6.15)
and notice that all of the πk have the factor

M+ Q

2
−1

∏

i=M

λi (6.18)

in common. This factor cannot be zero, because we proved that the resulting π is
nonzero. Dividing (6.15) by (6.18) yields the desired result, (6.17). We present an
alternative proof using direct calculation in Appendix B.4.1.

Based on our results, it is most convenient work with cases where Q is even and
where the noise distribution is such that the recurrent class is aperiodic. An aperiodic
recurrent class is called ergodic, and guarantees that the state will eventually be
distributed according to the steady-state probability vector, regardless of the starting
state [68]:

lim
n→∞

Pn =
eπ

πe
, (6.19)

where e = [1 · · · 1]t.

6.3.3 Correcting for bias due to discrete phase estimation

We analyze bias in three stages. First, we explicitly compute the phase estimation
bias. The periodic nature of phase estimation requires us to unwrap the phase at
an appropriate point prior to averaging the steady-state probability distribution. We
show that the bias is a periodic and symmetric function of the true phase ψ. Second,
we define the noise edge configuration for uniform phase noise, where the edge of the
distribution of the noisy phase falls on a quantization point. Although the noise edge
configuration does not always result in the worst-case bias, it is a good indicator for
bias behavior and is simple to analyze because the steady-state probability vector
solution generalizes the binomial distribution. Third, we prove that in the noise edge
configuration the bias decays to zero exponentially in Q.
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Computing bias

To compute the bias of the phase tightening algorithm, we must address the periodic
nature inherent in phase estimation, and unwrap the phase by centering on the most
likely index. We define the bias by

B = E[ψ̂n] − ψ

= E[un]∆ − ψ. (6.20)

By arbitrarily associating index zero with a zero delay applied to the phase tightening
input, we give the system’s reference phase preferential treatment. The resulting
impact on phase estimation can be significant. For example, suppose that there is
a high level of phase noise so that the steady-state distribution π is approximately
uniform. If we constrain un to {0, . . . , Q− 1}, then the phase estimate is always

∑Q−1
k=0 kπk
∑Q−1

k=0 πk

∆ =
2π

Q2

Q−1
∑

k=0

k = π − π

Q
, (6.21)

which can lead to a large bias magnitude over π.
To improve performance, we instead choose indices for un by centering on the

index k that maximizes πk. Therefore, we compute the bias as

B =

∑L+Q−1
k=L kπk
∑Q−1

k=0 πk

∆ − ψ, (6.22)

where the cut point L is chosen to unwrap the periodic phase to be centered on
the maximum πk (Figure 6-11). Now, for high phase noise where the steady-state
distribution π is approximately uniform, the phase estimate will be centered on the
quantized uk∆ closest to the true phase ψ, resulting in a bias no greater than ∆/2.
Implementing a sliding window for index averaging requires more work, as an imple-
mentation does not have access to the steady-state probabilities π used to determine
L. However, an implementation can adaptively update the window to be centered on
the latest phase estimate.

The bias defined in (6.22) is periodic and symmetric with respect to the true
phase ψ. Specifically, B(ψ) is periodic with period ∆, as B(ψ +m∆) = B(ψ) since
translating ψ by ∆ shifts the πk by one index. Also, B(ψ) is an odd function,
as B(−ψ) = B(ψ) since inverting the sign of ψ exchanges πk with π−k. Finally,
B(∆/2) = B(0) = 0, since the steady-state distribution is symmetrically centered
when ψ = ∆/2 and ψ = 0. Consequently, we only need to evaluate the bias for
0 < ψ < ∆/2, as the bias for all other values of ψ can be determined by periodicity
and symmetry.

Bias for the noise edge configuration

While operating so that the phase noise lies in the low-bias noise range is a good
first step in phase tightening design, the application requirements may impose strict
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πk

k0 Q − 1

good place 
to cut

L

Figure 6-11: When averaging the steady-state probability distribution of un to compute
the phase estimation bias, we cut and unwrap the periodic phase at a point L so that the
averaging window is centered on the index k where πk is maximized.

restrictions on the allowable bias, requiring further analysis. The dependence of bias
on the true phase ψ is complicated, and we advise examining all values 0 < ψ < ∆/2
to completely characterize performance. However, there is a special case for which
the analysis simplifies significantly: assuming uniform noise of width 2W , where one
of the noise edges ψ±W is just touching a quantization point. We describe why this
noise edge configuration is an important indicator of bias performance, suggesting
that we examine the bias for ψ = W , where the noise edge ψ − W falls on the
quantization point at the origin, before other values of ψ. We then show that the
steady-state probability vector solution generalizes the binomial distribution.

(a)

0

ψ = 0 ψ = ∆/2

(b)

0

ψ = 0 ψ = ∆/2

(c)

0

ψ = 0 ψ = ∆/2

(d)

0

ψ = 0 ψ = ∆/2

Figure 6-12: There are four scenarios where a noise edge touches a quantization point
as ψ varies from 0 to ∆/2. The first two are edge cases where both noise edges touch
quantization points when ψ = 0 (a) and where both noise edges touch quantization points
when ψ = ∆/2 (b). Otherwise, there is a unique value of ψ between 0 and ∆/2 for which
either the left edge (c) or the right edge (d) touches a quantization point.

With the exception of two edge cases, there is a unique value of ψ between 0 and
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∆/2 for which a noise edge touches a quantization point (Figure 6-12). We call this
the noise edge value of ψ, denoted by ψNE.

Claim 6.3.6. For fixed ∆ and uniform noise width 2W , exactly one the following
cases holds.

• W is a multiple of ∆ so that when ψ = 0 both noise edges touch quantization
points, but when 0 < ψ ≤ ∆/2 no noise edges touch quantization points.

• W is an odd multiple of ∆/2 so that when ψ = ∆/2 both noise edges touch
quantization points, but when 0 ≤ ψ < ∆/2 no noise edges touch quantization
points.

• There is a unique ψ between 0 and ∆/2 so that exactly one noise edge touches
a quantization point.

Proof. The first two edge cases are straightforward to verify directly. Otherwise, we
may assume that no noise edges touch quantization points at ψ = 0 or ψ = ∆/2.
Over the range 0 < ψ < ∆/2, each noise edge can only touch one quantization point,
as the quantization points are spaced every ∆. First, assume towards a contradiction
that both edges touch quantization points, so that

W < n1∆ < W + ∆/2 and −W < n2∆ < −W + ∆/2, (6.23)

for integers n1 and n2. But adding the equations in (6.23) together yields 0 < n1+n2 <
1, a contradiction. Next, assume towards a contradiction that neither edge touches a
quantization point, so that there is no quantization point on the interval [W,W+∆/2],
and none on [−W,−W + ∆/2]. By symmetry there is no quantization point on
[W−∆/2,W+∆/2], which being an interval of length ∆, yields another contradiction.
Thus, exactly one noise edge touches a quantization point, for some value of ψ between
0 and ∆/2.

Intuitively, the bias at a noise edge can be large. On the one hand, moving ψ from
ψNE closer to the source at the noise edge will provide the source with information to
estimate ψ. On the other hand, moving ψ from ψNE further away from the source at
the noise edge sometimes allows the other sources to better estimate ψ. Unfortunately,
the precise behavior of the phase estimate is complicated (Figure 6-13). Although
the noise edge introduces a kink in B(ψ) at ψNE that may maximize the bias, there
are some parameter settings for which the bias is even larger elsewhere (for example,
when W = 0.145 and ∆ = 0.1 in Figure 6-13). Even though B(ψNE) does not provide
a bound for the bias, we will consider the noise edge configuration further because of
its analytic tractability.

We now compute the steady-state probability distribution for the noise edge con-
figuration. We set ψ = W , so that the noise edge ψ −W falls on the quantization
point at the origin. We illustrate a portion of the resulting convolution diagram in
Figure 6-14. We introduce three new variables for convenience. First, the height of
the uniform noise distribution is w = 1/2W , which is also the negative of the slope
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W = 0.105

W = 0.10
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Figure 6-13: The bias exhibits a kink at ψNE, the noise edge value of ψ, that in many
but not all cases indicates the maximum bias. In these examples, the quantization step
size is ∆ = 0.1 and the phase noise is uniformly distributed with width 2W . The setting
W = 0.10 results in the edge case in Figure 6-12a, so there is no kink. When W = 0.145,
the maximum bias is not at ψNE.

of the curve in the convolution diagram. Second, P = ⌊2W/∆⌋ is the number of
quantization points under the noise distribution. Third, ǫ = 2W/∆−P indicates the
remainder when dividing the noise width by ∆. Note that 0 ≤ ǫ < 1.

Claim 6.3.7. For the noise edge configuration where the phase noise φn is uniformly
distributed with width 2W and ψ = W , the steady-state probability distribution is a
scaled version of

πP
k =











(P + ǫ)k (P )P−k 0 ≤ k ≤ P
(P + ǫ− 1)P k = P + 1

0 otherwise
, (6.24)

where (x)n = x(x− 1) · · · (x− n+ 1) denotes the falling factorial function.

Proof. By Claim 6.3.5 and the symmetry of the transition probabilities (Claim 6.3.1),
the steady-state probability distribution is given by

πk =
k−1
∏

i=k−Q

2
+1

λi
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λk
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∆

(P + 1)∆

Figure 6-14: A portion of the convolution diagram for uniform noise of width 2W where
ψ = W , so that the noise edge ψ −W falls on the quantization point at the origin.

=
−1
∏

j=k−Q

2
+1

λj

k−1
∏

i=0

λi

=
k−1
∏

i=0

λi

Q

2
−1
∏

j=k+1

λ̄j. (6.25)

Evidently πk = 0 unless 0 ≤ k ≤ P + 1.
From the convolution diagram, we compute

λk = 1 − k∆w, (6.26)

for 0 ≤ k ≤ P . We may limit the upper product index Q/2 − 1 in (6.25) to P , since
the remaining values of λ̄j are 1. We compute

πk =
k−1
∏

i=0

λi

P
∏

i=k+1

λ̄i

=
k−1
∏

i=0

(1 − i∆w)
P
∏

i=k+1

i∆w

= (∆w)P
k−1
∏

i=0

(

1

∆w
− i

) P
∏

i=k+1

i

= (∆w)P
(

1

∆w

)

k
(P )P−k

= (∆w)P (P + ǫ)k (P )P−k, (6.27)

for 0 ≤ k ≤ P . Finally, for k = P + 1, we have

πP+1 = (∆w)P (P + ǫ− 1)P . (6.28)

We divide out (∆w)P to complete the proof.

We will ignore πP+1, which becomes exponentially negligible compared with most
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of the other entries for large Q. When ǫ = 0, the steady-state probability vector is a
(scaled) binomial distribution with P trials and success probability 1/2. The steady-
state probability distribution for the noise edge configuration thereby generalizes the
binomial distribution.

Reducing bias by increasing quantization steps

Once we ensure that the phase noise standard deviation is in the low-bias noise range,
we may still need to decrease the quantization step size ∆ to ensure that the bias
is small enough to meet application requirements. We prove that in the noise edge
configuration the bias decays exponentially in Q. Our proof consists of three steps.
First, we identify an appropriate decreasing sequence of step sizes {∆n} corresponding
to linearly increasingQ. Second, we express the bias in terms of a generalized binomial
sum SP . And third, we use a recurrence relation for SP to show that the bias decays
exponentially in ∆n, as n→ ∞. Although it is theoretically possible to eliminate bias
by increasing Q, it may be impractical to implement a large number of quantization
steps.

We begin our proof by identifying an appropriate decreasing sequence of step sizes
{∆n}. Although we want to know how bias decays with the number of quantization
points Q, the steady-state probability distribution only depends on those quantization
points under the noise distribution, through P . Clearly Q and P grow at the same
rate, because the noise width is fixed at 2W . Therefore, instead of taking the limit
as Q → ∞, we will equivalently decrease ∆ so that at each step P increments by 1
and ǫ is held constant.

Claim 6.3.8. There is a decreasing sequence {∆n} such that Pn+1 = Pn + 1 and
ǫn+1 = ǫ.

Proof. We define

∆n+1 =
∆n

∆nw + 1
. (6.29)

Then

Pn+1 =

⌊

2W

∆n+1

⌋

=
⌊

2W

∆n
+ 1

⌋

= Pn + 1. (6.30)

Furthermore,

ǫn+1 =
1

∆n+1w
− Pn+1 =

1

∆nw
− Pn = ǫn. (6.31)

We now express the bias in terms of a generalized binomial sum SP .

Claim 6.3.9. The bias for the noise edge configuration is

BP = W
(

2PSP−1

SP

− 1
)

, (6.32)
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where

SP =
P
∑

k=0

πP
k

=
P
∑

k=0

(P + ǫ)k (P )P−k. (6.33)

Proof. First, we apply Claim 6.3.7 to compute

P
∑

i=0

iπP
i =

P
∑

i=1

i (P + ǫ)i (P )P−i

= (P + ǫ)P
P
∑

i=1

(P − 1 + ǫ)i−1 (P − 1)P−i

= (P + ǫ)P
P−1
∑

i=0

(P − 1 + ǫ)i (P − 1)P−1−i

= (P + ǫ)PSP−1. (6.34)

Because the support of the steady-state distribution begins at index 0, we can set the
cut point L = 0. The bias in (6.22) is then

BP =

∑P
i=0 iπ

P
i

∑P
i=0 π

P
i

∆ − ψ

= (P + ǫ)P
SP−1

SP

∆ −W

= W
(

2PSP−1

SP

− 1
)

. (6.35)

Finally, we use a recurrence relation for SP to show that the bias decays exponentially
in Q.

Claim 6.3.10. The bias for the noise edge configuration decays to zero exponentially
in Q.

Proof. We equivalently show that |BP | → 0 exponentially in P . SP satisfies the
recurrence relation (Appendix B.4.2)

SP = 2PSP−1 + (P − 1 + ǫ)P . (6.36)

Expanding, we see that SP ≥ 2PP !. We substitute (6.36) into (6.32) to obtain

|BP | = W

∣

∣

∣

∣

∣

−(P − 1 + ǫ)P

SP

∣

∣

∣

∣

∣

≤ W
(P − 1 + ǫ)P

2PP !
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<
W

2P
, (6.37)

which decays exponentially in P . By Claim 6.3.8, |BP | also decays exponentially in
Q.

Although there is no closed-form expression for SP , we may approximate SP → 2P+ǫP !
for large P (Appendix B.4.2).

6.4 Millimeter-wave radar design example

We have described the functional components of a phase tightening system and have
presented performance analysis that suggests a design methodology. We now describe
how to implement phase tightening for a millimeter-wave radar imaging system. First,
we present a circuit diagram and describe the internal sources of phase noise (Section
6.4.1). Next, we apply our design methodology to select appropriate parameters
(Section 6.4.2). Finally, we augment the circuit diagram to incorporate amplitude
estimation and realize the full phase tightening implementation (Section 6.4.3).

6.4.1 Circuit implementation for phase estimation

The application requirements for millimeter-wave radar imaging typically specify the
carrier frequency, bandwidth, and target phase noise. The carrier frequency is approx-
imately 100 GHz, which is too high to sample directly. We therefore modulate the
input down to an intermediate frequency ωI that is high enough to support a modest
bandwidth yet still make a narrowband assumption. The implementation is therefore
divided into three regions: analog circuitry operating at the carrier frequency, analog
circuitry operating at the intermediate frequency, and digital circuitry (Figure 6-15).

Instead of delaying the input signal directly, we drive the sampling circuitry of
the ADC with a delay-locked loop (DLL). We use a common clock source for the
modulation and sampling. A phase-lock loop (PLL) multiplies the clock frequency
to the appropriate value for demodulation. The DLL performs a similar function
for the ADC, additionally using input from the counter to apply a delay. We use a
cyclic counter to store the phase tightening state, and a lookup table to translate the
state to a control input for the DLL that indicates the appropriate delay to apply.
We average the counter output and downsample by a factor of L to obtain a phase
estimate at a low data rate and with low phase noise.

Timing jitter is added by the PLL, modulator, DLL, and clock. The jitter con-
tributes additional phase noise at the time scale in the region that the jitter is intro-
duced. For example, 1 ps of jitter at the PLL output will contribute as much phase
noise as ωc/ωI ps of jitter at the ADC clock. For this reason, the aggregate phase
noise is typically dominated by the components in the carrier region. We add all
internal phase noise contributions to determine σφ in our phase tightening model.

The phase noise introduced by different oscillators and phase-lock loops has been
extensively studied and characterized [63]. While our phase tightening model assumes
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Figure 6-15: Our phase tightening implementation comprises (i) analog circuitry that
operates at the carrier frequency to modulate the input, (ii) analog circuitry that operates
at an intermediate frequency to apply a controlled delay prior to computing each 1-bit
sample, and (iii) digital circuitry that accumulates and averages the samples to produce a
phase estimate.

a fixed phase noise variance σ2
φ, the phase noise variance for free-running oscillators

increases linearly with time, and the phase noise variance for PLLs of different orders
evolves in more complicated ways. We must ensure that the phase noise stays within
the low-bias noise range over the majority of the averaging window.

6.4.2 Methodology for parameter selection

We now select parameters for our circuit implementation based on hypothetical re-
quirements. Specifically, suppose the carrier frequency is 100 GHz, the bandwidth
is 1 kHz, and we desire phase noise with standard deviation less than 2π/104, corre-
sponding to 1 fs at 100 GHz. Also suppose that the total phase noise at the input
has a maximum standard deviation of σφ = 2π/101, corresponding to 1 ps at 100
GHz, after adding the contributions from the various internal analog components.
We select the system parameters Q, ωI , and L using the following methodology.

1. Decide how much averaging is required to tighten the phase noise to the desired
target, thereby determining the downsampling factor L.

2. Select ωI high enough to accommodate the bandwidth after downsampling, but
low enough so that sampling at the Nyquist rate 2ωI is practical. A large ωI

may increase the phase noise contribution of the analog components in the
intermediate region, in which case we may need to increase L.

3. Select an appropriate distribution pφ to model the phase noise.

4. Using a noise edge configuration, estimate the minimum number of quantization
steps Q required to achieve a small bias relative to the target phase noise.
We may prefer Q to be a power of 2, so that no bits are wasted in a digital
representation.
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5. Simulate the bias for various ψ, to confirm the choice of Q.

6. Simulate the bias at the noise edge for various σφ to determine the low-bias
noise range to operate over. If the range is not acceptable, increase Q or dither
as necessary.

Q

B

100

10−18

35

−11 dB per step

numerical precision 
of simulation

Figure 6-16: The bias decays exponentially inQ, at approximately −11 dB per quantization
step.

We wish to reduce the standard deviation of the phase noise by 3 orders of magni-
tude, from 2π/101 to 2π/104. Averaging n independent identically distributed zero-
mean random variables reduces the standard deviation by 1/

√
n, requiring approxi-

mately 106 samples per phase estimate. Note this is an approximation because the
samples form a Markov process and are not independent. Nonetheless, we set L = 106.

The lowest output data rate we can tolerate is 2 kHz, which is twice the bandwidth
of our input signal. Therefore, we set ωI = 2π× 1 GHz. We have ωc/ωI = 100, so the
phase noise is dominated by contributions from the analog components in the carrier
region.

We assume a Gaussian noise model for the phase noise [63]. However, our analysis
of the noise edge configuration was based on a uniform distribution. We set ψ = σφ

for our simulations of the noise edge configuration, in order to compare with our
results above (Appendix C.2.4).

The bias decreases exponentially at the noise edge for Gaussian noise, just as it
did for uniform noise (Figure 6-16). The bias decreases by 11 dB per quantization
step. We judge the bias for Q = 8 to be too close to our phase noise target of 2π/104,
so we select Q = 16, the next power of 2.

We simulate the bias for various ψ to determine that the bias is bound below
5 × 10−9, which is well below our phase noise target, confirming our selection of Q
(Figure 6-17). Finally, we simulate the bias in the noise edge configuration for a range
of σφ, and determine that our operating range is for phase noise between 0.12π and
0.28π, which is acceptable.
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σφ = 0.2π ψ = σφ

Figure 6-17: For Q = 16, the bias is acceptable for all values of the true phase ψ and over
a wide range of values for the standard deviation σφ of Gaussian phase noise.

6.4.3 Incorporating amplitude estimation

We have shown that by using simple digital logic with feedback, we can extract the
information necessary to estimate the phase. By averaging and downsampling the
phase estimates, we can reduce the effective phase noise and compress the data rate.
To form a coherent image using a conventional beamformer or another quasi light
field, however, we also need to estimate the received signal amplitude. We present
three different ways of implementing amplitude estimation.

The simplest approach is to treat amplitude estimation as a separate problem
and implement a separate system to provide amplitude estimates that are later syn-
chronized with the phase estimates at a low data rate. There is some merit to this
approach, as the phase estimation implementation we have described is somewhat
specialized. However, if we are willing to incorporate an ADC with more than 1 bit
of resolution, we can leverage the phase estimation circuitry in two different ways: by
interleaving samples and timesharing.

Interleaving samples for phase and amplitude estimation

One way to incorporate amplitude estimation is to double the sampling rate to twice
Nyquist. Then, once the phase tightening loop locks onto the zero-crossings of the
input waveform, the two additional samples per period will align with the extrema
of the sinusoid. We can obtain reliable amplitude estimates by computing the maxi-
mum absolute sample values at the extrema, taking care to account for outliers due to
noise. The amplitude estimates can be downsampled and paired with the correspond-
ing phase information (Figure 6-18). The ADC bit resolution d should be selected
based on application requirements. For example, in an imaging system, d must be
comparable to the desired bit depth of the resulting image.
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Figure 6-18: One way to incorporate amplitude estimation into phase tightening is to
double the sampling rate and interleave the samples, so that the phase estimation logic
processes the zero-crossing estimates, and the amplitude estimation logic processes the
extrema.

Timesharing samples for phase and amplitude estimation

One downside of interleaving is that fully half of the samples are devoted to amplitude
estimation, which may benefit from the oversampled data substantially less than phase
estimation. Timesharing allows us to more finely allocate samples between amplitude
and phase estimation. By timesharing, we switch between two different modes of
operation: the usual phase tightening and a programmable sweep mode, where we
apply a rapidly varying controlled delay over several cycles to scan for the peaks of
the input waveform (Figure 6-19). The ADC bit resolution d should be selected based
on application requirements, just as with interleaving. Instead of downsampling by L,
we downsample both amplitude and phase estimates by a larger factor L′, to account
for the additional samples used for amplitude estimation that do not contribute to
reducing the phase noise.

6.5 Summary and future challenges

We have presented an architecture for phase tightening that uses simple digital logic
to compute amplitude and phase estimates of a narrowband input signal, which we
can digitally reconstruct at a lower carrier frequency and with less phase noise. Our
phase tightening algorithm is one way to approximate the optimal phase estimator,
embodied by the phase-lock loop, in the digital domain. We provide extensive per-
formance analysis to characterize the stability, state dynamics, and bias of phase
tightening. Provided that the phase noise is not too large, the loop is stable. When
the number of quantization steps Q is even and under modest assumptions on the
support of the noise distribution, the evolution of the phase tightening state is ac-
curately modeled by an ergodic Markov chain that has analytic expressions for its
steady-state probability distribution. The bias is only low over a moderate range
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Figure 6-19: Timesharing is an alternative way to incorporate amplitude estimation into
phase tightening. Periods of phase estimation are interspersed with amplitude estimation,
where the DLL is programmed to sweep over several cycles of the input waveform to scan
for the peaks.

of values of the phase noise standard deviation σφ, and decays exponentially in Q
for the noise edge configuration. Consequently, our analysis provides guidance for
selecting the number of quantization steps Q to provide an operating range for σφ

under which phase tightening achieves the desired reduction in phase noise. We have
further synthesized our results to support a design methodology that we applied to
a millimeter-wave radar imaging system. Phase tightening thereby enables the pro-
duction of coherent images in scenarios where the phase noise of the received signals
is otherwise too large.

While phase tightening provides an architecture for phase noise reduction, there
are further implementation challenges in building a low phase noise millimeter-wave
imaging system that scales well in cost and power consumption. First, any phase
drift introduced by the analog circuitry must be controlled over the phase tightening
averaging interval. Second, the imaging system must be calibrated to correct for any
introduced constant phase offsets. Finally, the data rate from the individual sensors
to the central processor that forms the image must be managed.



Chapter 7

Active imaging and opportunities

in MIMO ultrasound

We have effectively been studying passive imaging systems, that treat the scene illu-
mination as fixed and form a representation of the environment without modifying
it. In contrast, active imaging systems create and propagate waves to illuminate the
scene, and then form an image from the reflected and scattered response. Strictly
speaking, the millimeter-wave radar imaging system in Chapter 6 is an active system,
as the radar emits a narrowband signal whose reflections stand out over the relatively
low levels of ambient black-body radiation. But this is about as sophisticated a use of
active imaging technology as taking a picture with a flash on a conventional camera;
we simply provide the illumination because a natural source of sufficient intensity
is not already present. It is possible to capture more information from a scene by
coordinating applied illumination with signal measurement and image formation, for
both incoherent and coherent imaging.

The processing implicitly performed in active imaging is similar to that done
explicitly in passive imaging. Signals emitted from multiple transducers propagate
through a medium and combine at a target, according to the laws of physics. When
the medium is free space, we model the propagation of each signal by a time delay and
an attenuation factor, and the resulting signals superimpose linearly at the target.
The incident wave at the target is thereby obtained from the transmitted signals
by a beamforming operation, mathematically identical to the receiver processing we
originally considered in Chapter 2. The connection between the transmission physics
and the receiver processing is not a coincidence; we derived the beamformer from the
same physical principles and approximations. Although we have demonstrated that
quasi light fields offer more tradeoffs than conventional beamforming at the receiver,
there may not be a physical interpretation for the generally complex-valued quasi
light fields. Therefore, quasi light fields cannot be applied to signal transmission in
the same way that they can be applied to signal reception.

A multiple-input multiple-output (MIMO) architecture [15] enables us to simulate
the effects of different physical signal transmission strategies through processing at
the receiver. The key idea is to design the transmitted signals so that their responses
can be separated, providing us with a set of measurements for each transmitter act-
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ing in isolation from the others. For example, in a MIMO radar application, each
narrowband signal could be transmitted at a different carrier frequency. The receiver
could apply a filter bank to undo the physical superposition at the target, allowing us
to treat the target’s response to each transmitter independently. Since each response
is a convolution of the corresponding transmitted signal, and since convolution is a
commutative operation, the receiver can filter each individual response to obtain the
same result as if the transmitter had previously applied the same filter to the trans-
mitted signal. Therefore, in a MIMO system, the benefits of focusing on both signal
transmission and reception can be realized through processing performed exclusively
at the receiver. Moreover, by storing the received waveforms, the receiver can simul-
taneously focus at different points using the same set of measurements. Although we
will focus on coherent imaging, these ideas are also applicable to incoherent imaging:
we may augment the plenoptic function to represent all potential incoherent pictures
for all possible locations of a single illuminating point source, thereby enabling the
relighting of scenes [70].

The ability of MIMO imaging systems to simultaneously focus on both transmis-
sion and reception is of importance to medical ultrasound, because of the slow speed
of sound. In a traditional pulsed medical ultrasound imaging system, an array of
transducers emits a series of pulses each focused at a different point in the tissue
with a conventional beamformer. The transducer array receives the echo from each
pulse before transmitting the next pulse. Once the ultrasound system has processed
enough pulses to cover the region of interest, it forms an image. The resulting frame
rate is thereby limited by the pulse propagation time and the size of the region of
interest relative to the transmit beamformer resolution. Consequently, ultrasound
systems used in applications such as blood velocity imaging that demand both high
resolution and high frame rate forgo beamforming on transmit in order to generate an
image from a single pulse [71]. MIMO processing can theoretically enable ultrasound
systems to enjoy the benefits of beamforming on transmit while still generating an
image from each pulse, to achieve both a high resolution and a high frame rate.

Medical ultrasound imaging is more challenging than the other applications we
have considered, because the medium is filled with tissue to be imaged, rather than
a handful of point targets in free space. Consequently, to accommodate ultrasound,
we generalize the theory in two stages. First, we generalize from passive to active
imaging, updating our formulation in Chapter 2 accordingly (Section 7.1). Second,
we generalize from point targets to volume imaging, by framing ultrasound imaging
as a classic system identification problem with novel physical constraints (Section
7.2). At such a high level of generality, specific imaging applications are no longer
tightly coupled to each other, so that our quasi light field results do not immediately
carry over to the specific challenges in ultrasound. Nonetheless, our general system
identification perspective allows us to identify a more pressing area of improvement
for ultrasound. After reviewing existing applications of transmit signal design to
ultrasound (Section 7.3), we formulate a discrete estimation problem to compare the
existing techniques with time-varying filters (Section 7.4).
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7.1 MIMO processing and active imaging

In a multiple-input multiple-output (MIMO) architecture, multiple transmitters input
signals into a physical process, and multiple receivers record the output. In radar, as
in ultrasound, the objective is to infer something about the physical process from the
inputs and outputs. In wireless communications, the objective is instead to recover the
input from the output, in spite of the physical process. All three fields are concerned
with how to best encode the inputs, estimate parameters from the outputs, and exploit
the spatial diversity of the transmitters and receivers. Research in MIMO techniques
has flourished in wireless communications [72] and radar [15]. We extend our model
for source localization in Chapter 2 to describe the benefits of MIMO processing. We
focus on the familiar scenario for radar before introducing the unique complications
of ultrasound in Section 7.2.

We generalize our coherent wave processing model to accommodate the MIMO
architecture. The M sensors are now transducers additionally capable of transmitting
signals zi(t). The P sources are no longer sources, but rather targets at positions rP

j

with reflectivities αj . The signal emanating from each target is a superposition of the
signals zi(t) transmitted by each transducer:

xj(t) = αja
t(rP

j )z(t), (7.1)

where z(t) = [z1(t) · · · zM(t)]t. The array steering vector a(rP
j ) in (7.1) is identical to

the one in Chapter 2 by reciprocity: wave propagation from a source to a destination is
identical to the reverse propagation from the destination to the source. Consequently,
the sensor output due to a single target is

y(t) = αja(rP
j )at(rP

j )z(t) + v(t). (7.2)

Adding contributions due to all P targets results in

y(t) =





P
∑

j=1

αja(rP
j )at(rP

j )



 z(t) + v(t)

= A′z(t) + v(t). (7.3)

The MIMO model in (7.3) is similar to our previous passive imaging model in
(2.7), with two important differences. First, the MIMO model trades the P unknown
source signals x(t) in the passive model for M known transmit signals z(t) and P
new unknown target reflectivities αj . Second, the MIMO transducer array geometry
involves the outer product of the steering vectors, a(rP

j )at(rP
j ). In the far zone, the

M2 entries of this outer product correspond to having virtual sensors at all positions
rM

i1
+ rM

i2
, where 1 ≤ i1, i2 ≤ M . When the transmit signals are orthogonal, MIMO

thereby enables coherent image processing using a virtual sensor array that is larger
than the physical array [73]. Among other things, the virtual array allows us to
effectively focus on both transmission and reception by processing the received signal
in different ways [74]. We gain the benefit of sweeping a focused beam across the
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entire scene without having to wait for a wave to physically propagate to and from
each area of interest sequentially. Intuitively, if the transmit signals are orthogonal,
we can cleanly separate the system response that the physics of the scene imposes on
each signal at the receiver. Furthermore, if the system is linear, we can recombine the
separated responses to precisely simulate what would have happened had we instead
coherently combined the transmitted signals at the system’s input.

Quasi light fields are compatible with MIMO processing, allowing us to effectively
focus both on signal transmission and reception, entirely through processing at the
receiver. We illustrate the application of quasi light fields in a simple, symmetric
scenario (Figure 7-1). We use a 5-element array to focus at an empty target with
reflectivity α1 = 0, in the presence of an interfering target with reflectivity α2 = 1.
We compare imaging performance using the spectrogram quasi light field in (4.26)
with using the Wigner quasi light field in (4.27). The Wigner samples the scalar
field every distance d/2, which is twice as fine as the spectrogram spacing d. We fix
the width of the array in order to make a fair comparison. Therefore, the Wigner
will make use of all five sensor measurements y−1, y−1/2, y0, y1/2, and y1, while the
spectrogram will only use y−1, y0, and y1. Although a practical implementation might
use a larger transducer array and apply weights to the sensor outputs to shape the
response, our simple model suffices to illustrate the effect of quasi light field choice.

d

y1y
−

1

2

y
−1 y 1

2

y0

α2 = 1α1 = 0

a

a−1

1
a

a−1

1

empty

target 1 target 2
interfering

θP
2

5 transducers

Figure 7-1: Quasi light fields can be applied at the receiver to realize the benefits of
focusing on both signal transmission and reception. We compare different signal processing
strategies using a simple 5-element array and two targets in a symmetric configuration. We
judge the effectiveness of each strategy by comparing the extent to which a target with
reflectivity α2 = 1 interferes in the pixel computed when the array is focused at an empty
target with reflectivity α1 = 0.

We make several simplifying geometric assumptions. Both the empty target and
interfering target are in the far zone, and are located symmetrically opposite each
other with respect to the plane perpendicular to the array at its center. Therefore,
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the array steering vector at the two target positions is, apart from a constant phase
factor, a function of a single scalar parameter a. Specifically,

a
(

rP
1

)

=
[

a a1/2 1 a−1/2 a−1
]t

(7.4)

a
(

rP
2

)

=
[

a−1 a−1/2 1 a1/2 a
]t
, (7.5)

where
a = exp

(

−ikd cos θP
2

)

(7.6)

indicates the relative phase offset between transducer 1 and transducer 0 with respect
to the interfering target 2, as in (2.6). With these geometric assumptions and ignoring
additive noise and the time dependence in our model in (7.3), the sensor outputs are
a single-parameter function of the inputs:

y = a
(

rP
2

)

at
(

rP
2

)

z. (7.7)

Conventional beamforming corresponds to computing the spectrogram quasi light
field with a rectangular window. The discrete spectrogram quasi light field in (4.26)
for pixels centered at each target position is

ℓS1 =
∣

∣

∣

[

a−1 0 1 0 a
]

y
∣

∣

∣

2
, (7.8)

ℓS2 =
∣

∣

∣

[

a 0 1 0 a−1
]

y
∣

∣

∣

2
. (7.9)

If the supplied input z is the same when computing each pixel, the intensity ratio for
applying the spectrogram to signal reception is

ΓSR =
ℓS1
ℓS2

=
1

9

∣

∣

∣a−2 + 1 + a2
∣

∣

∣

2

=
a−4 + 2a−2 + 3 + 2a2 + a4

9
. (7.10)

Equation (7.10) corresponds to conventional beamforming at the receiver. If instead
the inputs are delayed to focus on each target when the corresponding pixel is com-
puted, so that

z =
[

a−1 0 1 0 a
]t
, (7.11)

and
y = a

(

rP
2

)

at
(

rP
2

) [

a−1 0 1 0 a
]t

(7.12)

for target 1, and similarly for target 2, then the intensity ratio is quadratically com-
pressed:

ΓSS =
ℓS1
ℓS2

=

(

a−4 + 2a−2 + 3 + 2a2 + a4

9

)2

. (7.13)

Equation (7.13) corresponds to applying the spectrogram quasi light field to both sig-
nal transmission and reception, and is traditionally achieved by conventional beam-
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forming at both the transmitter and receiver. However, the same result can be ob-
tained through MIMO processing exclusively at the receiver, by separating each trans-
mitter response and recombining:

y = a−1a
(

rP
2

)

at
(

rP
2

)

e1 + a
(

rP
2

)

at
(

rP
2

)

e3 + aa
(

rP
2

)

at
(

rP
2

)

e5. (7.14)

Although the output expressions in (7.12) and (7.14) are mathematically identical,
(7.12) is physically produced by wave propagation, while (7.14) is computed at the
receiver.

Other quasi light fields can achieve better target isolation than the spectrogram,
and are compatible with the MIMO processing architecture that enables simultaneous
focusing on both signal transmission and reception. The discrete Wigner quasi light
field in (4.27) for pixels centered at each target position is

ℓW1 =
[

a−2y∗1 a−1y∗1/2 y∗0 ay∗−1/2 a2y∗−1

]

y (7.15)

ℓW2 =
[

a2y∗1 ay∗1/2 y∗0 a−1y∗−1/2 a−2y∗−1

]

y. (7.16)

If the supplied input z is the same when computing each pixel, the intensity ratio for
applying the Wigner to signal reception is

ΓWR =
ℓW1
ℓW2

=
a−4 + a−2 + 1 + a2 + a4

5
. (7.17)

Although the spectrogram and Wigner intensity ratios in (7.10) and (7.17) are av-
erages of the same conjugate pairs of complex numbers, the spectrogram average is
weighted towards larger values, so that the Wigner can better suppress the interfering
target. Furthermore, quasi light fields are compatible with MIMO processing, in that
we can substitute (7.14) for y into (7.15), and similarly for (7.16), to obtain a hybrid
system that applies the spectrogram to signal transmission and the Wigner to signal
reception, achieving an even lower intensity ratio

ΓSW =
ℓW1
ℓW2

=

(

a−4 + a−2 + 1 + a2 + a4

5

)(

a−4 + 2a−2 + 3 + 2a2 + a4

9

)

. (7.18)

It is not as straightforward to apply other quasi light fields to signal transmission.
There is a fundamental asymmetry in MIMO processing; non-physical quasi light
fields cannot be directly applied to signal reception as they can to signal transmission.

Because of the extra degrees of freedom in designing signals at each transmitter,
signal design for MIMO radar is more complicated than for conventional radar. Con-
ventional radar tools have been extended to accommodate MIMO radar, but some
are otherwise limited in their applicability. For example, MIMO extensions to the
classic ambiguity function visually weight the tradeoffs between range estimation, res-
olution, and velocity estimation [75]. But despite their generality in accommodating
multiple transmit signals, MIMO ambiguity functions are based on the assumption
of a time-invariant matched filter receiver architecture, just like the classic ambiguity
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function.

7.2 Ultrasound imaging as system identification

Medical ultrasound imaging exhibits unique characteristics and challenges that pre-
vent the direct application of MIMO solutions from radar. The coherent waves in
medical ultrasound do not propagate in free space, but rather traverse tissue that
absorbs and scatters the waves at different depths [17]. We may model the measured
scattered signal at a transducer element due to a transmitted signal from another
transducer element as a linear time-invariant filtered version of the transmitted sig-
nal [76]. We superimpose the signals and include additive noise to obtain the analog
model for the waveform measured at the ith transducer element

yi(t) =
M
∑

j=1

hij(t) ∗ zj(t) + vi(t). (7.19)

The different system impulse responses hij(t) are defined by the inhomogeneities
in the tissue as well as the electromechanical response and spatial geometry of the
transducers. Unlike the MIMO radar formulation in Section 7.1 that models a finite
number of unknown target reflectivities, the MIMO ultrasound formulation models a
finite number of unknown impulse responses.

Conventional ultrasound performs single-input single-output system identification.
Specifically, conventional ultrasound systems employ beamformers to focus along the
same direction on both transmit and receive. The transmitter selects the zj(t) to be
weighted versions of the same pulse signal s(t), and the receiver coherently combines
the yi(t) to form a single received signal r(t). The receiver then convolves r(t) with
a matched filter with impulse response s(−t) and displays the output. The transmit
signal s(t) is designed to have a narrow impulse-like autocorrelation function, so that
the matched filter estimates the impulse response of the tissue along the beam of focus,
which is a superposition of the hij(t) applied with the beamformer weights. Each time
sample of the matched filter output corresponds to the tissue at the appropriate depth
along the beam, according to the propagation time of the focused pulse. The matched
filter output thereby defines a scan line that begins at the transducer-tissue interface
and extends deeper into the tissue along the steering angle. To keep the entire scan
line in focus, ultrasound systems employ a time-varying beamformer at the receiver,
to slide the point of focus along the line at the same rate that scattered waves from
tissue at those points arrive back at the transducer. Ultrasound systems assemble
scan lines at different angles to produce a B-mode (brightness-mode) image, which
medical practitioners use to visualize a cross section of the tissue.

MIMO ultrasound performs multiple-input multiple-output system identification.
Specifically, we choose the inputs z(t) and estimate each hij(t) from the measured
outputs y(t). We can weight and combine the estimated hij(t) to produce any of
the scan lines that a conventional ultrasound system estimates. General-purpose
system identification techniques [77] are not well-suited to MIMO ultrasound because
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of the unique constraints placed on the allowable system inputs. The Food and
Drug Administration (FDA) imposes limits on the allowable peak spatial pressure
and power in human tissue, and both physical and application requirements further
impose limits on transmit signal bandwidth and time duration. The FDA limits the
mechanical index (MI), which is the peak rarefactional pressure divided by the square
root of the center frequency. A high MI can result in microbubble cavitation [78].
The FDA also limits the average pulse power through the spatial peak pulse average
intensity Isppa and the maximum intensity Im, as well as the time-averaged power
through the spatial peak temporal average intensity Ispta [2]. Ultrasound transducers
have a bandpass response and thereby limit the transmit signal bandwidth. Tissue
attenuation due to absorption and scattering is frequency-dependent, so that higher
frequencies decay more rapidly with depth [17]. Finally, the application’s frame rate
limits the maximum time duration of the transmit signals.

The input signal constraints in ultrasound result in a rich set of engineering trade-
offs. To maximize the signal-to-noise ratio of the resulting image, we deliver as much
power to the tissue as the constraints allow [79]. All FDA pressure and power con-
straints are applied at the spatial peak, so the power should be equally distributed
throughout the tissue, rather than focused at a particular point on transmit. The
constraints on pulse design interfere with each other. The MI constraint is applied
to the temporal peak, suggesting that the power should be equally distributed over
the duration of the pulse. Additionally, the pulse should use the available bandwidth
of the transducer and be short enough in duration to achieve the desired frame rate
for the application, and should otherwise be shaped to satisfy the FDA average pulse
power constraints on Isppa and Im. While it is possible to numerically optimize the
pulse to maximize power transport given these constraints, tissue attenuation fur-
ther complicates the tradeoffs. Specifically, power delivery decays with tissue depth,
with higher frequencies decaying more rapidly. A pulse should therefore contain more
power in lower frequency components to achieve higher depth penetration. Finally,
the FDA time-averaged power constraint on Ispta limits the frame rate through the
pulse repetition rate.

7.3 Existing ultrasound transmit signal design

Existing approaches to MIMO ultrasound do not systematically evaluate the entire
tradeoff space, but rather sequentially optimize over local constraints until the design
possibilities are exhausted. We describe three stages of conceptual development of
MIMO ultrasound ideas. First, a strict matched filter architecture coupled with a
desire for excellent axial resolution leads to linear frequency modulated, or chirp,
transmit waveforms. Second, slightly relaxing the matched filter architecture enables
perfect axial resolution using complementary Golay encoded transmit waveforms.
Third, multiple waveforms can be transmitted so that their responses are separated
at the receiver provided that the cross-correlation between the waveforms is low.

The matched filter receiver architecture is widely justified for use in ultrasound
because it is the linear time-invariant filter that maximizes the signal-to-noise ratio
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at the output in the presence of white noise [79]. The matched filter presupposes
a linear time-invariant filter architecture [80]. With a matched filter, the width of
the autocorrelation function of the transmitted signal, s(t) ∗ s(−t), determines the
axial resolution of the imaging system. Perfect axial resolution, corresponding to
s(t) ∗ s(−t) = δ(t), is impossible with a matched filter architecture, since (i) the
FDA limits the peak pressure through the MI and (ii) the transducer imposes a
finite bandwidth on the transmitted pulse. Axial resolution is instead maximized
by using all the available bandwidth and spreading the transmitted power out over
a longer time interval, which is a technique called pulse compression. Researchers
have determined that under these design criteria, an appropriately weighted chirp
waveform performs better than many alternatives [81].

Complementary codes, such as Golay codes, enable perfect axial resolution with a
different receiver architecture. Instead of transmitting a single pulse with an impulse-
like autocorrelation function, the transmitter sequentially transmits two different
pulses whose autocorrelation functions sum to an impulse. For example, the se-
quence (1, 1) has autocorrelation (1, 2, 1) and the sequence (−1, 1) has autocorrelation
(−1, 2,−1). When added together, the autocorrelation functions sum to the impulse
(0, 4, 0). The transmitter sends the first pulse (1, 1) followed by the second pulse
(1,−1). The receiver applies the corresponding matched filters to each of the two
responses and then sums their outputs [82]. The pulses must be separated in time so
that the responses do not overlap, but cannot be too far apart lest nonstationarities
in the tissue distort the output. Unlike the conventional perspective just described,
we instead view both transmitted waveforms (1, 1) and (1,−1) as different portions
of the same single transmitted pulse. The receiver applies a linear time-varying filter,
rather than a matched filter, to this composite pulse, by changing the filter impulse
response from (1, 1) to (−1, 1) during the processing. Our perspective highlights the
facts that (i) a time-varying filter, unlike a time-invariant filter, can achieve perfect
axial resolution and (ii) the separation between (1, 1) and (1,−1) is a deliberate design
decision not to transmit more power in between.

Both the matched filter chirp architecture and the complementary Golay code ar-
chitecture are formulated using a subset of the constraints and optimization criteria
for the entire ultrasound system design problem. It is consequently challenging to
compare these two architectures with respect to the remaining criteria, such as depth
penetration. For example, it is straightforward to distribute the energy of a chirp
waveform evenly over the bandwidth of the transducer by sweeping over the corre-
sponding frequency range at a constant rate. In contrast, a Golay code is a binary
representation that must be modulated to produce an analog waveform to transmit,
allowing considerable design freedom to shape the pulse and define the frequency
content to compare with a chirp. A näıve modulation scheme instead results in a
concentrated frequency spectrum with limited depth penetration that is inferior to
that of the chirp [79]. Furthermore, the matched filter should ideally be matched to
the attenuated signal interrogating the tissue of interest, rather than the originally
transmitted waveform. To first order, the attenuated signal resembles a Doppler-
shifted version of the transmitted signal [2]. Filtering with a chirp is naturally robust
to Doppler shifts, while additional pulses must be added to make the complementary
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Golay receiver similarly robust [83]. Therefore, a broader perspective of the entire
ultrasound tradeoff space is necessary to make fair comparisons between different
architectures.

Existing MIMO ultrasound implementations simultaneously transmit signals in
different ways to achieve different tradeoffs. The simplest approach is synthetic trans-
mit aperture (STA) imaging, where the transducer elements transmit waveforms se-
quentially over time [84]. STA imaging thus achieves signal orthogonality by ensuring
that the received signals do not overlap in time. In comparison with conventional ul-
trasound systems that emit one pulse per scan line and beamform on both transmit
and receive, STA systems emit one pulse per transducer element. Thus although an
STA system may achieve a higher frame rate than conventional ultrasound, an STA
system exhibits a lower signal-to-noise ratio. Some ultrasound systems forgo beam-
forming on transmit entirely, along with the corresponding improvement in resolution,
to obtain both a higher frame rate and signal-to-noise ratio than an STA system [71].
Other ultrasound systems transmit signals from several transducer elements at the
same time and apply matched filters at the receiver, achieving both higher frame rates
and higher signal-to-noise ratios than STA imaging, but suffering from interference
due to poor signal cross-correlation [84, 85].

7.4 Discrete estimation with time-varying filters

We recognize that both the matched filter chirp architecture and the complementary
Golay code architecture are two specific instances of a more general time-varying
filter architecture. We describe a framework that incorporates both approaches and
suggests new alternatives. We do not systematically address all aspects of the entire
ultrasound tradeoff space, but rather make heuristic decisions to arrive at a simple
framework that describes both architectures. First we describe how to modulate
digital codewords to produce analog waveforms to transmit, to compare the frequency
content of chirps and Golay codes in the same signal space (Section 7.4.1). Then
we formulate a discrete estimation problem using samples of the measured signals
(Section 7.4.2). We show how the matched filter and complementary Golay code
architectures solve the discrete estimation problem, and consider the performance of
alternative time-varying filters (Section 7.4.3).

7.4.1 Modulating digital codewords

We modulate digital codewords to produce analog waveforms for ultrasound transmis-
sion in order to compare chirps and Golay codes in the same signal space. Golay codes
are sequences of binary digits that we represent by −1 and 1. Between codewords in
a complementary pair, there is no transmission, which we represent by a sequence of
0s. Therefore, we construct a class of analog transmit waveforms by modulating a
signal p(t) with a sequence zj = [z0

j · · · zL−1
j ]t of length L by scaling and replicating

p(t) every time T . Each zl
j is either −1, 0, or 1. The signal transmitted by the jth
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transducer element is thereby

zj(t) =
L−1
∑

l=0

zl
jp(t− lT ). (7.20)

The frequency spectrum of the transmitted waveforms is

∫

zj(t)e
−i2πftdt = P (f)

L−1
∑

l=0

zl
j exp(−i2πflT )

= P (f)Zj(f), (7.21)

where P (f) is the Fourier transform of p(t), and Zj(f) is the discrete-time Fourier
transform of zj.

Designing p(t) is a nontrivial problem. The FDA constraint on MI limits the extent
to which shifted copies of p(t) may overlap. Energy outside the transducer bandwidth
will be wasted, and the frequency distribution of the transmitted energy determines
the penetration depth. Both p(t) and the digital codewords zj determine the spectral
content of the transmitted signals. We can therefore first design the codewords and
subsequently design p(t) to achieve the desired tradeoffs between energy efficiency
and depth penetration.

7.4.2 Imaging as discrete estimation

We sample the measured signals in (7.19) to formulate ultrasound imaging as a dis-
crete estimation problem. Recall that MIMO imaging corresponds to estimating the
hij(t) given y(t). Since each additional yi(t) adds M new systems hij(t) driven by
the same inputs z(t) to estimate, we can focus on the estimation problem for fixed i
without loss of generality. We consequently omit the index i from (7.19) and process
a single transducer element measurement y(t).

We discretize the model by sampling y(t). We first substitute the modulated
signal in (7.20) into the analog model in (7.19) to obtain

y(t) =







M
∑

j=1

L−1
∑

l=0

zl
j

∫

hj(t− τ − lT )p(τ) dτ







+ v(t). (7.22)

We sample the measured signal assuming that it decays to zero over Q+ L samples,
where Q is the effective number of filter taps, so that

yk = y(kT ) =
M
∑

j=1

L−1
∑

l=0

zl
jh

k−l
j + v(kT )

=
M
∑

j=1

(zj ∗ hj)
k + vk, (7.23)
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where hj = [h0
j · · · hQ−1

j ]t, vk = v(kT ), (zj ∗ hj)
k is the kth sample of zj ∗ hj , and

hk
j =

∫

hj(kT − τ)p(τ) dτ. (7.24)

In matrix form, our discrete model becomes

y = Zh + v, (7.25)

where

y = [y0 · · · yQ+L−1]t,

Z = [Z1 · · · ZM ],

h = [ht
1 · · · ht

M ]t,

v = [v0 · · · vQ+L−1]t, (7.26)

and

Zj =





















z0
j
...

. . .

zL−1
j z0

j
. . .

...
zL−1

j





















. (7.27)

The discrete version of the MIMO ultrasound imaging system identification problem
is to choose the inputs Z and estimate h from the measured outputs y in (7.25).

7.4.3 Comparing receiver architectures

We now compare the matched filter architecture with the complementary Golay code
architecture using our discrete system identification formulation. We do not consider
the entire ultrasound tradeoff space, but rather focus on the specific tradeoff between
axial resolution and signal-to-noise ratio. We consider a simple example with M = 1
transducer element, Q = 2 filter taps, a length L = 6 transmit sequence, and unit
noise variance σ2

v = 1. We treat the unknown system h as a deterministic pair of pa-
rameters to estimate. Although a more sophisticated Bayesian estimation framework
could incorporate prior information known about h, our nonrandom parameter esti-
mation framework captures the tradeoff between axial resolution and signal-to-noise
ratio.

We derive the minimum variance unbiased estimator for h to serve as a baseline
for comparison with the matched filter and Golay code architectures. Estimation
from a linear transformation of unknown parameters corrupted by Gaussian noise, as
in (7.25), is a classic problem for which the maximum likelihood estimator achieves
the Cramér-Rao bound [80]. The maximum likelihood estimator is therefore the
minimum variance unbiased estimator. We have already derived this estimator in
Chapter 2, in the context of maximum likelihood source location estimation. From
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(2.11), the minimum variance unbiased estimator of h is

ĥMVU =
(

ZtZ
)-1

Zty (7.28)

and has error covariance matrix

ΛMVU =
(

ZtZ
)−1

. (7.29)

The variance of each filter tap estimate is given by the diagonal entries of ΛMVU.
By computing ΛMVU for all sequences for Z of length L = 6, we determine that the
minimum variance for each filter tap estimate is 6/35. One of the codewords that
achieves the minimum variance is the truncated Barker codeword (1, 1, 1,−1,−1, 1)
corresponding to

ZB =

[

1 1 1 −1 −1 1 0
0 1 1 1 −1 −1 1

]t

. (7.30)

In comparison with the minimum variance unbiased estimator for h in (7.28), the
matched filter processes the measured signals with Zt:

ĥMF =
1

L
Zty. (7.31)

With the truncated Barker codeword as the system input, the matched filter output
is

ĥMF =

[

1 1/6
1/6 1

]

h +
1

6
Zt

Bv. (7.32)

The matched filter estimate is biased, so that E[ĥ0
MF] = h0 + h1/6 and E[ĥ1

MF] =
h1 +h0/6. The variance of each filter tap estimate is 1/6, which is slightly lower than
that for the minimum variance unbiased estimator:

ĥMVU =

[

1 0
0 1

]

h +
(

Zt
BZB

)-1
Zt

Bv, (7.33)

where
(

Zt
BZB

)-1
Zt

B =
1

35

[

6 5 5 −7 −5 7 −1
−1 5 5 7 −5 −7 6

]

. (7.34)

The bias of each estimator corresponds to the axial resolution of the ultrasound
imaging system, and the variance of each estimator corresponds to the signal-to-noise
ratio of the ultrasound imaging system. An unbiased estimator corresponds to perfect
axial resolution, and low estimator variance corresponds to high signal-to-noise ratio.
By using the time-varying filter in (7.34), the minimum variance unbiased estimator
sacrifices little signal-to-noise ratio (a variance of 6/35 versus 6/36) to achieve perfect
axial resolution (zero bias), compared with the matched filter.

The Golay code architecture offers a different comparison. We select the pair of
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codewords (1, 1) and (1,−1), separated by two 0s

ZG =

[

1 1 0 0 1 −1 0
0 1 1 0 0 1 −1

]t

. (7.35)

The separation is such that the Golay code receiver described in Section 7.3 can be
implemented by processing the measured signals with Zt

G:

ĥGC =

[

1 0
0 1

]

h +
1

4
Zt

Gv. (7.36)

The Golay code estimator is unbiased, but the filter tap estimates have a high variance
of 1/4. Although the Golay code architecture achieves perfect axial resolution, so does
the minimum variance unbiased estimator, which additionally achieves a significantly
higher signal-to-noise ratio. Therefore, the benefits of the Golay code architecture
can be improved upon by inserting more power in between the codeword pair, at the
cost of implementing a time-varying filter at the receiver.

7.5 Summary and future challenges

We have generalized our imaging framework to accommodate active illumination, al-
lowing us to jointly design focusing strategies on both signal transmission and recep-
tion. While traditional signal transmission focusing relies on the physical combination
of waves incident at the target, a MIMO architecture isolates the contribution from
each transmitter and recombines the pieces at the receiver, by appropriately coding
the transmitted signals. A MIMO architecture thereby enables us to apply complex-
valued quasi light fields to focus on signal reception in conjunction with a physical
quasi light field to focus on signal transmission.

We have further generalized our imaging framework to accommodate medical ul-
trasound by formulating imaging as a system identification problem. Medical ul-
trasound involves the characterization of a volume of tissue mass, which is more
naturally modeled as an unknown system through which acoustic waves propagate,
rather than as a collection of point targets. At this high level of generality, ultrasound
is not tightly coupled to other imaging applications such as millimeter-wave radar,
and our quasi light field results do not immediately carry over to the challenges of
ultrasound. However, the system identification perspective has allowed us to identify
a more pressing area of improvement.

The physical constraints in medical ultrasound define a rich tradeoff space that
research has not yet fully explored. Many existing ultrasound systems presume a
linear time-invariant filter architecture, and consequently employ matched filters to
maximize the output signal-to-noise ratio. Other ultrasound systems employ com-
plementary Golay codes and a corresponding receiver architecture to achieve perfect
axial resolution. In order to compare these two architectures, we have described how
to modulate digital codewords to form analog transmit signals, formulated a discrete
version of the system identification problem, and proposed a time-varying filter re-
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ceiver architecture. We have shown how a time-varying filter can achieve the perfect
axial resolution of a Golay code with a signal-to-noise ratio that is only slightly worse
than the matched filter.

Our time-varying filter results do not exploit the full power of MIMO processing,
but rather make a first step in this direction. Future work is required to navigate a
complex tradeoff space and provide a methodology to explore new receiver architec-
tures, design codewords, and craft modulation schemes to achieve specific tradeoffs
in a systematic, comprehensive manner.





Chapter 8

Conclusions and perspectives

We have presented a unified theory of image formation that highlights opportunities at
the intersection of coherent and incoherent wave processing. On the one hand, tradi-
tional coherent images result from visualizing the objective function for the maximum
likelihood estimator of the locations of multiple sources. On the other hand, tradi-
tional incoherent images result from a physical model of the operation of the human
visual system. Both coherent and incoherent imaging systems process directional illu-
mination information, by directly measuring phase and capturing the traditional light
field, respectively. Quasi light fields relate the different image formation perspectives
and enable the formation of coherent images by integrating bundles of rays, so that
the coherent image formation process converges to the incoherent image formation
process in the limit of small wavelength and globally incoherent light. A radar system
searching for well-separated airborne targets thereby performs the same function as
a human eye that forms an image, under the limiting process applied to quasi light
fields.

As technology improves, coherent millimeter-wave imaging systems are uniquely
positioned to benefit from a deeper understanding of the relationship between co-
herent and incoherent image formation. This potential is due to the ability to fab-
ricate both the circuitry for millimeter-wave radar and low-power digital logic for
millimeter-wave ultrasound at low cost. Opportunities for millimeter-wave imaging
include using appropriate quasi light fields to surpass the Fourier uncertainty limita-
tion in the conventional beamformer to better jointly localize energy in position and
direction. More generally, quasi light fields enable the application of traditional light
field processing techniques to coherent imaging problems. For example, landmine
detection from coherent radiation [86] may directly benefit from light field pattern
recognition techniques [87].

We have pursued opportunities at the intersection of coherent and incoherent
wave processing by addressing the practical challenges faced when implementing high-
performance millimeter-wave systems. Phase noise can degrade image quality, espe-
cially when using arrays with a small number of sensors. We have characterized the
effect of the number of sensors, beamforming interval, and phase noise on the beam
pattern tilt, sidelobe suppression, and main lobe width. We have provided recommen-
dations on how to provision an imaging system to operate in a stable region where
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sufficient time averaging maintains the integrity of the beam pattern in the presence
of phase noise. We have additionally introduced a digital phase tightening algorithm
to reduce excessive phase noise at each sensor. Phase tightening oversamples the re-
ceived signals and applies simple digital logic in a feedback loop to average the phase
noise down to a lower value. We have synthesized our results to support a design
methodology for a millimeter-wave radar system.

We have identified future research opportunities in MIMO ultrasound, which we
have formulated as a system identification problem with unique constraints and trade-
offs. We have characterized the traditional matched filter and complementary Golay
code architectures as estimators that achieve different tradeoffs between bias and
variance. We have shown how a time-varying filter can achieve the perfect axial reso-
lution of a Golay code with a signal-to-noise ratio that is only slightly worse than the
matched filter. Additional research opportunities lie in other implementation chal-
lenges for millimeter-wave technology, such as sensor array calibration. For example,
recent results in distributed beamforming show that feedback can be employed to
guide random phase changes to convergence [88]. These results may be extended to
our scenario, where the high-frequency content of a formed image may guide random
phase changes applied to each sensor to ultimately converge to the correct calibration.
Finally, quasi light fields allow us to translate future techniques between coherent and
incoherent imaging. More research and experience will provide more guidance on the
selection of quasi light fields for future applications.

Our investigation supports five architectural principles relevant to implementing
imaging systems. First, push all image formation logic from the transmitter to the
receiver, as MIMO processing provides complete array steering flexibility that scales
with processing power. Second, use digital logic to compensate for the imperfections
of high-frequency analog circuitry, as digital phase tightening can reduce the phase
noise introduced by a PLL operating at 100 GHz. Third, achieve high precision
using a large number of low-precision samples, as both a large number of sensors and
a high sampling rate reduce the impact of phase noise through averaging. Fourth,
process the data where it resides to minimize inter-component communication, as
compressing sensor measurements to the minimum required samples puts less strain
on the communication links to the central processor that forms the image. Fifth, find
common points of comparison to relate technologies, as the light field allows us to
compare the operation and performance of coherent and incoherent imaging systems.



Appendix A

Optics toolbox

For completeness, we describe the background we presume and the tools we use from
optics. We first describe the complex analytic representation of signals (Section A.1).
Then we describe the theoretical foundation of geometric optics (Section A.2). We
outline scalar diffraction theory and key results from Fourier optics (Section A.3). We
briefly introduce the tools used in optical coherence theory (Section A.4). Finally,
we describe the operators that Agarwal et al. used to generate extended light fields
(Section A.5) [49].

A.1 Complex analytic representation

Although the physical phenomena we are interested in are naturally modeled with
real-valued signals, complex-valued signals are more convenient to work with. We
obtain a complex analytic representation of a real signal by eliminating redundancy
in the frequency domain. Specifically, suppose that U r(r, t) is a real signal that
represents the physical phenomenon of interest, such as a scalar wave. We can think
of U r(r, t) as a Cartesian component of the electric field, or the air pressure, at position
r and time t. The complex analytic representation is defined as

U(r, t) = 2
∫ ∞

0
U

r(r, ν) exp(−i2πνt) dν, (A.1)

where U r(r, ν) is the temporal Fourier transform of U r(r, t). We define the temporal
Fourier transform by

U (r, ν) =
∫ ∞

−∞
U(r, t) exp(i2πνt) dt, (A.2)

so that the inverse transform is

U(r, t) =
∫ ∞

−∞
U (r, ν) exp(−i2πνt) dν. (A.3)

Therefore, U is simply twice the positive frequency portion of U
r, and U r(r, t) is the

real part of U(r, t). Alternatively, the complex analytic representation can be defined
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purely in the time domain [89] by

U(r, t) =
[

δ(t) − i

πt

]

∗ U r(r, t). (A.4)

The time domain definition extends from deterministic waveforms to stochastic pro-
cesses. The stochastic processes we are interested in are stationary and do not gen-
erally have temporal Fourier transforms, as the tails do not die out.

We now present two examples. First, a monochromatic or harmonic signal at a
fixed frequency ν0 is given by

U r(r, t) = A(r) cos [2πν0t+ ψ(r)] , (A.5)

so that
U(r, t) = U0(r) exp(−i2πν0t), (A.6)

where
U0(r) = A(r) exp [−iψ(r)] . (A.7)

Although monochromatic signals are ideals that do not exists in practice, a broad
class of signals can be decomposed into monochromatic components.

Second, a quasi-monochromatic signal is narrowband so that its amplitude and
phase vary, but with a bandwidth significantly smaller than the carrier frequency ν0:

U r(r, t) = A(r, t) cos [2πν0t+ ψ(r, t)] . (A.8)

The complex analytic representation is

U(r, t) = U0(r, t) exp(−i2πν0t), (A.9)

where
U0(r, t) = A(r, t) exp [−iψ(r, t)] . (A.10)

A.2 Geometric optics

Geometric optics enables us to model optical behavior using rays and tools from
geometry, and is valid in the limit as the wavelength tends to zero. In order to
highlight the assumptions made, we present the rigorous derivation of geometric optics
from Born and Wolf [18]. We assume that the light is monochromatic, oscillating at
an angular frequency ω = 2πν. The complex analytic representation of the electric
and magnetic fields are

E(r, t) = E0(r) exp(−iωt) (A.11)

H(r, t) = H0(r) exp(−iωt). (A.12)
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We assume that the medium is linear, isotropic, dispersion-free, and source-free. In
this medium, Maxwell’s equations are, in SI units, [90]

∇×E + µ
∂

∂t
H = 0 (A.13)

∇×H − ǫ
∂

∂t
E = 0 (A.14)

∇ · ǫE = 0 (A.15)

∇ · µH = 0, (A.16)

where ǫ and µ are the dielectric constant and permeability of the medium. We
substitute (A.11) and (A.12) into (A.13)–(A.16) to obtain

∇×E0 − iωµH0 = 0 (A.17)

∇×H0 + iωǫE0 = 0 (A.18)

∇ · ǫE0 = 0 (A.19)

∇ · µH0 = 0. (A.20)

We assume that E0 and H0 can be written as

E0 = e(r) exp [iωS(r)] (A.21)

H0 = h(r) exp [iωS(r)] , (A.22)

where S(r) is a scalar function of position known as the optical path. Using the
product rules for the curl and divergence operations, we compute

∇×H0 = (∇× h + iω∇S × h) exp(iωS) (A.23)

∇×E0 = (∇× e + iω∇S × e) exp(iωS) (A.24)

∇ · µH0 = (µ∇ · h + h · ∇µ+ iωµh · ∇S) exp(iωS) (A.25)

∇ · ǫE0 = (ǫ∇ · e + e · ∇ǫ+ iωǫe · ∇S) exp(iωS). (A.26)

Using the relations (A.21)–(A.22) and (A.23)–(A.26) in equations (A.17)–(A.20), we
obtain

∇S × e − µh =
i

ω
∇× e (A.27)

∇S × h + ǫe =
i

ω
∇× h (A.28)

e · ∇S =
i

ω
(∇ · e + e · ∇ log ǫ) (A.29)

h · ∇S =
i

ω
(∇ · h + h · ∇ logµ) . (A.30)
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In the geometric optics approximation, ω → ∞ so that the righthand sides of (A.27)–
(A.30) vanish. Roughly speaking, the geometric optics approximation is valid when
the changes in e and h are proportionally small over domains for r with linear di-
mension on the same order as the wavelength λ. That is, the approximation breaks
down at points r where the fields vary substantially over a neighborhood of r of radius
λ. Geometric optics therefore fails to accurately describe optical behavior at shadow
edges, for example.

Now having made the geometric optics approximation, we simplify the equations
to clarify the dynamics. Equations (A.27)–(A.30) become

∇S × e − µh = 0 (A.31)

∇S × h + ǫe = 0 (A.32)

e · ∇S = 0 (A.33)

h · ∇S = 0. (A.34)

We drop equations (A.33)–(A.34), since they follow from (A.31)–(A.32) by taking the
dot product with ∇S. Solving for h in (A.31), substituting into (A.32), and using a
triple product identity yields

∇S (∇S · e) − e (∇S · ∇S) + ǫµe = 0. (A.35)

The first term of (A.35) vanishes by (A.33), so that we conclude

∇2S = n2, (A.36)

where n =
√
ǫµ is the index of refraction. Equation (A.36) is the eikonal equation

that determines how the optical path evolves as the index of refraction changes.

The rays in geometric optics point in the direction of the time-averaged Poynting
vector, which we now compute. We integrate over a long time interval T ≫ 1/ω:

〈S〉 =
1

2T

∫ T

−T
S dt (A.37)

=
1

2T

∫ T

−T
Re{E} × Re{H} dt (A.38)

=
1

2
Re{E0 ×H∗

0} (A.39)

=
1

2
Re{e × h∗} (A.40)

=
1

2µ
Re {(e · e∗)∇S − (e · ∇S)e∗} (A.41)

=
|e|2
2µ

∇S. (A.42)

In (A.39) we have neglected the oscillating terms, assuming that they integrate to
zero over the long time period. In (A.41), we have calculated e×h∗ from (A.31) and
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made use of a triple product formula. Finally, in (A.42) we have used (A.33). The
rays in geometric optics therefore point along the gradient of the optical path, so that
they are orthogonal to the level sets of the optical path, which are the wavefronts.

A.3 Scalar diffraction theory

Diffraction is the physical basis for wave propagation and is used throughout the
thesis. We derive the Rayleigh diffraction formula from Maxwell’s equations. First,
we approximate the electric field vector by a scalar field that satisfies the scalar wave
equation (Section A.3.1). Then, we formulate and solve a boundary value problem to
derive the Rayleigh diffraction formula of the first kind (Section A.3.2). Finally, we
describe the angular decomposition of light into plane waves that is used extensively
in Fourier optics (Section A.3.3). Although Maxwell’s equations only apply to elec-
tromagnetic radiation, our results apply equally well to acoustic waves, which satisfy
a similar scalar wave equation [19].

A.3.1 A scalar approximation

We make a scalar approximation to the electric field vector E(r, t). In a homogeneous
medium free of currents and charges, E satisfies the wave equation [18]

∇2E − ǫµ
∂2

∂t2
E = 0. (A.43)

Thus, each Cartesian component U satisfies the homogeneous scalar wave equation

∇2U − ǫµ
∂2

∂t2
U = 0. (A.44)

We can consequently describe the electromagnetic field by applying scalar wave theory
to each component.

It is more convenient to work with a single scalar quantity instead of three. In-
coherent light is primarily characterized by its intensity, which can be approximated
by a single scalar wave function [18]. The scalar diffraction approximation is not as
well-justified in coherent wave applications, although we nonetheless assume that the
electric field is linearly polarized. A more precise treatment would leverage stochastic
models for coherence and polarization [91].

We assume that U is monochromatic, so that

U(r, t) = U0(r) exp(−i2πνt) (A.45)

for some frequency ν. By (A.44), U0 satisfies the homogeneous Helmholtz equation

∇2U0(r) + k2U0(r) = 0, (A.46)

where k = 2πν
√
µǫ.
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A.3.2 The Rayleigh diffraction formula

We obtain the Rayleigh diffraction formula by solving for the scalar field within the
half-space z ≥ 0 in terms of the boundary conditions on the plane z = 0 [92]. We
assume that the field on any cross section of a rectangular slab occupying the region
0 ≤ z ≤ Z has a two-dimensional spatial Fourier transform denoted by U0(u, v; z),
so that

U0(x, y, z) =
∫∫

U0(u, v; z) exp [i(ux+ vy)] du dv. (A.47)

By substituting (A.47) into (A.46), we obtain a differential equation for U0(u, v; z),
whose general solution yields four different types of plane waves. Two types are
homogeneous plane waves of low spatial frequencies u2+v2 ≤ k2; one propagates from
the plane z = 0 towards the plane z = Z, and the other propagates in the opposite
direction. The other two types are evanescent waves of high spatial frequencies u2 +
v2 > k2, again, propagating in opposite directions. The evanescent waves decay in
amplitude exponentially with distance, so we neglect them. As Z → ∞ so that the
slab models the half-space z ≥ 0, there is no longer a physical basis for a backward
propagating wave. Therefore, we are left with a single type of plane wave solution,
so that

U0(x, y, z) =
∫∫

A(u, v) exp
[

i(ux+ vy +
√
k2 − u2 − v2z)

]

du dv (A.48)

is the superposition of plane waves traveling along the direction (u, v,
√
k2 − u2 − v2).

We recognize A(u, v) in (A.48) as the two-dimensional spatial Fourier transform of
U0(x, y, 0). We substitute the Fourier transform formula for A(u, v), set u = kp,
v = kq, and interchange the order of integration to obtain

U0(x, y, z) =
∫∫

U0(x
′, y′, 0)

×
(

k

2π

)2
∫∫

exp
{

ik
[

p(x− x′) + q(y − y′) +
√

1 − p2 − q2z
]}

dp dq dx′ dy′.

(A.49)

The inner integral in (A.49) is the derivative of the Weyl representation of a diverging
spherical wave:

∂

∂z

[

exp(ik|r − r′|)
|r− r′|

]

=

− k2

2π

∫∫

exp
{

ik
[

p(x− x′) + q(y − y′) +
√

1 − p2 − q2z
]}

dp dq, (A.50)

where r = (x, y, z) and r′ = (x′, y′, 0). We obtain the Rayleigh diffraction formula of
the first kind by substituting (A.50) into (A.49):

U0(r) = − 1

2π

∫

U0
0 (r′)

∂

∂z

[

exp(ik|r − r′|)
|r − r′|

]

d2r′, (A.51)
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where the superscript 0 is a reminder to evaluate U0(r
′) on the plane z = 0. For-

mula (A.51) completely specifies the scalar field in a region of free space, using just
measurements made on a plane.

A.3.3 Angular decomposition into plane waves

A two-dimensional spatial Fourier transform decomposes radiation into plane waves.
To express the decomposition in compact notation, we start with (A.48) and substi-
tute u = kp, v = kq, a(p, q) = k2A(kp, kq), and s = (p, q,

√
1 − p2 − q2) to obtain

U0(r) =
∫

a(s) exp(iks · r) d2s, (A.52)

where

a(s) =

(

k

2π

)2
∫

U0
0 (r′) exp(−iks · r′) d2r′. (A.53)

We may equivalently integrate over any plane parallel to the xy-plane:

a(s) =

(

k

2π

)2
∫

U0(r) exp(−iks · r) d2r. (A.54)

We interpret the Rayleigh diffraction formula in (A.51) as a recipe for computing
the field by summing the radiation patterns from secondary spherical waves orig-
inating at points across the plane z = 0, which is a construction known as the
Huygens-Fresnel principle. The angular decomposition in (A.52) provides an alterna-
tive interpretation, so that the field is instead computed by summing contributions
from plane waves heading in different directions into the positive half-space z > 0.

In the far zone, only a single plane wave component survives. To demonstrate this,
we make a far-zone approximation to the Rayleigh diffraction formula. We denote
the unit vector pointing in the direction of r by r̂ = r/|r|. When |r| is sufficiently
large, we may approximate

exp(ik|r − r′|)
|r − r′| ≈ exp(ik|r|)

|r| exp(−ikr̂ · r′) (A.55)

so that
∂

∂z

[

exp(ik|r − r′|)
|r − r′|

]

≈ ik
z

|r|
exp(ik|r|)

|r| exp(−ikr̂ · r′). (A.56)

We denote the angle that r makes with the z-axis by θ. Using the approximation in
(A.56) in the Rayleigh diffraction formula in (A.51), we obtain the field in the far
zone:

U∞
0 (r) = − ik

2π
cos θ

exp(ik|r|)
|r|

∫

U0
0 (r′) exp(−ikr̂ · r′) d2r′. (A.57)
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The integral in (A.57) is a plane wave component in direction r̂, so that

U∞
0 (r) = −2πi

k
cos θ

exp(ik|r|)
|r| a(r̂). (A.58)

A.4 Coherence theory

Optical coherence theory uses stochastic processes to predict interference effects. We
describe how the second-order statistics of the scalar field model phase correlation
(Section A.4.1) and how to handle stochastic processes that lack well-defined temporal
Fourier transforms (Section A.4.2).

A.4.1 Second-order statistics

Let the scalar field U(r, t) be a zero-mean, complex, stationary, ergodic, stochastic
process. We define the mutual coherence function [89] by

Γ(r1, r2, τ) = 〈U(r1, t+ τ)U∗(r2, t)〉, (A.59)

where the operation 〈·〉 denotes taking an ensemble average. Γ tells us how well-
correlated the field is at different points in space and at different instants in time.
We call Γ(r, r, 0) the average intensity at r. Several quantities are derived from the
mutual coherence function. The complex degree of coherence is a normalized version
of Γ:

γ(r1, r2, τ) =
Γ(r1, r2, τ)

√

Γ(r1, r1, 0)
√

Γ(r2, r2, 0)
. (A.60)

As with a generic correlation coefficient, the absolute value of the complex degree of
coherence is bounded

0 ≤ |γ(r1, r2, τ)| ≤ 1, (A.61)

where a value of 0 implies that the indicated vibrations are completely incoherent,
and a 1 implies they are completely coherent.

The temporal Fourier transform of Γ is called the cross-spectral density function

W (r1, r2, ν) =
∫

Γ(r1, r2, τ) exp(i2πντ) dτ, (A.62)

which, when normalized, is called the spectral degree of coherence:

µ(r1, r2, ν) =
W (r1, r2, ν)

√

W (r1, r1, ν)
√

W (r2, r2, ν)
. (A.63)

The absolute value of the spectral degree of coherence is bounded

0 ≤ |µ(r1, r2, ν)| ≤ 1, (A.64)

with 0 indicating complete incoherence and 1 complete coherence. Also note that
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W (r, r, ν) = S(r, ν), the standard power spectral density of the time series U(r, t) at
a particular position r.

A.4.2 Coherent-mode representation

The coherent-mode representation decomposes the stochastic process U(r, t) by tem-
poral frequency [92]. We fix the frequency ν. By Mercer’s theorem, W (r1, r2, ν) is a
convergent sum of eigenfunctions and eigenvalues of the associated integral equation.
We construct a new stochastic process Uν(r) from these eigenfunctions, by introducing
random variables with appropriate distributions, so that the spatial cross-correlation
function of Uν is precisely the cross-spectral density:

W (r1, r2, ν) = 〈Uν(r1)U
∗
ν (r2)〉. (A.65)

Equation (A.65) expresses the Fourier transform of a correlation function as a cor-
relation function itself, of an entirely different stochastic process. In effect, we have
performed a Karhunen-Loève expansion, in reverse. Instead of decomposing a stochas-
tic process using its covariance function to determine the appropriate eigenvectors, we
have synthesized a stochastic process with a covariance function that has been pre-
determined. To employ the coherent-mode representation, we simply work with the
stochastic process Uν(r) exp(−i2πνt) instead of U(r, t) to understand the behavior of
radiation at the fixed frequency ν.

A.5 Operators and Dirac notation

We describe the three main Hilbert space operators introduced by Agarwal et al. [49]:
the position operator r̂⊥, the direction operator ŝ⊥, and the coherence operator L̂.
The position and direction operators are defined component-wise, so that

r̂⊥ = (x̂, ŷ)

ŝ⊥ = (ŝx, ŝy), (A.66)

where the components operate on a function f by

x̂f = xf

ŝxf = − iλ

2π

∂f

∂x
, (A.67)

and similarly for ŷ and ŝy. The commutator of two operators is defined as [93]

[x̂, ŝx] = x̂ŝx − ŝxx̂. (A.68)

We compute

[x̂, ŝx] f = (x̂ŝx − ŝxx̂) f (A.69)
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= − iλ

2π

[

x
∂f

∂x
− ∂

∂x
(xf)

]

(A.70)

=
iλ

2π
f, (A.71)

from which the commutation relations in (4.11) follow.
The coherence operator L̂ is defined in (4.12) by its matrix elements using the

Dirac notation [93]
〈

rR
⊥

∣

∣

∣L̂
∣

∣

∣rC
⊥

〉

= U
(

rR
)

U∗
(

rC
)

, (A.72)

where |rR
⊥〉 is the eigenfunction of r̂⊥ with eigenvalue rR

⊥, and similarly for |rC
⊥〉. In

position coordinates, |rR
⊥〉 is given by δ(r⊥ − rR

⊥). Therefore, the lefthand side of
equation (A.72) evaluates to

∫

δ
(

r⊥ − rR
⊥

)

L̂ δ
(

r⊥ − rC
⊥

)

d2r, (A.73)

which specifies how L̂ operates on functions by mapping the Dirac delta basis function
at rC

⊥ to the Dirac delta basis function at rR
⊥. When applied to all rR

⊥ and rC
⊥, equation

(A.72) thereby uniquely determines the operator L̂ from the scalar field U in the source
plane.



Appendix B

Additional proofs and results

We include several proofs and results that are highly relevant to the thesis, but whose
details are tangential to the main discussion. First, we relate the main lobe width
of the beam pattern to the array length (Section B.1). Then, we describe how the
Rihaczek quasi light field behaves like the traditional light field for globally incoherent
radiation in the limit of zero wavelength (Section B.2). We show how alternative
coherent cameras generalize beamforming and how comparing cameras is equivalent
to applying tomographic constraints on the light field (Section B.3). Finally, we
present proofs and results on the steady-state distribution and bias inherent in phase
tightening (Section B.4).

B.1 Beam width approximation

We prove a stronger version of the half-power beam width approximation in (2.36).

Claim B.1.1. In the absence of phase noise, the angular half-power beam width for
a uniform linear array is

θBW ≈ 0.8859λ/Md, (B.1)

for large values of M .

Proof. We determine the points at which the conventional beam pattern Bθ in (2.32)
reaches the half-power mark where |Bθ|2 = 1/2. We assume the array is steered
perpendicular to its axis at θT = π/2 and that θ ≈ π/2, so that θ̃ = θ − π/2 is small
and

Bθ ≈
1

M

sin
(

Mπd
λ
θ̃
)

sin
(

πd
λ
θ̃
) . (B.2)

We define

γ =
Mπd

λ
θ̃, (B.3)

and note that for large M , the value of θ̃ that marks the end of the main lobe is small
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so that we may make a linear approximation for the sine in the denominator of (B.2):

Bθ ≈
sin γ

γ
. (B.4)

Solving |Bθ|2 = 1/2 yields γ = 1.3916. Thus, θ̃ ≈ 1.3916λ/Mπd, and the half-power
beam width is twice this quantity.

B.2 Traditional light field properties

The traditional light field satisfies a set of properties that quasi light fields attain for
globally incoherent radiation in the limit of zero wavelength. We make this limiting
process precise for the Rihaczek conjugate light field, following Mandel and Wolf [92].

We model globally incoherent radiation with a quasi-homogeneous source, which is
a special type of Schell-model source. A Schell-model source has a spatially stationary
spectral degree of coherence

µ(r1, r2, ν) = g(r1 − r2, ν), (B.5)

for some function g. A quasi-homogeneous source additionally (i) has a power spec-
tral density that varies much more slowly with position than g(r, ν) and (ii) is phys-
ically larger than both the wavelength and the spatial width of g(r, ν). Thus quasi-
homogeneous sources are said to be globally incoherent because the radiation is only
spatial correlated across distances that are small compared with the size of the source.
For example, natural sunlight can be modeling with a quasi-homogeneous source.

We now compute the conjugate Rihaczek light field for a quasi-homogeneous
source. The partially coherent version of the conjugate Rihaczek quasi light field
in (4.28) is

LR(r, s) =

(

k

2π

)2

sz exp(iks · r)
∫

W (r′, r, ν) exp(−iks · r′) d2r′. (B.6)

It follows from the definition of the spectral degree of coherence that the cross-spectral
density in the source plane of a quasi-homogeneous source is

W 0(r1, r2, ν) ≈ S0(r2, ν)g
0(r1 − r2, ν). (B.7)

Upon substituting (B.7) into (B.6), the light field in the source plane factors into
terms depending on position and direction:

L0(r, s) = k2szS
0(r, ν)G 0(ks, ν), (B.8)

where G 0 is the spatial Fourier transform of g0. All factors in (B.8) are nonnegative
[92]. Furthermore, since the power spectral density is zero outside of the source, the
light field is zero there too. Therefore the Rihaczek light field for a quasi-homogeneous
source has the properties of the traditional light field in the source plane.



B Additional proofs and results 151

We now compute the Rihaczek light field along rays pointing from the source plane
into the half-space z > 0. First, we use the coherent mode representation to express
the Rihaczek light field in (B.6) in terms of a stochastic plane wave aν :

LR(r, s) = sz exp(iks · r)〈U∗
ν (r)aν(s)〉. (B.9)

We express the scalar field Uν at r in terms of the scalar field on the source plane
using the Rayleigh diffraction formula, in order to express LR at r in terms of the
light field on the source plane:

LR(r, s) = exp(iks · r)
∫

L0(r′, s)

{

− 1

2π

∂

∂z

[

exp(−ik|r − r′|)
|r − r′|

]}

exp(−iks · r′) d2r′.

(B.10)
We substitute the light field on the source plane of a quasi-homogeneous source in
(B.8) into (B.10):

L(r, s) = k2szG
0(ks, ν) exp(iks · r)

×
∫

{

− 1

2π

∂

∂z

[

exp(−ik|r − r′|)
|r − r′|

]}

S0(r′, ν) exp(−iks · r′) d2r′. (B.11)

We assume that r is several wavelengths away from the source plane and approximate

∂

∂z

[

exp(−ik|r − r′|)
|r− r′|

]

=

(

−ik − 1

|r− r′|

)

exp(−ik|r − r′|)
|r − r′|

z

|r− r′|

≈ −ik exp(−ik|r − r′|)
|r − r′|

z

|r − r′| (B.12)

so that

L(r, s) ≈ k2szG
0(ks, ν) exp(iks · r)

∫

ikz

2π

S0(r′, ν)

|r − r′|2 exp [−ik(|r − r′| + s · r′)] d2r′.

(B.13)
We evaluate the integral in (B.13) for large k using the principle of stationary phase
[92]. Intuitively, the exponential oscillates rapidly, so that there is much cancellation
upon integration. The points that have a lasting impact on the integral are those
where the first-order partial derivatives of |r− r′| + s · r′ are zero. There is one such
point, at

r0 =
(

x− sx

sz

z, y − sy

sz

z, 0
)

. (B.14)

Geometrically, r0 is the point at which a line passing through r along s intersects
the source plane z = 0. By the principle of stationary phase, the integral in (B.13)
sifts out the value of S0(r′, ν)/|r − r′|2 at r′ = r0, but with an additional factor
based on second-order partial derivatives. The integral in (B.13) ultimately evaluates
to S0(r0, ν) exp(−iks · r). We conclude that the Rihaczek light field for a quasi-
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homogeneous source in the limit as k → ∞ is

LR(r, s) = k2szS
0(r0, ν)G

0(ks, ν)

= L0(r0, s), (B.15)

which is constant along rays.

B.3 Coherent cameras

We explore two alternative ways to interpret light field design for coherent imaging
applications. First, coherent cameras based on generalized Wigner-Ville quasi light
fields aggregate and isolate power contributions in different ways (Section B.3.1).
Second, instead of comparing how two different cameras capture the light field, we
can force a camera to match the pixel values of a specific reference camera, which
acts as a constraint on light field design (Section B.3.2).

B.3.1 Generalized Wigner-Ville beamformers

Coherent cameras based on the Rihaczek quasi light field form image pixels by com-
puting the Hermitian product of two different beamformers that divide the tasks of
aggregating and isolating power contributions (Section 4.4.3). We now explore how
other quasi light fields lead to different divisions of labor between aggregating and
isolating power. Specifically, we consider the generalized Wigner-Ville quasi light
fields [34] obtained by selecting

K(a,b) = δ
[(

1

2
+ γ

)

a +
(

1

2
− γ

)

b

]

(B.16)

in (4.24), resulting in the light fields

LGWV(r, s) =

(

k

2π

)2

sz

×
∫

U∗
[

r −
(

γ +
1

2

)

r′
]

U
[

r −
(

γ − 1

2

)

r′
]

exp(−iks⊥ · r′⊥) d2r′, (B.17)

where γ is a real parameter restricted to |γ| ≤ 1/2. Specific values of γ correspond to
special quasi light fields: γ = −1/2 for the conjugate Rihaczek distribution, γ = 1/2
for the regular Rihaczek distribution, and γ = 0 for the Wigner distribution.

To form an image, we integrate r over the aperture to aggregate power, and r′

over the entire sensor array to isolate power. The integral incorporates samples of
U(rR) and U∗(rC) according to the change of variables

rR = r − (γ − 1/2)r′,

rC = r − (γ + 1/2)r′. (B.18)
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For simplicity, we assume the two-dimensional case and integrate over an aperture
of width A and a sensor array of length D. The resulting region of integration is a
rectangular strip rotated according to γ and bound by the available sensors (Figure
B-1).
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r
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2

γ + 1

2

γ = −1/2(a)

A

conjugate Rihaczek γ = 0(b) Wigner

Figure B-1: Coherent cameras based on generalized Wigner-Ville quasi light fields ag-
gregate and isolate power contributions in different ways, depending on the parameter γ.
For the conjugate Rihaczek light field (a), when γ = −1/2, power isolation along r

′ uses
the field measurements at all r

R with a fixed conjugate field measurement at r
C. For the

Wigner light field (b), when γ = 0, power isolation along r
′ uses the field and conjugate

field measurements symmetrically.

The conjugate field and field measurements contribute to the power aggregation
and selection tasks in different ways for each choice of γ. When γ = −1/2 and the r′-
axis is vertical, the conjugate field measurements are only used for power aggregation.
As γ increases and the r′-axis tilts, more conjugate field measurements are used for
power selection, as the projection of the region of integration onto the rC-axis increases
in length. The conjugate field and field measurement equally contribute to the power
aggregation and selection tasks for the symmetric Wigner camera at γ = 0. As γ
increases further from 0 to 1/2, we witness similar behavior, with the roles of the
conjugate field and field measurements exchanged.

B.3.2 Camera comparison and tomography

The light field is a common currency for camera comparison, allowing us to compare
the operation of different cameras by comparing the light fields that they capture. We
can alternatively view camera comparison as a constraint on quasi light field design:
we require the pixel values produced by a coherent camera to match a known reference
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camera, and translate this requirement to constraints on the light field. Specifically,
pixel value requirements translate to tomographic constraints on the quasi light field.

Inferring a light field from pixel values is mathematically equivalent to the problem
in the field of tomography of reconstructing a function from its projections. While in
a traditional CAT (computerized axial tomography) scan, the reconstructed function
represents the linear attenuation of X-rays at each point in the body [94], in our
context, the reconstructed function is the light field. In the context of computational
photography, Ng showed that images formed by conventional cameras are projections
of the light field [95]. Earlier, in the context of quantum mechanics, Bertrand and
Bertrand derived the Wigner-Ville distribution from its projections [96].

We express the pixel values of the ideal single-lens camera in two dimensions as
line integrals by applying a change of variables m = tanψ to (4.51):

P (y0, R) =
V

R

∫∫

(

m2 + 1
)−5/2

rect(y/A)L(y,m)δ(y −Rm− y0) dm dy, (B.19)

where rect denotes the unit rectangle function. The integral on the righthand side

of (B.19) is the Radon transform of (m2 + 1)
−5/2

rect(y/A)L(y,m) with slope R and
offset y0 [94]. Therefore, if the pixel values P (y0, R) are specified for all y0 and R,
then (B.19) uniquely determines the light field L(y,m) for |y| < A/2. In comparison,
the tomographic constraint does not uniquely determine the quasi light field in three
dimensions.

Determining light fields by tomographic projection need not result in quasi light
fields with desirable properties. To illustrate the potential difficulties, we apply the
inverse Radon transform to explicitly solve for L(y,m). First, we multiply both sides
of (B.19) by exp(−iuy0), integrate over y0, and define v = Ru:

∫

P (y0, v/u) exp(−iuy0) dy0 =

uV

v

∫∫

(

m2 + 1
)−5/2

rect(y/A)L(y,m) exp [i(vm− uy)] dm dy. (B.20)

The righthand side of (B.20) is a two-dimensional Fourier transform, which we invert
to obtain

L(y,m) =
1

4π2V

(

m2 + 1
)5/2

∫∫∫

v

u
P (y0, v/u) exp {i [u(y − y0) − vm]} dy0 du dv,

(B.21)
for |y| < A/2.

If the tomographic constraints are too restrictive, we can relax them and just
apply pixel value constraints in the far zone, where R ≫ A. For values of y where
|y| ≤ A/2, m0 = −y0/R approximately solves y − Rm0 − y0 = 0. We perform the
integration over m in (B.19) to obtain

P =
V

R

(

m2
0 + 1

)−5/2
∫ A/2

−A/2
L(y,m0) dy. (B.22)
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For A→ ∞, (B.22) specifies the marginal distribution of L(y,m) with respect to m.
There are many functions L that satisfy (B.22), allowing more flexibility for light field
design.

B.4 Phase tightening analysis

We elaborate on the steady-state distribution (Section B.4.1) and bias calculation for
the noise edge configuration (Section B.4.2) in phase tightening.

B.4.1 Steady state calculations

We provide details for the proofs of two claims that specify the steady-state distribu-
tion of the Markov chain in Chapter 6.

General steady state proof

We describe the detailed calculations omitted from the proof of Claim 6.3.4. We show
that

πk = λk−1πk−1 + λ̄k+1πk+1, (B.23)

for 0 ≤ k ≤ Q. There are 9 cases to consider.

Case 1: 0 < k < M − 1. We have

λk−1πk−1 + λ̄k+1πk+1 = λk−1

Q+k−2
∏

i=M

λi

M−1
∏

i=k

λ̄i + λ̄k+1

Q+k
∏

i=M

λi

M−1
∏

i=k+2

λ̄i

=
Q+k−1
∏

i=M

λi

M−1
∏

i=k

λ̄i +
Q+k
∏

i=M

λi

M−1
∏

i=k+1

λ̄i

= λ̄k

Q+k−1
∏

i=M

λi

M−1
∏

i=k+1

λ̄i + λk

Q+k−1
∏

i=M

λi

M−1
∏

i=k+1

λ̄i

=
Q+k−1
∏

i=M

λi

M−1
∏

i=k+1

λ̄i

= πk.

The next 3 cases proceed in almost exactly the same manner, so we omit the
details.

Case 2: M < k < Q− 1.

Case 3: k = 0, 1 < M .

Case 4: k = Q− 1, 0 < M < Q− 1.

Up until this point, we have not used the condition (6.14) in the hypothesis of the
claim. This condition is vital in the remaining edge cases.



156 B.4 Phase tightening analysis

Case 5: k = M − 1, 1 < M . We have

λk−1πk−1 + λ̄k+1πk+1 = λM−2

Q+M−3
∏

i=M

λi

M−1
∏

i=M−1

λ̄i + λ̄M

M+Q−1
∏

i=M+1

λ̄i

= λ̄M−1

Q+M−2
∏

i=M

λi +
Q−1
∏

i=0

λ̄i

= λ̄M−1

Q+M−2
∏

i=M

λi +
Q−1
∏

i=0

λi

= λ̄M−1

Q+M−2
∏

i=M

λi + λM−1

Q+M−2
∏

i=M

λi

=
Q+M−2
∏

i=M

λi

= πk.

The last 4 cases proceed similarly. We omit the details.

Case 6: k = M , 0 < M < Q− 1.

Case 7: k = 0, M = 1.

Case 8: k = Q− 1, M = 0.

Case 9: k = Q− 1, M = Q− 1.

Simple steady state proof

We present an alternative proof of Claim 6.3.5 using direct calculation. We treat
(6.17) as a candidate solution and show that it satisfies (6.12) to conclude that it is
a scaled steady-state probability vector solution. We compute

λk−1πk−1 + λ̄k+1πk+1 = λk−1

k−2
∏

i=k−Q

2

λi + λk−Q

2
+1

k
∏

i=k−Q

2
+2

λi

=
k−1
∏

i=k−Q

2

λi +
k
∏

i=k−Q

2
+1

λi

= λk−Q

2

k−1
∏

i=k−Q

2
+1

λi + λk

k−1
∏

i=k−Q

2
+1

λi

= λ̄k

k−1
∏

i=k−Q

2
+1

λi + λk

k−1
∏

i=k−Q

2
+1

λi

=
k−1
∏

i=k−Q

2
+1
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= πk.

Note that π consists of nonnegative entries. We assume towards a contradiction that
π = 0. Since the indices where λi = 0 are consecutive (Claim 6.3.2) and each πk in
(6.17) is the product of Q/2 − 1 consecutive factors λi, at least Q− (Q/2 − 1) + 1 =
Q/2+2 of the λi must be zero. But that is more than half of them, which is impossible
since the convolution relationship in (6.11) would force the continuous density pv to
be identically zero. Thus π is a scaled steady-state probability vector solution.

B.4.2 Analysis of SP for bias

In digital phase tightening, the summation

SP =
P
∑

k=0

πP
k

=
P
∑

k=0

(P + ǫ)k (P )P−k (B.24)

in (6.33) appears in our analysis of bias for the noise edge configuration. We now fur-
ther analyze SP . We first prove that there is no closed-form expression for SP . Then,
we establish two recurrence relations. Finally, we derive an asymptotic approxima-
tion to SP as P → ∞. We base our analysis on the observation that SP resembles a
hypergeometric series, which is a series where the ratio of two consecutive terms is a
rational function of the summation index. The theory of hypergeometric functions is
well-developed [97].

No closed-form expression

We define a closed-form expression as a linear combination of a finite number of
hypergeometric terms [97]. We denote each term in SP by

tk = (P − 1 + ǫ)k(P − 1)P−1−k, (B.25)

so that
P−1
∑

k=0

tk = SP−1. (B.26)

We seek a closed-form expression for when 0 < ǫ < 1. We define the consecutive term
ratio by

r(k) =
tk+1

tk
=
P − 1 − k + ǫ

k + 1
. (B.27)

SP is not an indefinite hypergeometric series, since r(k) depends on P and is
therefore not purely a rational function of k. To apply the hypergeometric theory,
we treat P as a constant P0. Specifically, we decouple the P in (B.25) from the P in
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(B.26). The terms become

tk = (P0 − 1 + ǫ)k(P0 − 1)P0−1−k, (B.28)

and the consecutive term ratio becomes

r(k) =
tk+1

tk
=
P0 − 1 − k + ǫ

k + 1
. (B.29)

The summation
∑P−1

k=0 tk is hypergeometric, so we may apply Gosper’s algorithm to
determine if there is a closed-form expression [97].

To apply Gosper’s algorithm, we must write r(k) in the form

r(k) =
a(k)

b(k)

c(k + 1)

c(k)
, (B.30)

where a(k), b(k), and c(k) are polynomials such that gcd [a(k), b(k + h)] = 1 for all
nonnegative integers h. This is done by setting a(k) = P0 − 1 − k + ǫ, b(k) = k + 1,
and c(k) = 1. Next, we ask if there is a polynomial solution x(k) to

a(k)x(k + 1) − b(k − 1)x(k) = c(k), (B.31)

which is
(P0 − 1 − k + ǫ)x(k + 1) − kx(k) = 1. (B.32)

Say x(k) has leading term αkn. From the coefficient of highest degree on the lefthand
side of (B.32), we conclude that α = 0. Thus x(k) = 0, which does not solve (B.32).
Thus, Gosper’s algorithm implies there is no closed-form expression for

∑P−1
k=0 tk.

Recurrence relations

First, we prove the recurrence relation for SP in (6.36).

Claim B.4.1.

SP = 2PSP−1 + (P − 1 + ǫ)P . (B.33)

Proof.

SP =
P
∑

i=0

(P + ǫ)i (P )P−i

= P ! + (P + ǫ)P + P
P−1
∑

i=1

(P − 1 + ǫ)i−1 (P − 1)P−1−i(P + ǫ− i+ i)

= P ! + (P + ǫ)P + P

[

P−1
∑

i=1

(P − 1 + ǫ)i (P − 1)P−1−i

+
P−1
∑

i=1

(P − 1 + ǫ)i−1 (P − 1)P−i

]
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= P
[

(P − 1)! +
P + ǫ

P
(P − 1 + ǫ)P−1

+
P−1
∑

i=1

(P − 1 + ǫ)i (P − 1)P−1−i

+
P−2
∑

i=0

(P − 1 + ǫ)i (P − 1)P−1−i

]

= P

[

2
P−1
∑

i=0

(P − 1 + ǫ)i (P − 1)P−1−i +
ǫ

P
(P − 1 + ǫ)P−1

]

= 2P
P−1
∑

i=0

(P − 1 + ǫ)i (P − 1)P−1−i + ǫ(P − 1 + ǫ)P−1

= 2PSP−1 + (P − 1 + ǫ)P .

Second, we develop a recurrence relation for the terms of SP using Zeilberger’s
algorithm [97]. We denote

F (P, k) = (P + ǫ)k(P )P−k, (B.34)

so that SP =
∑P

k=0 F (P, k). Zeilberger’s algorithm results in the recurrence

− 2(P + 1)F (P, k) + F (P + 1, k) = G(P, k + 1) −G(P, k), (B.35)

where

G(P, k) = −(P + 1)P−k+2(P + ǫ)k−1

= −(P + 1)F (P, k − 1). (B.36)

This recurrence is equivalent to

F (P + 1, k) = (P + 1) [F (P, k) + F (P, k − 1)] . (B.37)

Zeilberger would then have us sum (B.37) over all k to recover the series we are
interested in. While we recover SP in the case of a binomial series where ǫ = 0, we
do not recover SP in general.

Asymptotic approximation

If we fix P in each term of SP and take an infinite sum, we obtain a familiar hyper-
geometric series

∞
∑

k=0

(P + ǫ)k (P )P−k = 1F0

[

−(P + ǫ)
− ;−1

]

P !. (B.38)
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There is a well-known identity

1F0

[

a
− ; z

]

=
1

(1 − z)a
, (B.39)

which implies that
∞
∑

k=0

(P + ǫ)k (P )P−k = 2P+ǫP !. (B.40)

It is therefore reasonable to suspect that asymptotically

SP → 2P+ǫP !. (B.41)

We now prove (B.41). First, we use the recurrence relation in (B.4.1) to completely
expand SP down to S0 = 1:

SP = 2PP ! +
P−1
∑

i=0

2P−1−i(i+ ǫ)i+1(P )P−1−i

= 2PP ! + 2PP !
P−1
∑

i=0

(i+ ǫ)i+1

2i+1(i+ 1)!

= 2PP ! + 2PP !
P
∑

i=1

(i− 1 + ǫ)i

2ii!

= 2PP ! + 2PP !
P
∑

i=1

1

i2i

(

1 +
ǫ

i− 1

)(

1 +
ǫ

i− 2

)

· · · (1 + ǫ) ǫ. (B.42)

We have eliminated P from the summand in (B.42). We now expand the summation
in terms of powers of ǫ. As P → ∞, the coefficient Ck of ǫk in the summation in
(B.42) tends to

lim
P→∞

Ck =
∞
∑

i=1

1

i2i

i−1
∑

l1=1

i−1
∑

l2=l1+1

· · ·
i−1
∑

lk−1=lk−2+1

1

l1 · · · lk−1

. (B.43)

We compute the summation in (B.43) using generating functions.

Claim B.4.2. For k ≥ 1 define

fk(x) =
∞
∑

i=1

xi

i2i

i−1
∑

l1=1

i−1
∑

l2=l1+1

· · ·
i−1
∑

lk−1=lk−2+1

1

l1 · · · lk−1
. (B.44)

Then

fk(x) =
logk 2

2−x

k!
. (B.45)
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Proof. We proceed by induction. For the base case,

f1(x) =
∞
∑

i=1

xi

i2i
=
∫ x

0

∞
∑

i=1

ti−1

2i
dt

=
∫ x

0

1

2 − t
dt = − log(2 − t)|x0

= log
2

2 − x
.

Next,

fk+1(x) =
∞
∑

i=1

xi

i2i

i−1
∑

l1=1

i−1
∑

l2=l1+1

· · ·
i−1
∑

lk=lk−1+1

1

l1 · · · lk

=
∞
∑

l1=1

∞
∑

l2=l1+1

· · ·
∞
∑

lk=lk−1+1

1

l1 · · · lk

∞
∑

i=lk+1

xi

i2i

=
∞
∑

l1=1

∞
∑

l2=l1+1

· · ·
∞
∑

lk=lk−1+1

1

l1 · · · lk

∫ x

0

∞
∑

i=lk+1

ti−1

2i
dt

=
∞
∑

l1=1

∞
∑

l2=l1+1

· · ·
∞
∑

lk=lk−1+1

1

l1 · · · lk

∫ x

0

( t
2
)lk

2 − t
dt

=
∫ x

0

1

2 − t

∞
∑

l1=1

∞
∑

l2=l1+1

· · ·
∞
∑

lk=lk−1+1

1

l1 · · · lk

(

t

2

)lk

dt

=
∫ x

0

1

2 − t

∞
∑

lk=1

tlk

lk2lk

lk−1
∑

l1=1

lk−1
∑

l2=l1+1

· · ·
lk−1
∑

lk−1=lk−2+1

1

l1 · · · lk−1
dt

=
∫ x

0

1

2 − t
fk(t)dt =

∫ x

0

1

2 − t

logk 2
2−t

k!
dt

=
logk+1 2

2−x

(k + 1)!
.

We evaluate fk(1) to conclude that

Ck =
logk 2

k!
. (B.46)

Returning to (B.42), we compute

∞
∑

i=1

1

i2i

(

1 +
ǫ

i− 1

)(

1 +
ǫ

i− 2

)

· · · (1 + ǫ) ǫ =
∞
∑

i=1

Ciǫ
i

=
∞
∑

i=1

logi 2

i!
ǫi

= 2ǫ − 1,
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so that
SP → 2P+ǫP !. (B.47)



Appendix C

Simulation toolbox

We have used two types of simulations in the thesis. First, we have simulated wave
diffraction to physically model quasi light field performance for millimeter-wave imag-
ing in Chapter 4. Second, we have used Monte Carlo techniques to estimate expected
values of beam pattern metrics and phase tightening bias, in Chapters 5 and 6. We
describe our wave simulation technique (Section C.1) and include Matlab scripts for
selected Monte Carlo simulations (Section C.2).

C.1 Wave propagation in free space

While the search for general-purpose numerical solutions to the wave equation is an
active area of research [98], specialized approximations are often leveraged in com-
mercial software [56]. For our purposes, evaluating the Rayleigh diffraction formula is
too computationally complex. While the Fresnel diffraction approximation allows us
to simplify the formula, the errors introduced are too severe for the near-zone behav-
ior we are interested in. We therefore instead implement the plane-wave propagation
method.

The plane-wave propagation method makes use of the fact that it is simple to
compute the propagation of a plane wave across free space, as the appropriate phase
adjustment need only be applied. Therefore, the propagation of an arbitrary scalar
field can be determined by using a spatial Fourier transform to decompose the field
into component plane waves, advancing each plane wave by the appropriate phase,
and then using an inverse Fourier transform to obtain the resulting scalar field. We
first describe the method (Section C.1.1) and then discuss implementation issues
(Section C.1.2).

C.1.1 The plane-wave propagation method

The plane-wave propagation method determines the scalar field U2 on the plane z = z2
from the scalar field U1 on the plane z = z1 < z2. The angular decomposition on the
plane z = z2 is

U2(r2) =
∫

a(s) exp(iks · r2) d2s, (C.1)

163



164 C.1 Wave propagation in free space

where we express the plane wave component a(s) in terms of the field on the plane
z = z1:

a(s) =

(

k

2π

)2
∫

U1(r1) exp(−iks · r1) d2r1. (C.2)

We choose the coordinates ri = (xi, yi, zi) and s = (p, q,
√

1 − p2 − q2), and combine
(C.1) with (C.2) to obtain

U2(r2) =
∫∫

(

k

2π

)2

exp [ik(px2 + qy2)] exp
[

ik(z2 − z1)
√

1 − p2 − q2

]

×
∫∫

U1(x1, y1) exp [−ik(px1 + qy1)] dx1 dy1 dp dq. (C.3)

We substitute u = kp and v = kq into (C.3), so that

U2(r2) =
∫∫

U1(u, v; z1) exp
[

i(z2 − z1)
√
k2 − u2 − v2

]

exp [i(ux2 + vy2)] du dv,

(C.4)
where U1(u, v; z1) is the two-dimensional spatial Fourier transform of U1. Formula
(C.4) quantifies our earlier intuition: to compute the field on z = z2, we compute
the Fourier transform of the field on z = z1, apply a phase factor, then compute the
inverse transform. The primary shortcoming of the plane wave propagation method
is evident in (C.4). Specifically, when using a discrete Fourier transform (DFT) to
compute (C.4), the samples of u and v must be dense enough to capture the rapid
oscillations of the phase factor, which increases with distance z2 − z1. Therefore, the
plane-wave propagation method is ideally suited for making near-zone propagation
calculations.

We now specialize the plane-wave propagation method to two dimensions by as-
suming that the scalar field U1(r1) is independent of x1. We compute

U1(u, v; z1) = δ(u)U1(v; z1), (C.5)

where U1(v; z1) is the one-dimensional spatial Fourier transform of U1 with respect
to y1. We integrate over u in (C.4) to obtain

U2(r2) =
∫

U1(v; z1) exp
[

i(z2 − z1)
√
k2 − v2

]

exp(ivy2) dv. (C.6)

The plane-wave propagation method thereby reduces to a one-dimensional procedure
of computing the (one-dimensional) Fourier transform, applying a phase delay, and
then computing the inverse transform.

C.1.2 Discrete Fourier transform implementation

We implement the plane-wave propagation method with the discrete Fourier trans-
form. The spatial sample spacing d0 for U1 should be fine enough to capture the
high-frequency details in the scalar field and to avoid aliasing. We choose d0 = d,
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the sensor array spacing for light field measurement, for two reasons. First, since d0

divides d, we do not need to interpolate the simulated scalar field to make sensor
measurements. Second, the discrete-time Fourier transform of U1 consists of scaled
copies of U1(v; z1) shifted every v = 2π/d0 [25]. Since |v| = k|q| ≤ k|s| = k, aliasing
is eliminated when 2π/d0 ≥ 2k, which is equivalent to d0 ≤ λ/2 = d.

The DFT size N must be large enough to include the support of the scalar field.
Specifically, the aliasing introduced by sampling the phase factor in (C.6) must be
negligible, which is equivalent to saying that the scalar field should fall off to zero
at the boundary of the sampling region on both the source plane z = z1 and the
destination plane z = z2. Any residual field falling outside of the sampling region
will be aliased, as multiplying the N -point DFTs of two sequences is equivalent to
circularly convolving their space domain representations, wrapping every N samples.
We choose N large enough to keep the aliasing error below a desirable level.

C.2 Monte Carlo code

We use Monte Carlo techniques to compute the expected beam pattern to analyze the
main lobe tilt (Section C.2.1), sidelobe suppression (Section C.2.2), and beam width
(Section C.2.3) in the presence of phase noise. We also use Monte Carlo techniques
to compute the expected bias of the phase tightening phase estimate (Section C.2.4).

C.2.1 Main lobe tilt

One challenge in simulating the main lobe tilt is that the combination of a large array
(large M) and modest phase noise (small σφ) requires high beam pattern resolution
in order to estimate the distribution of τ . We therefore concentrate on a narrow
band about the center of the main lobe. The Matlab function computeTiltStats is
parameterized for this purpose, and computes both the p-value of the Shapiro-Wilk
test as well as an estimate of στ .

function [oTauPval, oTauStd] = computeTiltStats(aN, aPhaseStd, aNumSamps, aAngRes, aAngWid)
%
% [oTauPval, oTauStd] = computeTiltStats(aN, aPhaseStd, aNumSamps, aAngRes, aAngWid)
%
% Computes statistics on the tilt of a beam pattern when beamforming
% in the presence of phase noise. This is done via Monte Carlo
% simulation.
%
% aN : Number of sensors in the array.

% aPhaseStd : Standard deviation of the phase noise at each sensor. 10
% aNumSamps : Number of samples to use for Monte Carlo simulation.
% aAngRes : Angular resolution for the beam pattern.
% aAngWid : Width (in radians) for the beam pattern, centered about pi/2.
%
% oTauPval : P-value for Shapiro-Wilk (2-sided) test for normality for tilt.
% oTauStd : Estimated standard deviation of tilt.

ang = pi/2 − aAngWid/2 : aAngWid/aAngRes : pi/2 + aAngWid/2 − aAngWid/aAngRes;

% delays(i,j) is the delay to apply to sensor i to steer along angle ang(j) 20
delays = (0:(aN−1))’ * pi * cos(ang);

empDist = zeros(1, aNumSamps);
oTauStd = 0;

for idx = 1:aNumSamps

noisyDelays = delays + aPhaseStd * randn(size(delays));
beamPattern = abs( sum(exp(j * noisyDelays)) );
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[a, maxIdx] = max(beamPattern); 30

empDist(idx) = ang(maxIdx);
oTauStd = oTauStd + (ang(maxIdx) − pi/2)^2;

end;

% swtest.m is available from www.mathworks.com, on the Matlab Central
% File Exchange. It was published by Ahmed Ben Saida on 2/15/2007.

[a, oTauPval] = swtest(empDist, 0.01, 0);

oTauStd = sqrt(oTauStd / aNumSamps); 40

end

Since the tilt breakpoint is monotonically increasing in array size M , we use the σTB
φ

for M as an initial starting point for estimating the σTB
φ for M+1. The Matlab script

computeTiltBreakPoints.m incorporates this optimization.

% computeTiltBreakPoints.m
%
% Compute tilt breakpoints by determining the noise level at which
% the empirical distribution of the tilt no longer appears Gaussian.

sigma = 0.4;
sigStep = pi/1000;

N = 1;

maxN = 1000; 10

TiltBreakPoints = zeros(maxN, 1);

while (N <= maxN)
pval = 1;
strikes = 0;

while (pval >= 0.01 | | strikes < 3)
pval = computeTiltStats(N, sigma, 200, 500, 2*pi/N);

20
if (pval < 0.01)

strikes = strikes + 1;
else

strikes = 0;
end;

sigma = sigma + sigStep;
end;

% Take a consevative step back. 30
sigma = sigma − 2 * 4*sigStep;

TiltBreakPoints(N) = sigma;
N = N + 1;

end;

The tilt breakpoint estimates enable us to select appropriate values for σφ to estimate
the slope dστ/dσφ, as done in the Matlab script computeTiltSlopes.m.

% computeTiltSlopes.m
%
% Compute slope of tilt standard deviation with respect to phase noise
% standard deviation.

sigLen = 30;
N = 1:1000;
TiltStd = zeros(sigLen, length(N));
TiltSlopes = zeros(length(N), 1);

10
for nidx = 1:length(N)

sigStart = pi/50;
sigEnd = 0.9 * TiltBreakPoints(N(nidx));
sigma = sigStart : (sigEnd−sigStart)/sigLen : sigEnd − (sigEnd−sigStart)/sigLen;

for sidx = 1:sigLen

[pval, tauStd] = computeTiltStats(N(nidx), sigma(sidx), 100, 500, pi/N(nidx));
TiltStd(sidx, nidx) = tauStd;

end;

20
coefs = polyfit(sigma, TiltStd(:, nidx)’, 1);

TiltSlopes(nidx) = coefs(1);

end;
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C.2.2 Sidelobe suppression

To analyze the sidelobes of the beam pattern, we first determine the main lobe and
sidelobe peak locations in the absence of noise. Then we estimate the mean and
standard deviation of the beam pattern at the peak locations. We use the same tech-
nique to compute expected beam patterns and more complicated variance estimates.
The Matlab script computeSidelobeStats.m estimates the key sidelobe suppression
statistics: µS, µM , σS , σM , and SSL.

% computeSidelobeStats.m
%
% Compute the expected value and standard deviation of the beam
% pattern at the main lobe and sidelobe peaks.

sigma = 0 : 2.4/100 : 2.4 − 2.4/100;
maxN = 1000;
numSamps = 1000;

mu S = zeros(length(sigma), maxN); 10
mu M = zeros(length(sigma), maxN);
sig S = zeros(length(sigma), maxN);
sig M = zeros(length(sigma), maxN);
S SL = zeros(length(sigma), maxN);

for N = 2:maxN

angWidth = 3*pi/N;
angRes = 500;
ang = pi/2 − angWidth/2 : angWidth/angRes : pi/2 + angWidth/2 − angWidth/angRes;

delays = (0:N−1)’ * pi * cos(ang); 20
cleanBeamPattern = abs( sum(exp(j * delays)) ) / N;

% First find the peak locations in the absence of phase noise.

[a, mainPeakIdx] = max(cleanBeamPattern);
firstDipOffset = find(cleanBeamPattern(mainPeakIdx:length(cleanBeamPattern)) < 0.05);
firstZeroIdx = mainPeakIdx−1 + firstDipOffset(1);
[a, sidePeakOffset] = max(cleanBeamPattern(firstZeroIdx:length(cleanBeamPattern)));
sidePeakIdx = firstZeroIdx−1 + sidePeakOffset;

30
peakAng = [ang(mainPeakIdx) ang(sidePeakIdx)];
peakDelays = (0:N−1)’ * pi * cos(peakAng);

for sidx = 1:length(sigma)
beamEst = zeros(size(peakAng));
beamEst2 = zeros(size(peakAng));

% Then use Monte Carlo to estimate parameters at the peaks.

for idx = 1:numSamps 40
noisyDelays = peakDelays + sigma(sidx) * randn(size(peakDelays));
beamPattern = abs( sum(exp(j * noisyDelays)) ) / N;

beamEst = beamEst + beamPattern;
beamEst2 = beamEst2 + beamPattern.^2;

end;

beamEst = beamEst / numSamps;
beamEst2 = beamEst2 / numSamps;

50
mu S(sidx, N) = beamEst(2);
mu M(sidx, N) = beamEst(1);
sig S(sidx, N) = sqrt(beamEst2(2) − beamEst(2)^2);
sig M(sidx, N) = sqrt(beamEst2(1) − beamEst(1)^2);

S SL(sidx, N) = 20*log10(beamEst(2) / beamEst(1));
end;

end;

The Matlab script computeSidelobeBreakPoints.m computes the sidelobe break-
point σSB

φ as a function of array size M , and implements heuristics to determine the
endpoints used for the linear regression.

% computeSidelobeBreakPoints.m
%
% Fit lines to the sidelobe suppression graphs to find the sidelobe
% breakpoints.

S SLSlope = zeros(1000, 1);
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SidelobeBreakPoints = zeros(1000, 1);

for N = 2:1000

10
% Define the region over which to perform the linear regression.

if (N < 10)

startIdx = min(find(S SL(:, N) > −6 − N/2));

endIdx = max(find(S SL(:, N) < −4));

else

startIdx = min(find(S SL(:, N) > −11));

endIdx = max(find(sigma < TiltBreakPoints(N)));

end;

20
P = polyfit(sigma(startIdx:endIdx)’, S_SL(startIdx:endIdx, N), 1);

% Intersect with the initial flat portion to solve for the breakpoint.

S SLSlope(N) = P(1);

SidelobeBreakPoints(N) = (S SL(1, N) − P(2)) / P(1);

end;

C.2.3 Beam width

The Matlab script computeNoisyBeamWidth.m computes the noisy beam width θNB.

% computeNoisyBeamWidth.m

%

% Computes metric for beam width in the presence of phase noise, for a

% range of array sizes N and noise standard deviations below the tilt

% breakpoint.

sigLen = 20;

maxN = 3;

numSamps = 300;

angRes = 500; 10

NoisyBeamWidth = zeros(sigLen, maxN);

for N = 1:maxN

sigEnd = 0.7 * TiltBreakPoints(N);

sigma = 0 : sigEnd/sigLen : sigEnd − sigEnd/sigLen;

angWidth = pi/N;

ang = pi/2 − angWidth/2 : angWidth/angRes : pi/2 + angWidth/2 − angWidth/angRes;

20
for sidx = 1:length(sigma)

delays = (0:N−1)’ * pi * cos(ang);

beamEst = zeros(size(ang));

beamEst2 = zeros(size(ang));

for idx = 1:numSamps

noisyDelays = delays + sigma(sidx) * randn(size(delays));

beamPattern = abs( sum(exp(j * noisyDelays)) ) / N;

30
beamEst = beamEst + beamPattern;

beamEst2 = beamEst2 + beamPattern.^2;

end;

beamEst = beamEst / numSamps;

beamEst2 = beamEst2 / numSamps;

sigTheta = beamEst2 − beamEst.^2;

sigTheta(find(sigTheta < 0)) = 0;

sigTheta = sqrt(sigTheta); 40

hiBeam = beamEst + sigTheta;

lowBeam = beamEst − sigTheta;

NoisyBeamWidth(sidx, N) = length(find(hiBeam/max(lowBeam) > sqrt(1/2))) * angWidth/angRes;

end;

end;
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C.2.4 Phase tightening bias

The impact of Gaussian phase noise on phase tightening performance is more difficult
to analyze analytically than the impact of uniform phase noise. We consequently use
the Matlab function ditherNormExpVal to compute the expected bias of the phase
estimates for Gaussian noise.

function [E, Lam, pdist, ptDist] = ditherNormExpVal(N, gam, sig)
%
% E = ditherNormExpVal(N, gam, sig)
%
% Dither with Gaussian distribution, using Markov chain to compute
% expected value.
%
% N : number of states in chain (spacing between 0 and 1, even)
% gam : true value to estimate

% sig : standard deviation of noise 10
%

if (mod(N, 2))
error(’N must be even’);

end;

Del = 1 / N;
Lam = zeros(N , 1);

% ptDist is organized by bucket of length Del, aliased into the 20
% range [0, 1). It’s a discrete, aliased version of the
% continuous noise distribution.

ptDist = zeros(2*N, 1);

% Go 10 standard deviations out to approximate support.

W = 10 * sig;
leftEdge = gam − W;

30
sweepLine = (floor(N*leftEdge) + 1) / N;
idx = round(mod(N*sweepLine, N));
if (idx == 0)

idx = N;
end;

while (sweepLine <= gam + W)
ptDist(idx) = ptDist(idx) + (normcdf(sweepLine, gam, sig) − normcdf(leftEdge, gam, sig));

leftEdge = sweepLine; 40
sweepLine = sweepLine + Del;
idx = idx + 1;
if (idx > N)

idx = 1;
end;

end;

ptDist(idx) = ptDist(idx) + (normcdf(gam + W, gam, sig) − normcdf(leftEdge, gam, sig));

ptDist(N+1:2*N) = ptDist(1:N); 50

% Here’s where the assumption that N is even comes in.
% With N even, the decision region is split nicely into whole
% buckets. Otherwise, we would have to cut buckets in half.

for idx = 1:N
Lam(idx) = sum(ptDist(idx:idx+N/2−1));

end;

60
pdist = solveSteadyStateMatrix(Lam);

% now average about ML estimate

[z, midx] = maxfudge(pdist);
E = (midx−1) / N;

ks = midx;
ke = midx;

70
for cnt=1:N/2

ks = ks − 1;
if (ks < 1)

ks = N;
end;

ke = ke + 1;
if (ke > N)
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ke = 1;

end; 80

E = E + cnt * Del * (pdist(ke) − pdist(ks));
end;

E = mod(E, 1);
if (E > 1 − eps)

E = 0;
end;

end

90
%

function pdist = solveSteadyStateMatrix(aLam)
% set up matrix to solve for steady state probability dist: Q p = eN

N = length(aLam);
Q = spalloc(N, N, 4*N−3);
Q(1,1) = 1;
Q(1,2) = aLam(2) − 1;

Q(1,N) = −aLam(N); 100

for k = 2:N−1
Q(k, k−1) = −aLam(k−1);
Q(k, k) = 1;
Q(k, k+1) = aLam(k+1) − 1;

end;

Q(N,:) = ones(1,N);

eN = zeros(N, 1); 110
eN(N,1) = 1;

pdist = Q \ eN;

end

%

function [a,b] = maxfudge(aVec)

N = length(aVec); 120
b = 1;
a = aVec(1);

for k=1:N
if (aVec(k) > a + 2*eps)

b = k;
a = aVec(k);

end;
end;

end 130
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