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Abstract. We present a powerful computational method for automat-
ically generating polynomial invariants of hybrid systems with linear
continuous dynamics. When restricted to linear continuous dynamical
systems, our method generates a set of polynomial equations (algebraic
set) that is the best such over-approximation of the reach set. This shows
that the set of algebraic invariants of a linear system is computable. The
extension to hybrid systems is achieved using the abstract interpretation
framework over the lattice defined by algebraic sets. Algebraic sets are
represented using canonical Grébner bases and the lattice operations are
effectively computed via appropriate Grobner basis manipulations.

1 Introduction

Verification of hybrid systems is a challenging problem. While testing can guar-
antee the correctness of a specific behavior of the system, verification attempts
to provide correctness guarantee for all possible behaviors of the system. This
extensive coverage is achieved, in most cases, by representing and manipulating
sets of states of the system, rather than a single state. This jump from working
with a single state, as in testing, to working with sets of states, as in verification,
is also the main source of computational challenges in verification.

Arguably the most significant strides in the development of formal methods
and verification technology were made in the form of developing effective repre-
sentations for sets of states. The binary decision diagram representation provided
a crucial breakthrough for hardware circuit verification, and region construction
played a similar role for timed systems. In this paper, we argue that a canonical
basis representation for algebraic sets provides an effective choice for a class of
hybrid systems with linear continuous dynamics.
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The second author was supported in part by the National Science Foundation under
grants CCR-0311348 and CCR-ITR-0326540 and NASA Langley Research Center
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A good representation for a set of states is one that allows efficient compu-
tation of some basic operations. In the case of discrete state transition systems,
these operations are well understood. Depending on the exact verification proce-
dure, some or all of the set union, set intersection, set complement, subset, and
projection operators may be required [I1]. In the case of hybrid systems, we ad-
ditionally require that the representation behaves “nicely” along the continuous
evolutions at different locations of the hybrid system.

This paper explores the representation of sets of states Set C R™ by the set
of polynomials P € Q[X}, ..., X,] that form the kernel of Set, that is, P(s) =0
for all s € Set. Such a set of polynomials has several nice algebraic properties. It
is an ideal and has a finite basis representation. Furthermore, there is a canonical
fully-reduced basis, called a Grobner basis, which can be effectively computed
(cf. ordered binary decision diagrams [4]). The set union, set intersection, and
set inclusion operators are efficiently computable on these canonical bases. The
same is also true of the quantifier-elimination (projection) operator.

Using the above properties of the canonical ideal basis, we show that both
continuous and discrete behaviors of hybrid systems can be processed. The main
contributions of this paper are:

(i) We show that, for any linear continuous dynamical system CS, the best al-
gebraic over-approximation of the reach set of CS can be computed (Section .
The proof of this result borrows some key insights from Lafferriere, Pappas and
Yovine [16], who use semi-algebraic sets and show that ezact reach sets can be
computed for more restricted classes of linear vector fields.

(ii) We show that the method for over-approximating reach sets for linear dynam-
ical systems can be extended to hybrid systems using an abstract interpretation
framework, thanks to the various nice computational properties of Grobner bases
(Section . We also present some experimental results obtained by using our
method to generate polynomial invariants for hybrid systems (Section .

1.1 Related Work

Sankaranarayanan et al. [I8] presented an approach for generating polynomial
equational invariants for hybrid systems with more general (nonlinear) polyno-
mial dynamics. However, their approach is based on guessing a template for
the invariant and generating constraints that would guarantee that the guessed
parametric polynomial equation is an inductive invariant. We restrict ourselves
to linear dynamics, but our method is not based on guessing a template. In fact,
it is complete for linear systems. On the other hand, any extension of our method
to hybrid systems with more general continuous dynamics would require the use
of heuristics, such as [211§].

Region graphs suffice to compute exact reach sets for timed automata [2].
Polygonal sets have been used as representations for computing reachable states
for linear hybrid automata [I]. For more complex continuous dynamics, various
representations have been used for computing over-approximations of the reach
sets, such as, union of convex polytopes [B], union of hyper-rectangles [§], and
ellipsoids [I4]. Similar in the spirit of the result presented here, Kurzhanski and



Varaiya [14] show that the best ellipsoidal over-approximation of the reach set
for certain linear systems can be computed. We also note here that some of
the above works use abstract interpretation ideas, most notably in the form of
widening to accelerate reachability (or fixpoint) computation [T2]8].

Exact reach sets for a class of linear vector fields were computed as semi-
algebraic sets over state variables and special variables representing exponential
or trigonometric functions [16]. We contrast algebraic sets with semi-algebraic
sets as a choice for representing sets of states. Algebraic sets are defined as the
zeros of a finite set of polynomials equations. They admit unique canonical repre-
sentations on which various set operations and quantifier-elimination operation
can be efficiently performed. Semi-algebraic sets, on the other hand, are boolean
combinations of sets defined by polynomial equations and inequalities. By defi-
nition, they are closed under boolean operations. However, there is no standard
notion of canonical representation. There is a quantifier-elimination procedure,
but it is quite complex, both in theory and practice.

2 Preliminaries: Ideals of Polynomials

Let K[X] denote the set of polynomials over the variables X = {z1,...,z,}

with coefficients in the field K (K = R, Q). Given a set S C K" of points, we

are interested in those polynomials P that evaluate to 0 at .S, that is, P(s) =

0,Vs € S. These polynomials form an ideal: an ideal is a set I C K[X] such that

it includes 0, is closed under addition and if P € K[X] and @ € I, then PQ € I.
Given a set of polynomials B C K[X], the ideal generated by B is

k
(B) ={f €K[X]| f =) P;Q; with P; e K[X],Q; € B,k > 1}.

Jj=1

For an ideal I, a set of polynomials B such that I = (B) is called a basis of
1. By Hilbert’s basis theorem, all ideals of polynomials admit a finite basis.
Thus, any ideal is associated to a finite system of polynomial equalities: the
ideal I = (P1(X), ..., P,(X)) corresponds naturally to the system {P;(X) = 0,
..y P(X) = 0}. The solutions to this system are the common zeroes of all the
polynomials in I; this set of points, denoted by V(I) = {s € K"| P(s) =0VP €
I}, is called the variety of I (over K™). A variety is also called an algebraic set.

For instance, the ideal (z(z? +y? —1),y(2% +y? — 1)) is associated to the
system {z(22 + 3% — 1) =0, y(2? + y* — 1) = 0}. Its solution, which defines the
variety V((z(z? + 4% — 1) ,y(22 +y* — 1))), is the union of the circle 2% +y2? = 1
and the origin. Notice that this set, unlike convex polyhedra [I0J5], is not convex
or even connected.

Reciprocally, given a set of points S C K", the polynomials vanishing on this
set form the ideal I(S) = {P € K[X] | P(s) = 0 Vs € S}, called the ideal of
S. Notice that, for arbitrary ideals, the inclusion I C IV(I >E| may be strict: the

3 We write IV instead of I oV to denote the composition of I and V.



variety of the ideal of all multiples of 22 is just the origin, V((z?)) = {0}; but
I1({0}) = (z), and = & (2?). We are interested in the ideals for which the equality
IV(I) = I holds; these ideals are complete in the sense that they include all
polynomials that evaluate to 0 at the points of the variety V(I) they represent.
Since any ideal I satisfying IV(I) = I is the ideal of the variety V(I), such an
ideal is called an ideal of variety.

3 Linear Systems

A linear (continuous dynamical) system CS is a tuple (X, Init, A, b) where X =
{z1,...,z,} is a finite set of variables interpreted over the reals R, X = R™ is
the set of all valuations of the variables X, Init C X is the set of initial states,
and A € Q"*" and b € Q"*! are the matrices that constrain the dynamics of
CS by the differential equation @ = Ax + b. Since interest is in computational
feasibility, the matrices A and b are assumed to contain rational entries.

The semantics, [[CS]], of a linear system CS = (X, Init, A, b) over an interval
I = [to,t1] € R is a collection of mappings « : I — X satisfying (i) the initial
condition: x(tg) € Init, and (ii) the continuous dynamics: for all ¢t € [tg, 1],
x(t) = Ax(t) + b. In case the interval I is left unspecified, it is assumed to be
the interval [0, 00).

We say that a state s € X is reachable in a continuous dynamical system CS
if there exists a function @ € [[CS]] such that s = @(t) for some ¢ € I. The set,
Reach(CS), is defined as the set of all reachable states of the system CS.

The problem of computing the exact reachability set Reach(CS) for a given
dynamical system CS is intractable in general. However, for purposes of verifi-
cation of safety properties, it often suffices to compute an over-approximation
(or superset) of the reachable set of states—if the over-approximation does not
intersect the set of bad states, then the original system will never reach a bad
state. An over-approximation of the reachable states is also called an invariant
of the system. The most precise invariant of a system is its exact reach set.

Lafferriere, Pappas and Yovine showed that the exact reach set can be com-
puted for a subclass of linear continuous dynamical systems [I6]. Subsequently,
it was shown that invariants could be effectively constructed for more general
classes of linear systems [20]. We show here that the most precise equational
invariant for arbitrary linear systems can be computed. We focus on a special
case in Section [3.1] and generalize to arbitrary linear systems in Section |3.2

3.1 Eigenvalues with Rational Components

Assume that the eigenvalues of A are of the form a + bi, where a,b € Q and
i? = —1. We do not assume that A is diagonalizable. The solution to the system

of differential equations € = Ax + b is

t
D(s*,t) = etls* + eAt(/ e ATdr) b, s* € Init (1)
0



where & is the flow of the vector field. It can be easily proved that both e?!
and fot e~A7dr can be written as sums of terms of the form ct*e*t cos(bt),
ctFetatsin(bt), where ¢ € Q, k € N and the complex numbers A = a + bi are the
eigenvalues of the matrix A.

The set of reachable states of CS is

Reach(CS) ={s € R" : Is™,t. (t >0 A s* € Init N s=P(s",t))} (2)

We can express the solution &(s*,t) given in Equation [l|in terms of polynomials
using up to four auxiliary variables u, v, w, z. Specifically, since we assume that
all eigenvalues of A are of the form a + bi with a,b € Q, we can find positive
rational numbers p, g such that, for any eigenvalue A = a + bi of A, there exist
integers cy, dy such that ¢y = a/p and dy = b/q. Now we just need to replace eP*
by u, e7P! by v, cos(qt) by w and sin(qt) by z: for any eigenvalue A\ = a + bi, we
replace e® by ul®r or vl*l depending on whether a > 0 or a < 0 respectively;
cos(bt) and sin(bt) can be similarly expressed in terms of w and z. Therefore,
we can express the flow @ as a polynomial over the initial conditions and the
dummy variables ¢,u,v,w, z [16]. The reach set from Equation [2| can now be
written as

ds* t,u,v,w,z . (E >0 A 8™ € Init A s=P(s*, t,u,v,w,z) A
u=e’ N v=eP" A w=cos(qt) A z=sin(qt)) (3)

The exponentials and the trigonometric functions are eliminated by intro-
ducing new equations uv = 1 and w? + 22 = 1 that capture the dependencies
between eP?, e 7Pt cos(qt) and sin(gt). Clearly, the resulting formula, given below,
represents an invariant of CS.

Is* tu,v,w,z . (E>0 A u>1 A s*elnit A s=P(s* t,u,v,w,2) A
w=1Aw?+22=1) (4)

Using quantifier elimination for reals, this method gives a semi-algebraic invari-
ant for the linear system CS. Unfortunately, the formula above does not capture
all semi-algebraic relationships that exist between ¢, u, v, w and z.

One of the main observations of this paper is that the two equations uv =1
and w? + 22 = 1 are sufficient to capture all algebraic invariants of CS. Further-
more, to compute the algebraic invariants, the expensive step that involves doing
quantifier elimination over the reals can be replaced by a Grobner basis [7] com-
putation step, which is simpler and often more efficient in practice. Since we use
Grobner bases to eliminate variables, we need to employ an elimination term or-
dering in which the auxiliary variables are the biggest. In summary, the method
to compute the strongest algebraic invariants of CS is to use Grobner bases to
eliminate the quantified variables in Equation

The main result of the paper is that, if the initial conditions are described
by means of an ideal of variety, we obtain all polynomials that evaluate to 0 at
the exact reachability set of CS.



Theorem 1. Let CS = (X, V(I*), A,b) be a linear system, where I* C Q[X*]
is the ideal of variety of initial states. Let Py, ..., P, € Q[X*,t,u,v,w, z] be the
polynomials approzimating the flow @ defined above. Then,

I(Reach(CS)) = (I*, —x1 + Pi,...,—2p + Pn,uv — 1,w* + 2% — 1) NR[X]

Proof. The D inclusion is obvious. For the C inclusion, take an arbitrary polyno-
mial ¢ € I(Reach(CS)). Normalize the polynomial ¢ using the following rewrite
rulesEI to get a new polynomial 7:

r1— P,...,x, — P,, uv — 1, w? — =22 +1

Our goal is to prove that r € (I*) (as an ideal in R[X, X*, ¢, u,v,w, 2]). Since
we have eliminated all occurrences of uv, w? and x;, the polynomial r must be
of the form

Z o (X ) U™ 2" by (X VU™ 02"+ (X ) E 0™ 2" dpn (X )t 0™ 02"
l,m,n>0

with a finite number of non-vanishing terms. We need to prove that the polyno-
mials agmn (X*), bimn (X™*), cimn(X*), and dj,, (X*) are in IV(I*) = I*. So, we
will prove that Vs* € V(I*), aimn(8*) = bimn(8*) = cimn(8*) = dimn(s™) = 0.

Fix s* € V(I*). Under the substitution z; — Pj,u — Pt v — e Pt w s
cos(gqt), z — sin(qt), X* — s*, the polynomial ¢ evaluates to 0 (for all ¢ > 0),
and so do the polynomials uv — 1, w? + 22 — 1, —z; + P;. Therefore, we have that
for all t > 0, R(t) := r(s*,t,eP!, e Pt cos(qt),sin(qt)) = 0, or equivalently

Z tle"”’t(z Alrmn (8¥) SIN™ (qt) + bimn (8™) sin” (qt) cos(qt) )+

1,m>0 n>0

tle_mpt(z Clmn (8%) sin" (qt) + djmn (8™) sin™ (gt) cos(qt)) =0
n>0

Since this function evaluates to 0 for all ¢t > 0, we claim without proof that

Amn (8*) = bimn (8*) = cimn(8*) = dimn(8™) = 0. This completes the proof. O

Ezxample 1. Consider the following system of differential equations, which de-
scribes the dynamics of a charged particle under the influence of a magnetic
field:

i 001 0 x
g looo 1 y
v, [ T 100 0 —1/2 ]| v,
v 001/2 0 vy

The solution is given by

{x = 2" + 2sin(t/2) vy + (2cos(t/2) —2) vy v, = cos(t/2) vy — sin(t/2)v
Yy =y" + (=2cos(t/2) + 2) vy + 2sin(t/2) vy v, = sin(t/2) vy + cos(t/2)v

*
Yy
*
Yy
4 Simplification of ¢ by a rewrite rule I — 7 simply means that you replace I by

r in q. Experts in Grobner bases will notice that we are using the term ordering
lex(X>u>v>w>z>t>X").



where x*,y*, vy, vy stand for the initial values. In this case the eigenvalues of
the system matrix are 0, ¢/2 and —i/2, which is consistent with the fact that
the non-algebraic terms in the solution are cos(t/2), sin(¢/2). By introducing the
variables w and z to replace cos(t/2) and sin(¢/2) respectively, we can rewrite

the solution as follows (there are no exponential terms in this case):

T =" + 220 + (2w — 2)vy vy = WUy — 20y

y=y" + (—2w+2)v; +22v; v, = 2v; +wouy
Now assume that the initial conditions satisfy v; = 2, vy = —2. Therefore we
have to eliminate z*, y*, vy, vy, w, z from the ideal

(v = 2,v, + 2, —z + 2" + 220, + (2w — 2)vy, —y + ¥ + (=2w + 2) v, + 220y,

* * * * 2 2
—Vg + WUy — 20y, =y + 2v; + Wy, w” + 27 = 1)

The elimination of the auxiliary variables yields the ideal (v2 + v — 8), which
corresponds to the law of conservation of energy. O

The method for generating the most precise equational (algebraic) invariants
of linear systems can be extended to handle state invariants that are specified
as polynomial equations. Before eliminating the quantified variables from Equa-
tion [} we add all the equations representing any state invariant that may be
true.

It is difficult to generalize the method to compute the best semi-algebraic
invariant. Whereas the two equations uv = 1 and w? + 22 = 1 capture all al-
gebraic relationships between the functions eP?, e P! sin(qt) and cos(qt), there
is no finite set (basis) of inequalities that captures all the semi-algebraic rela-
tionships between these functions. This also partly explains why the decidability
results [I5I6] are not easy to generalize.

3.2 Generalization to Arbitrary Eigenvalues

Let £ be the set of all eigenvalues of the matrix A. We now drop the assumption
that a,b € Q for all a + bt € L by generalizing the above ideas. First, let us
deal with the exponential terms e*?¢. To that end, we define R = {£Re(\) |\ €
L} \ {0}. Since R is finite, we can obtain a finite basis B = {p1, ..., px} of the
Q-vector space generated by R. By definition, this set has the properties that:

1. Ya € R, Icf, ..., ¢} € Q such that a = Zle cip;.
(B is a system of generators)

2. Veq, .., 0 € Q, if Zle ¢;p; = 0, then necessarily ¢y = --- = ¢, = 0.
(B is Q-linearly independent)

Further, by multiplying the elements in B by appropriate correction factors,
we can ensure that the coefficients c{ are integers, i.e. Va € R, 3cf, ..., ¢} € Z such

that a = Zle ¢p;. By introducing the auxiliary variables u; = ePi',v; = e Pit:



k k leg] e s a
0t — oS ctpit — T ecorit — u; if sign(c?) =1
- - - [ef ] if si a\ __ 1
il el if sign(cf) = —

So we can substitute the exponentials by means of the auxiliary variables.

Ezample 2. Let us consider that £ = {1, A2, A3, A} = {1+v/2,1-v/2,1/2,1/3}.
Taking B = {p1,pa} = {1 + v/2,1/6} as a basis, all coefficients are integers:
Al = p1, A = —p1 + 12po, A3 = 3pa, Ay = 2po. So, if u; = 6(1+\/§)t,1}1
e (V) gy — e(1/6)t 4y — ¢=(1/6)t then for instance e(=V2! = yul2.

o

Trigonometric terms are handled likewise. Define Z = {Im(X) | A € £} \ {0}
and introduce 2! auxiliary variables wj, z;, representing cos(g;t), sin(g;t) for
1< j <I, where ¢, ...,q; € R form a finite basis of Z.

Theorem [I] can now be extended by replacing the four auxiliary variables by
2k + 2l auxiliary variables. The main observation is that the k + [ equations,
u;v; = 1 and w? + 22 = 1, capture all the algebraic relationships between the
auxiliary variables. We state the following theorem without proof.

Theorem 2. Let CS = (X, V(I*), A,b) be a linear system, where I* C Q[X*]
is the ideal of variety of initial states. Let Py, ..., P, € Q[X™*,t,u1,v1, ..., Uk, Uk,
Wy, 21, ..., W, 21] be the polynomials approxzimating the flow @. Then,

I(Reach(CS)) = (I*,—x1+ P1,...,—Zp + Pp,
urvy — 1,y upvg — Lwd + 22 — 1, wi 4 22 — 1) NR[X]

4 Hybrid Systems

In this section we extend the technique for generating algebraic invariants to
hybrid systems using abstract interpretation [6]. At each location, we restrict
ourselves to linear continuous dynamics.

A hybrid system HS = (L, X, T, (Init)ecr, (A)eer, (b)eer) consists of a finite
set L of locations; a finite set of continuous dynamical systems (X, Inite, Ay, by),
one associated with each location ¢ € £; and a finite set 7 C £ x £ x 2X x (X —
X) of discrete transitions. A discrete transition 7 = (¢, ¢',v,«) € T consists of
a source location £ € L, a target location ' € L, a guard v which is a boolean
function of the variables X, and an action « which is a multiple assignment
of the variables. A state of the system HS is given by a location ¢ € £ and a
valuation s € X = R" of the variables over the real numbers.

The semantics, [[HS]], of a hybrid system H.S is a collection of infinite se-
quences of states (¢,8) € L x X of the form (o, so), (¢1,81), ({2, 82),... such
that sg € Inity, specifies an initial state, and for each pair of consecutive states
(4i,8i), (Uit1, Si41) one of the two transition conditions holds:

- discrete transition: there exists a transition 7 = (¢;,4;11,7,«) € 7 which is
enabled, i.e. y(s;) = true, and such that s;41 = a(s;).
- continuous transition: the control location does not change, in other words



l; = l;11 = ¢; and there is a trajectory going from s; to s;4+1 along the flow
determined by Ay, by, i.e. there exist a time interval § > 0 and a differentiable
function « : [0,6] — X such that x(0) = s;, ©(J) = s;+1 and &(t) = Apx + by
(and the state invariant, if any, holds).

A state (¢, s) is reachable if there exists a sequence in [[H S]] where it appears.
The set of all reachable states of a hybrid system HS is denoted by Reach(HS).

magnetic

.iI:Um -'t:’U.r
¥ =1y g =1vy
Uy =1y =b=0 Ve =vy =b=0

t=1 t=1

r=0— vy = —vz; b:=b+1

Fig. 1. Dynamics of a charged particle

FEzample 3. The hybrid system in Figure taken from [19], models the position
(x,y) and the velocity (vs,v,) of a charged particle on a plane with a reflecting
barrier at x = 0 and a magnetic field perpendicular to the plane in the region
x > d (where d > 0 is a parameter of the system). The variable b counts the
number of times the particle has collided against the reflecting barrier, and ¢ is
a clock that measures the total time elapsed.

The hybrid system has three locations: in locations left and right, the particle
is moving freely under no external force, either toward or away from the barrier,
while in location magnetic it is moving under the effect of the magnetic field. The
three discrete transitions model the movement of the particle in and out of the
magnetic field and its collision with the barrier. In our analysis, we assume that
initially the particle is moving right with v, = 2, v, = —2andx =y =1t =b = 0;
also, the parameters d and a are set to 2 and 1/2 respectively. O

4.1 Reachable States as Fixpoints

Let us denote by Reach = Reach(HS) the set of all reachable states of a hybrid
system HS. Given a location ¢, we also write Reach; to represent the set of all
reachable states at location ¢, i.e. Reachy; = {s | (¢, 8) € Reach}.

We first characterize the (tuple of) reachable states (Reachy)ecs using a
system of fixpoint equations. Consider a discrete transition 7 = (¢, ¢, v, «). The
states at location £ where transition 7 is enabled are given by Reach, N~y. After
firing the transition, the new states reached are given by a(Reach; N~), where
« represents the mapping that updates the values of the variables. The set of
states in which location ¢’ is entered is obtained by summing up over all discrete



transitions that lead to ¢':

Inity U ( U a(Reachy N 7)) .
0,0 v, a)eT

The above states provide the initial conditions for the continuous evolution at
¢'. Now, Reachy: is obtained thus:

Reachy = U Dy (Inite U ( U a(Reache N 7)), t) . (5)
>0 (0.8 y,0)€T

The above system of equations defines (Reach)scr in terms of itself. The least
fixpoint of this system of equations (with respect to the inclusion C ordering) is
the ezact set of reachable states of HS. However, any fixpoint (not necessarily
the least) will give an over-approximation of the exact reach set.

The ability to compute a fixpoint of the above equations depends on the
choice of the representation for sets of states. Some choices are convex polyhedra
[5], algebraic sets, semi-algebraic sets [I6], and ellipsoidal sets [I4]. We have
used algebraic sets in Section [3| to represent sets reachable under continuous
flow. Using the results from Section [3] in the next subsections we will show how
algebraic solutions of the Fixpoint Equation [5| can be computed. The general
framework (originally defined for discrete transition systems) is called abstract
interpretation [0].

4.2 Abstract Interpretation

Abstract interpretation [6] is a general framework for discovering invariant prop-
erties for a given discrete transition system. It works by solving a fixpoint equa-
tion X = F(X) (which determines the reachable sets for that system) over an
abstract domain. The abstract domain is defined by the representation used for
specifying sets of states. The application of abstract interpretation involves:

1. Choosing an abstract domain A: Fach element in the abstract domain repre-
sents a set of states. The original fixpoint equation X = F(X) (defined over
arbitrary sets of states X)) is transformed into a fixpoint equation Y = G(Y)
over the sets of states Y defined by the abstract domain.

2. Computing a solution of the fizpoint equation Y = G(Y') over the abstract
domain iteratively: A solution of the equation Y = G(Y') is obtained by com-
puting a fixpoint of the recurrence Yy = L (the least element of the abstract
domain), Y;+1 = G(Y%). This recurrence may not necessarily converge in a
finite number of steps; in this case the termination is forced by means of the
application of a widening operator V : A x A — A, at the cost of further

over-approximation. Such an operator must satisfy:
-V, Y2 €AY CY1VY; and YV C Vi VYs.

— For any increasing chain Yy C Y7 C - -, the new increasing chain defined
by Yy = Yo, Y| = Y/ VYj 1 is not strictly increasing (that is, it finitely
converges).

Under these hypotheses, the last element of the finite sequence Yy, Y/, Y7, ...
yields a solution of the fixpoint equation.



4.3 Operations with Ideals of Variety

We now show that the abstract domain of algebraic sets, represented as ideals
of variety, can be used to compute polynomial invariants for hybrid systems.
In Section [2] we presented this domain, and Section [3] showed how to handle
continuous evolution (that is, the @ function in the Fixpoint Equation . We
now show how the rest of the operators used in Equation [5| viz. the assignment
transformation «, the set union U and the set intersection N, can be effectively
computed over our choice of abstract domain. We will also present a widening
operator to guarantee termination.

Specifically, we use the following operations on algebraic sets (represented as
ideals) to abstract the corresponding operations on (arbitrary) sets, see [17]:

Assignment Transformation — Elimination of Variables. Given an ideal of vari-
ety I = (P1(X),..., Px(X)) and a multiple (polynomial) assignment (z1,...,z,)
= (a1(X),...,an(X)), we introduce auxiliary variables X = {Z1,...,%,}, to
denote the values of the variables before the assignment. Then the relationship
between the values before and after the assignment is described by the ideal

(Pi(X),...,P(X), 1 —a1(X),...,zn — an(X)).

The output ideal of variety can be obtained by eliminating the auxiliary variables
X in the ideal above by means of well-known elimination techniques based on
Grobner bases [7].

Union of States — Intersection of Ideals. Given two ideals of variety I and
J, the union of the states represented by I and J is represented by the ideal
I(V(I) UV(J)), which is equal to I N J by duality. Therefore, the output ideal
of variety is the intersection ideal I N J.

Intersection of States — Sum and Quotient of Ideals. Given two ideals of variety
I=(P,..,Py)and J = (@1, ..., Q;), we distinguish two cases:

— We want to represent V(I) NV (J) (this is the case when guards have poly-
nomial equalities like x = 0). The sum of ideals I + J = (P, ..., Py, Q1, ...,
Q1), which is generated by the union of the bases, has the property that
V(I+J)=V({I)NnV(J). However, I + J may not be an ideal of variety;
therefore we have to compute its closure IV (I + J )El

— We want to represent V(I) N (K™ \ V(J)) = V(I)\ V(J) (this is the case
when guards have polynomial disequalities like x # 0). The quotient I : J
of ideals satisfies that I : J = I(V(I)\ V(J)), i.e. it is the maximal set of
polynomials that evaluate to 0 at V(I)\ V(J). Thus we take I : J as the
output ideal of variety.

5 If we take the complex numbers C as the field for the coefficients instead of R, by
Hilbert’s Nullstellensatz IV = Rad, the radical operator, which can be effectively
computed.



Widening Operator. Given two ideals of variety I and J, we are interested in
under-approximating the ideal I N J so that we can guarantee termination of
the fixpoint computation. One way to achieve this is to restrict I N J to poly-
nomials that have degree less or equal than a prefixed degree bound d. As the
ideal generated by these polynomials may not be an ideal of variety, the closure
operator IV must be applied. Formally, given two ideals of variety I,J and a
degree bound d, the widening is defined as:

IV4J =IVH{P € GB(INJ,>) | degree(P) < d}),

where GB(K, ) stands for a Grébner basis of an ideal K with respect to the
graded term orderingﬁ >. We are experimenting with other widening operators
that would allow the generalization of Theorem [I|to hybrid systems.

It is well-known in computational algebraic geometry that canonical repre-
sentation for INJ, IUJ, I : J, and elimination ideals can be effectively computed
from the corresponding representations for I and J.

Ezxample 4. In the hybrid system model of the charged particle, let us denote by
Lright, Imagnetic and Ijep the ideals of variety corresponding to the states right,
magnetic and left respectively. As the initial state is right with v, = 2, v, = -2,
x=y=>b=1t=0, we get the following system of fixpoint equations:

Trighe = Grigne({ve — 2,0, +2,,,1,) N oIV (T + ())))
Imagnetic = ¢magnetic(IV([Tight —+ <J,‘ — d>))
Ileft = ¢left (IV(Imagnetic + <33 - d>))

where « transforms (v,,b) into (—v,,b+ 1) and leaves the rest of the variables
unchanged, and the ¢’s are the mappings abstracting the flows in continuous
transitions, taking as input an ideal of initial conditions and returning an ideal
of invariant polynomials (computed using the technique described in Section.

We approximate the fixpoint of this equation by using the widening operator
Va. We get the following invariants:

I'r‘ight = <Uy + 271)3 — 4> Ileft = <’Uy + 2,’1_)2 — 4>
Lnagnetic = (x — 2vy — 4 — d,v2 + UZ —8)

The reason why we get v2 = 4 both at right and left is that our hybrid system
allows undesired behaviors, such as the particle in mode right making a transi-
tion to magnetic and then instantly moving again to left with no time elapse.
However, using the implicit invariants v, > 0 at right and v, < 0 at left, we

deduce that v, = 2 at right and v, = —2 at left. We add these invariants to the
guards and finally get the following more precise invariant:

Iright = <’Uy + Z,Um — 2, 2db — 8b + Y+ 1’>
Imagnetic = <-T—2Uy —4—d,’l}g+’l)§ —8,21)1 +y+2db—8b—4+d>
Tiegt = (vy + 2,0, +2,2db—8b+y — 8 — x)

mases and graded term orderings are used in this definition because they

allow us to prove that, when employing this widening operator, the fixpoint compu-
tation yields all the polynomial invariants of degree < d, see [7I17].



5 Examples

We illustrate our method for generating polynomial invariants on some hybrid
systems taken from the literature. As an optimization, we did not compute the
closure IV always; nonetheless, the obtained invariants sufficed for proving the
properties of interest. We implemented our techniques in the algebraic geometry
tool Macaulay 2 [9] using a PC running Linux with a 2.5 GHz. processor and
512 MB of memory.

(on,2) (off) (on, 1)

i=1 t=b—1t:=0
t=a—-b—1:=0 g=1 ]
@ t=a—1t:=0

Fig. 2. Hybrid system for a thermostat

Thermostat. Figure [2 shows a hybrid system, taken from [I3], modeling a ther-
mostat. The system has three locations: in (on,1) and (on,2) the thermostat is
on, while in (off) the thermostat is off. There are three clocks: ¢ tracks the time
elapsed at the current location, y tracks the total time, and z tracks the time
the thermostat has been on. There are also two parameters a and b that limit
the maximum time the thermostat is in the locations. The initial state is (on, 2)
with ¢t =y = 2z = 0. Using V3, in 0.44 seconds we get the invariants

I((m,2) = (y — t, z — t>
Iopp) = (—a® 4+ ab+ az + bz — by + bt)
Lion,1) = {(a? — 2ab — az — bz + by + at)

In [I3] it was proved that, for a = In(3), b = In(2), the thermostat is on between
23.17/60 =~ 38.6% and 23.51/60 =~ 39.2% of the time within the first 60 time
units of operation. We can use the polynomial invariants above to refine these
bounds. At location (off), from the implicit invariant 0 < ¢ < a and —a? + ab +
az + bz — by + bt = 0 we get that

a’® — 2ab + by a’® —ab + by

z <
a+b - a+b

IN

We also get the same inequalities at location (on,1) by using the implicit in-
variant 0 <t < b and a? — 2ab — az — bz + by + at = 0. Substituting a = In(3),
b = In(2), y = 60, we get the interval [23.03/60,23.46/60] ~ [38.4%,39.1%)] ,
which provides us with a better upper bound.

Train System. The hybrid system shown in Figure [3|and taken from [I9] models
a train accelerating (location acc), moving at constant speed (location cons) and



decelerating until stopping (location dec). Once the train has halted, it remains
quiet for 2 seconds. There are four variables: the position of the train =z, its
velocity v, a clock ¢ and a counter s of the number of stops made so far. The
initial state is acc with x =v=s=t=0.

cons dec

T=v
v=5—1Id 0 =0 true — Id

t=1
$=0

v=0—t:=1t4+2; s:=s+1

Fig. 3. Train system

We obtain the following invariants in 0.32 seconds using Va:

Loce = (—4ax + 0% — 1155 + 20t — 100)
Liee = (4 + 1155 — 20t — 200 + 75 + 202)
Leons = (v — 5,42 + 1155 — 20t + 25)

Note that these invariants, e.g. 42 + 1155 — 20t — 20v + 75 + 2v? = 0 at dec, can
be found analytically by computing the distance covered z in terms of the other
variables.

Charged Particle Revisited. Consider the hybrid system of the charged particle.
Assume now that both the distance parameter d and the magnetic field magni-
tude a are left unknown (which is a more general setting than in [I9]). Under
these conditions the vector field in magnetic is no longer linear. However, notice
that, since a is constant, the solution to the system of differential equations still
has the same structure as in Section [3| with the difference that a may appear
in a denominator. We overcome this problem by introducing a new auxiliary
variable a’ to represent the value a=! (we assume that a # 0; the case a = 0 is
straightforward to analyze). We also employ the polynomial aa’ — 1 to represent
the equation aa™! = 1.

As before, due to imprecisions in our modeling, we first obtain the following
invariants (in 1.80 seconds using V):

Light = (vy + 2,02 — 4) Liept = (vy + 2,02 — 4)
Imagnetic = (ax — ad — vy — 2,02 + v — 8)

Strengthening this invariant as in Example [4] and re-computing the fixpoint, in
0.70 seconds we get:

Light = (vy + 2,0, — 2, —az + 4b — 2adb — ay)

Lnagnetic = {ax — ad — vy, — 2,02 —1—115 —8,ay — 4b+ 2adb — 2 + ad + v,)
Tieje = (vy + 2,0, +2,4b — 2adb — ay + 4 — 2ad + ax)



Let us see some properties of the system that these invariants allow us to
prove. First, by using the invariant ax + ay = 4b— 2adb at right we can compute
the height where the particle collides as a function of the bounce counter b: by
setting © = 0 we get y = 2b(2—ad)/a. In particular, if ad = 2 the particle returns
to the origin for every bounce. Moreover, the invariants ax = ad + vy, + 2 and
v2+ v = 8 let us find the maximum horizontal distance covered by the particle:

the maximum distance is achieved when & = v, =0, i.e. v, = +21/2; then this
distance is © = d + (2v/2+2)/a when a > 0, * = d + (=22 + 2)/a when a < 0
(the feasible solutions satisfy = > d).

6 Conclusions

We presented a computational method for generating the most precise algebraic
invariant for linear dynamical systems. We then extended this method to com-
pute equational invariants for hybrid systems using an abstract interpretation
approach. The main computational technique is based on Grobner basis com-
putation and we do not use the prohibitively expensive (quantifier elimination)
decision procedure for the reals. Canonical Grobner bases provide a useful rep-
resentation for sets of states as they have several important properties such as
canonicity, closure under boolean operations and quantifier elimination.

As future work, we plan to integrate our techniques with other approaches
for dealing with inequalities. The resulting method would perform a much more
precise analysis of hybrid systems with a wider range of applicability.
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