
International Journal of Control, Automation, and Systems, vol. 6, no. 6, pp. 809-817, December 2008

809

Generating Pylogenetic Tree of Homogeneous Source Code in a

Plagiarism Detection System

Jeong-Hoon Ji, Su-Hyun Park, Gyun Woo*, and Hwan-Gue Cho

Abstract: Program plagiarism is widespread due to intelligent software and the global Internet

environment. Consequently the detection of plagiarized source code and software is becoming

important especially in academic field. Though numerous studies have been reported for

detecting plagiarized pairs of codes, we cannot find any profound work on understanding the

underlying mechanisms of plagiarism. In this paper, we study the evolutionary process of source

codes regarding that the plagiarism procedure can be considered as evolutionary steps of source

codes. The final goal of our paper is to reconstruct a tree depicting the evolution process in the

source code. To this end, we extend the well-known bioinformatics approach, a local alignment

approach, to detect a region of similar code with an adaptive scoring matrix. The asymmetric

code similarity based on the local alignment can be considered as one of the main contribution of

this paper. The phylogenetic tree or evolution tree of source codes can be reconstructed using this

asymmetric measure. To show the effectiveness and efficiency of the phylogeny construction

algorithm, we conducted experiments with more than 100 real source codes which were obtained

from East-Asia ICPC (International Collegiate Programming Contest). Our experiments showed

that the proposed algorithm is quite successful in reconstructing the evolutionary direction, which

enables us to identify plagiarized codes more accurately and reliably. Also, the phylogeny

construction algorithm is successfully implemented on top of the plagiarism detection system of

an automatic program evaluation system.

Keywords: Asymmetric local alignment, evolution process, phylogeny of source codes,

plagiarism detection, source code similarity.

1. INTRODUCTION

Recently, bio-inspired computing has become a hot

issue in general computer science and engineering.

Especially concepts from the artificial life model give

interesting insights and a new methodology for

computer scientists [1]. Evolution, the most

fundamental concept of biology, also represents a

useful modeling framework for many computer

science applications, especially in the software

evolutionary process.

Constructing phylogenies of in-silico creatures is a

very interesting means to understand the basic

evolutionary process of these artificial creatures. For

example, it is very important to reconstruct the

phylogeny of computer viruses, since this enables

anti-virus scanners to function efficiently. According

to recent work, the number of new computer viruses

released per week is more than 30 in the world [2].

Computer virus classification enables us to manage

numerous computer viruses in a sizable library.

Tracking the evolution of computer viruses should

inevitably be performed on a binary level. A group of

homologous viruses is generally detected in a single

query for a conserved string (in executable code)

among several computer viruses. Kalim et al.

proposed a new method for constructing the malware

phylogeny using permutations of code [7].

Another direction for tracking the evolution of

software is on a macroscopic level. Kemerer and

Slaughter discussed how to trace and measure

improvements of software structure [8]. A simple

definition of software evolution is that it is the

dynamic behavior of programming systems as they

are maintained and enhanced over their life-times. Fig.

1 shows the phylogenetic graph for a set of UNIX

system software to make an understanding the

hierarchical structure of UNIX easily.

In this paper, we focus on the microscopic process

of evolution at the source level rather than macro-

 Manuscript received November 5, 2007; revised September
10, 2008; accepted November 3, 2008. Recommended by
Guest Editor Phill Kyu Rhee. This work was supported by the
Korea Research Foundation Grant funded by the Korean
Government (MOEHRD, Basic Research Promotion Fund)
(KRF-2007-314-D00232).
 Jeong-Hoon Ji, Su-Hyun Park, Gyun Woo, and Hwan-Gue
Cho are with the Graduate School of Computer Engineering,
Pusan National University, Jangjeon-gu, Geumjeong-dong,
Pusan 609-735, Korea (e-mails: {jhji, shpark07, woogyun,
hgcho}@pusan.ac.kr).

* Corresponding author.

Jeong-Hoon Ji, Su-Hyun Park, Gyun Woo, and Hwan-Gue Cho

810

scopic studies by Kemerer and Slaughter [8]. The

basic idea of the authors is that plagiarism of source

code can be regarded as an evolutionary process for

an artificial life form. In a similar manner to the

means by which parts of a virus DNA are deleted,

mutated, or inserted, parts of a source code (including

reserved words in a high-level programming language,

i.e., for, if, and while) are inserted, deleted, or

modified while developing or improving the software.

2. MAIN PROBLEMS

In this section, we review previous work on

plagiarism detection of source codes and summarize

the remaining problems. The plagiarism detection

methods can be categorized into two groups: non-

structural methods and structural methods. The non-

structural methods do not consider the structural

characteristics of programs. For instance, comparing

the number of words in two programs is a kind of

non-structural methods. A well-known non-structural

method is called attribute counting [11-14].

In the attribute counting methodology, the vector of

program properties, viz., the attribute vector, is

defined for each program. Then the attribute vectors

of programs are compared. This method can be

effective for categorizing programs but not so

effective for detecting plagiarism since it cannot

locate the exact plagiarized region.

Structural methods compare the structures of

programs. Typical examples of structures of programs

are the sequences of tokens [3,10,19], the syntax tree

kernels [15,16], and call graphs of programs.

Structural methods are relatively difficult to imple-

ment, but more effective at detecting plagiarism of

sources.

The aforementioned previous work only addresses

the similarity of two given programs, but these

methods have difficulties with inferring the evolu-

tionary direction. In some cases, the evolutionary

direction can be more important than the degree of

code similarity. For instance, let us assume that a

source code is stolen and reproduced. Then any digital

forensic tool should be able to report ‘who copied

what.’ So, in order to infer the evolutionary direction,

an asymmetric similarity metric is required. Let us

summarize the two main problems unraveled in this

paper.

Problem 1: Computing Asymmetric Similarity

Distance between Two Different Source

Codes

Input: Programs A and B are given. We know that

program B has evolved (or been plagiarized)

from program A at the source code level. To

infer the evolutionary direction, the

similarity between A and B, based on B,

should be computed differently from the

similarity between B and A, based on A.

Output: Two asymmetric similarity values

indicating the degree to which A is similar

to B, and vice versa.

Problem 2: Evolutionary Phylogeny Construction

for Homogenous Codes

Input: A set of homogeneous codes which are

derived from an original code is given. One

typical homogenous code set includes all

intermediate codes submitted in any

programming contest as a solution code for

a specific problem.

Output: A phylogenetic forest, to show the

derivation history of input source codes.

One important aspect of the two problems

explained above is how to measure the reliability of

the solution. For a pair of given arbitrary programs,

the solution to Problem 1 always returns two

asymmetric similarity values. So we need to infer the

evolutionary direction by comparing the similarity

distances of one to another and vice versa. However,

if two input programs are not related to each other in

the development procedure of them, then the

evolutionary direction could be inaccurate. So, that is

the reason the input sources should be homogenous

codes. Here, we explain the means to compute the

asymmetric similarity metric for two different codes.

3. ASYMMETRIC SIMILARITY MEASURE

FOR CODE PLAGIARISM

It is generally accepted that all kinds of evolu-

Fig. 1. A typical evolution graph of UNIX systems.

Vertical direction denotes the time lines from

1969 to 1987 (years).

Generating Pylogenetic Tree of Homogeneous Source Code in a Plagiarism Detection System

811

tionary processes imply a direction for adaptation.

Most previous work about plagiarism detection only

focused on the means to compute the similarity

between programs A and B in terms of global aspects.

So, they try to answer these kinds of questions: “Is

program A is similar to B? If so, how similar are

they?” This simple symmetric approach does not give

any clues on the question of whether A is derived from

B or vice versa.

But, in order to trace the evolutionary (plagiarism)

history of a source code, the similarity measure must

provide not only the degree of similarity, but also its

direction. Here, this section explains the means to give

a similarity measure with a direction, using the plain

local alignment algorithm, which is a basic tool such

as BLAST [20] for biological sequence (i.e., DNA,

RNA, and protein) analysis.

Since our method involves exploiting local

alignment for two linear keyword sequences obtained

from target programs, we must construct a

representative linear sequence of keywords [3]. Let La

and Lb be the linear sequences of keywords obtained

from Pa and Pb, respectively. Then we can regard the

linear sequence Lx of program keywords as the

“DNA” sequence of program Px based on the analogy

of the DNA sequence of a biological organism. There

are several procedures for extracting the DNA of a

program, but we do not consider this issue further in

this paper.

As mentioned previously, local alignment has been

widely applied to finding a similar region in two

linear strings [9]. Local alignment is also our basic

framework of plagiarism detection. Every local

alignment method has its own scoring matrix, which

generally determines the means to compute the

similarity thus locating the exact similar aligned

region.

The general local alignment algorithm uses a fixed

scoring matrix (e.g., +1 denotes a match, –1 denotes a

mismatch, and –2 denotes a gap insertion or deletion)

which is a diagonally symmetric matrix [17]. The

scoring matrix we used has two different features.

First, our alignment scoring matrix is not symmetric,

which implies that the matching score between two

characters a and b is dependent on its direction. So,

MatchScore(a,b) ≠ MatchScore(b,a). This enables us

to evaluate asymmetric alignment scores.

Second, our scoring matrix WD is adaptively

constructed from the frequency of keywords in a

program group D. Let D be a group of the functional-

equivalent programs such as a set of programs

submitted for an assignment task. Let the normalized

frequency of a keyword Ki be fi in D. For scoring

matrix, we set –α · (log2 fi · fi) for matched keywords

Ki, +β · (log2 fi · fi) for mismatched keywords, γ · log2fi

for gap insertion, and δ for gap deletion, where α, β, γ,

and δ are the control parameters for optimizing the

detection performance. In summary, the scoring

matrix can be defined as:

[]

()

()

2

2

2

2

log if

 log if
,

 log if is a gap symbol

 log if is a gap symbol.

x y

x y
D

x

y

f f x y

f f x y
W x y

f y

f x

α

β

γ

δ

− ⋅ ⋅ =

 ⋅ ⋅ ≠

=
 ⋅

⋅

This adaptive scoring matrix implies that the

insertion or the deletion of a frequent keyword does

not have less weight than those of infrequent

keywords, since we believe that infrequent terms or

keywords in a programming language are more

crucial to the functional aspects of programs [4].

Our experiment validated that our adaptive scoring

matrix is more effective than a simple plagiarism

technique such as inserting meaningless/dummy

keywords. This adaptive scoring matrix ensures that

the matching score (and mismatching penalty) of

important keywords (keywords with the lowest

frequency) is higher than that of frequent ones. As

shown in Table 1, inserting an uncommon switch

results in a penalty that is 4 times higher than for

inserting abundant keywords such as ‘=’ and ‘{’.

Table 1 clearly shows that the adaptive scoring

matrix is entirely dependent on the characteristics of

each program group. These four control parameters, α,

β, γ, and δ, are determined empirically from several

experiments. We expect that γ < δ, since it is more

difficult to delete a keyword than to insert a keyword,

without understanding the logical structure of a

program to maintain the same function. Computing

the optimal values for these four parameters is also an

interesting problem. The tuning result is described in

Section 5. Here, we propose an asymmetric similarity

score, AsymScore() to compute the similarity of

programs.

Definition 1: AsymScore(Pa,Pb) is the score of a

maximal local alignment using WD (the asymmetric

scoring matrix) between two keyword strings of La

and Lb that are obtained from the programs Pa and Pb.

The evolutionary distance is defined in terms of the

matching score AsymScore(). Usually, the normalized

Table 1. High/low frequency keywords in a program

group submitted in ICPC 2006. The total

number of keywords is 9993.

Highest Frequency Lowest Frequency

“=” 14.00% “switch” 0.01%

“{” 11.83% “-=” 0.02%

“}” 11.83% “void” 0.02%

“++” 6.76% “goto” 0.03%

“if” 6.44% Bit OR “|” 0.03%

Jeong-Hoon Ji, Su-Hyun Park, Gyun Woo, and Hwan-Gue Cho

812

similarity of two programs Pa and Pb is defined by the

ratio of the matching score of the aligned region to the

maximum possible matching score. So we newly

define Asym(Pa,Pb), which is a normalized

asymmetric measure for the similarity of the program

Pa and Pb based on Pb.

()

()

() ()

,

2 ,

, ,

a b

a b

a a b b

Asym P P

AsymScore P P

AsymScore P P AsymScore P P

=

⋅

+

It is clear that Asym(Pa,Pb) ~ [0,1]. Here, using the

Asym() function, we can define the evolutionary

distance as follows:

() (), 1 , .a b a bEvolDist P P Asym P P= −

EvolDist(Pa,Pb) can be considered as the estimated

amount of manual work needed to transform program

Pa into Pb by keyword insertion, deletion, and

exchange, while maintaining the same functionality.

We adjust four weighting constants α, β, γ, and δ for

match, mismatch, insertion, and deletion, respectively,

in order to maximize the success rate of the phylogeny

inference.

Our local alignment has two features that are

different from the previous standard symmetric local

alignment algorithm; (1) it uses an adaptive scoring

matrix and (2) it attributes different weights for gap

insertions and deletions in local alignment, thus,

EvolDist(Pa,Pb) ≠ EvolDist(Pb,Pa) for two different

programs Pa and Pb. So, it is quite natural to assume

that Pb is derived from Pa if EvolDist(Pa,Pb) <

EvolDist(Pb,Pa). This is the most important

contribution of our paper to establishing the evolution

of programs. So, we address the following claim.

Claim 1: If EvolDist(Pa,Pb) < EvolDist(Pb,Pa) then

we assert that it is more likely that Pb is plagiarized

from Pa than Pa is plagiarized from Pb.

The basic idea of our evolutionary analysis for

source codes is that we try to construct a most likely

evolutionary tree, using all pair-wise EvolDist(Pi,Pj)

values. The correctness of this claim for evolutionary

direction is tested and analyzed in Section 5.

4. INFERRING ALGORITHM FOR

PHYLOGENETIC TREE

In order to reconstruct the phylogeny of source

codes, two important data elements should be

determined: (1) the similarity distance between two

source codes and (2) the direction of the influence

from one to the other, given two similar source codes.

The similarity distance is described in Section 3, using

the function EvolDist().

The evolutionary direction can be determined

directly and easily from the evolutionary distances.

Given two programs Pa and Pb, we compute two

asymmetric evolutionary distances EvolDist(Pa,Pb)

and EvolDist(Pb,Pa). If EvolDist(Pa,Pb) <

EvolDist(Pb,Pa), then it is reasonable to assert that Pb

has evolved from Pa than the converse since

EvolDist(Pa,Pb) indicates how easily Pb can be

derived from Pa. We take the shorter of two

evolutionary distances between the two source codes.

The evolutionary direction is a natural result of this

selection, for example, if EvolDist(Pa,Pb) is used, then

Pb has evolved from Pa, in short .a bP P� Note that

the evolutionary distance can be zero, if two programs

are identical and these cases can be easily excluded.

Once the evolutionary directions and distances are

computed, the evolutionary graph can be constructed.

The phylogeny should be a subgraph of this

evolutionary graph. After the evolutionary directions

of all pairs of programs have been determined, we

have a directed graph for which the undergraph is

complete. We can define the phylogenetic tree as the

minimum spanning tree of the undergraph without

removing the directions of edges [5]. Once the

phylogenetic tree has been obtained, it can be further

improved by removing multiple entries. Since it is

unnatural to assume that a program is derived from

multiple programs, the multiple entries for a node are

Algorithm 1: Phylogenetic Forest Construction

Algorithm

procedure PHYLOFOREST(V)

()

()

{

() ()}
()()()

i

 ;

 ;

 (v ,) , , ,

 , ,

 , ;

ˆ

ˆ contain

j i j

i j j i

F FrequencyVector V

M SimilarityMatrix F

E v v v V i j

D v v D v v

T MinSpanningTree Undergraph G V E

T T

T

←

←

← ∈ ≠

<

←

←

while

��������

{ }

{ }*

*

s a multiple-entry vertex

 incoming edges of ;

 maximal weight edge in ;

ˆ ˆ ;

ˆ

i

i

v

e v

e e

T T e

T

←

←

← −

do

end while

return

end procedur

()

() ()

()

1 2

1 1 2 2

1 2

 ,

 , , ;

 1 2 , / ;

D v v

MaxS AsymScore v v AsymScore v v

AsymScore v v MaxS

← +

− ⋅

e

function

return

end function

Generating Pylogenetic Tree of Homogeneous Source Code in a Plagiarism Detection System

813

removed. As a result, the phylogenetic forest is

obtained from the program evolutionary graph [6].

Algorithm 1 shows the steps of phylogenetic forest

construction.

Algorithm 1 reconstructs the phylogenetic forest T̂

inferred from the given set of programs 1 2{ , ,V v v=

, }.
n
v… To summarize, the phylogenetic tree T is the

minimum spanning tree of the undergraph G(V,E)

where E is the set of edges for which the evolutionary

distances are defined using M; and the phylogenetic

forest T̂ is an improved phylogeny, obtained by

removing multiple entries from T. Fig. 2 illustrates the

entire step by step procedure in our phylogeny

construction algorithm (Algorithm 1).

5. EXPERIMENTS

In order to evaluate the correctness of our

phylogeny inferring algorithm, we tested our

algorithm, using a set of artificially plagiarized

programs. We collected 20 sets of programs. Each set

contains one root program (the original code) and four

other programs derived from it by 20 graduate

students manually. In some groups, derived programs

were constructed via sequential modifications such

that 0 1 2 3 4.P P P P P A B� � � � � denotes that

program B was derived via modification of program A.

Another test groups contain five programs, where

{ } { }0 1 2 2 3 4, , , .P P P P P P� � These derivation pro-

cedures can be completely described in a tree model,

viz., phylogenetic tree. So we can construct the “true

phylogenetic tree” for each group of artificially

plagiarized codes. Here, we are ready to test the

phylogenetic tree construction algorithm.

The simplest criteria for evaluating the correctness

of a phylogenetic tree is the count of the number of

inversion tree edges. There is one correct (real)

phylogenetic tree with five nodes and four directed

edges, for each program group. Therefore, the total

number of evolutionary edges in the 20 test groups

should be 80. The inversion edge is defined as the

directed edge with the wrong time direction. For each

test program, the subscript t of Pt means the time-

index for program generation. This implies that the

appearance time of P0 precedes that of P1, P2, P3, and

P4; and P2 also precedes P3 and P4 etc. So, for a tree

generated by our algorithm, if we obtaining a directed

edge i jP P� , where i < j, then we consider this

edge to be correct with respect to the evolutionary

procedure. Otherwise, if we obtaing an edge i jP P�

where i > j, then we call this edge an inversion edge

or simply an “inversion.” Thus, the objective function

for inferring the phylogenetic tree can be reduced to

minimizing the number of inversion edges.

5.1. Control parameter tuning for phylogenetic tree

optimization

The performance of local alignment is completely

dependent on a few control parameters. So, prior to

applying the phylogenetic tree generation algorithm,

we must find the nearly optimized control parameters,

to compute the asymmetric similarity. Since this

problem is a kind of multi-variable, non-linear

optimization, there is no sound optimization

procedure for local alignment.

In this work, we implemented a very simple method,

sequential parameter optimization. We only consider

three control parameters: α for the matching gain, δ

for the gap insertion penalty, and γ for the gap

deletion penalty (refer to Section 2). In this procedure,

we fixed the penalty value for a mismatch β = 0.35,

which was obtained empirically by experiments in the

authors’ previous work [3,4].

The order of tuning parameters was α, δ, and γ. For

each parameter, we tried to minimize the number of

correctly inferred evolutionary edges by increasing the

parameter value by a small unit amount. The

(a) Step 1. (b) Step 2. (c) Step 3. (d) Step 4. (e) Step 5.

Fig. 2. Step 1 shows the 10 given programs. Step 2 involves computing the bi-directional evolutionary distances

between node a and b, which is represented by double edges. Step 3 involves selecting a more plausible

evolutionary edge. Step 4 involves constructing a minimal spanning tree in the under-graph of the directed

graph given in (c). Step 5 involves applying our Spanning Forest Construction Algorithm to the minimal

spanning tree obtained in (d). In Step 5, this forest is the final output of this work.

Jeong-Hoon Ji, Su-Hyun Park, Gyun Woo, and Hwan-Gue Cho

814

parameter tuning result is shown in Fig. 3. Subsequent

to tuning α, we tuned γ. And, with the previously

determined values for α and γ, we tried to optimize δ.

Via this sequence of optimization we finally obtained

α = 0.65, δ = 2.0, and γ = 7.2.

5.2. Constructing program phylogeny

Table 2 shows the basic statistics for the four test

program groups. Four root (origin) source codes were

selected from the source code submitted as correct

solutions in ICPC 2006. In order to construct

homogeneous groups, the origin source P1 is

transformed into two different programs P2, P3, and

one of P2 and P3 is selected and transformed again

into other two programs P4 and P5. Therefore we

could construct four evolution edges by this derivation,

which could be a true edge set.

By adopting the tuned parameters, our asymmetric

measure could correctly infer about 67% of

evolutionary directions, among 80 evolutionary direc-

tions. The estimation ratio differs according to the

program group. For program group P01, P02, P03,

and P04, 80%, 55%, 70%, and 55% of directions were

correctly estimated, respectively.

Fig. 4 shows some examples of phylogenetic trees

of homogeneous test codes. In the phylogenetic tree,

each node denotes the corresponding source code and

the edge direction implies the evolutionary direction

computed. The node labels of the tree in Fig. 4(a)

denote the time index, in terms of the evolutionary

procedure. The prefix of the node label denotes the

ancestry of the program. For example, the program

labeled 11 is evolved from the program labeled 1 and

the program labeled 112 is evolved from the program

labeled 11. In Fig. 4(a), it is clear that the evolutionary

direction is completely correct; but in Figs. 4(b) and

(c), there are some incorrect directions, which are

denoted by dashed edges.

The edge weight shown in Fig. 4 implies that the

normalized evolutionary distance metric, and the

distance ranges from zero (completely identical) to

one (completely different).

5.3. Application: Detecting code plagiarism

We used the phylogeny construction algorithm to

perform, plagiarism detection among source codes

submitted in an International Collegiate Programming

Contest (ICPC). Since the ICPC final competition

took place in a highly secure environment, we did not

find any plagiarized codes. Rather than just obtaining

the final codes submitted, we obtained numerous

homogenous codes (a set of tried codes that were

submitted as a solution program to a designated

contest problem). These homogenous test codes were

successfully clustered and their sequence of

(a) Optimizing parameter α.

(b) Optimizing parameter γ.

(c) Optimizing parameter δ.

Fig. 3. Parameter tuned result α = 0.65, γ = 2.0, and

δ = 7.2.

Table 2. Test data for testing the correctness of in-

ferred phylogeny by the proposed algorithm.

Lines of Source Code
Groups Codes Trees

Min Max µ σ

P01 25 5 91 234 120.40 27.95

P02 25 5 39 110 86.20 17.81

P03 25 5 65 213 103.44 29.08

P04 25 5 72 227 111.20 30.36

Generating Pylogenetic Tree of Homogeneous Source Code in a Plagiarism Detection System

815

submission was successfully inferred by our algorithm.

Since the preliminary round of every ICPC take

place in a distributed environment, due to the huge

number of participants, some plagiarism is likely to

occur. So, every participant can access the contest

problem and submit the solution programs from their

home or university computer lab, or even from a

commercial Internet cafe. So, since the preliminary

round of ICPC is unmonitored by a supervisor, we

expect a few cases of cheating (plagiarism) to occur

during ICPC.

Table 3 shows the entire set of test data (source

code) obtained from ICPC. In the preliminary Internet

competition of ICPC 2005: Problem-E, our

asymmetric code similarity measure reported that

there were eight program pairs with very high

similarity scores. We manually investigated each pair

of similar programs, then, we finally exposed real-

world code plagiarism, where the participants that

cheated confessed that one student had sent the correct

solution using an instant Internet messenger.

Surprisingly, this year, in the ICPC 2007 final

round, our algorithm detected one instance of Internet-

based cheating. One team had hacked the competition

system (PC
2
, which was developed and released by

IBM) using packet sniffing during the competition.

The dishonest team modified the stolen code and

submitted it to the judge. Our tool was quite

successful in isolating such a group of dishonest

students.

6. APPLICATION: AUTOMATED

EVALUATING SYSTEM FOR

PROGRAMMING ASSIGNMENT WITH

ANTI-PLAGIARISM FEATURES

We developed a web-based automated Evaluating

System for Programming Assignments (ESPA), which

is actually used in introductory C/C++ and Java

programming language courses in our department.

This system executes the programs submitted by the

students and evaluates them automatically, by compar-

ing the results of the students’ program with the

correct solution given by the professor. The ESPA

system also checks if there are suspected plagiarized

program pairs after the submission dead-line is over.

Fig. 5 shows an example of the submission tracking

Fig. 4. Reconstructed evolutionary trees with plagia-

rized homogeneous codes: a correct phylog-

eny (a) and two incorrect phylogenies (b) and

(c). The tree node denotes a source code, and

an edge denotes the direction of evolution.

Edge labels denote the evolutionary dis-

tances.

Table 3. Experimental codes for detecting program

plagiarism by our algorithm.

Group Programs Pairs Avg. Lines

ICPC2004-B 48 2256 89.18

ICPC2004-C 22 462 55.17

ICPC2004-E 35 1190 44.44

ICPC2005-A 153 23256 65.30

ICPC2005-B 109 11772 67.49

ICPC2005-E 38 1406 44.14

ICPC2005-G 44 1892 47.60

ICPC2006-A 180 32220 43.77

ICPC2006-B 175 30450 54.29

ICPC2006-C 157 24492 58.98

Fig. 5. A screenshot of the Evaluating System for

Programming Assignments. The submission

time, the number of submission, and the

score of each assignment are displayed.

Jeong-Hoon Ji, Su-Hyun Park, Gyun Woo, and Hwan-Gue Cho

816

page of ESPA and Fig. 6 shows an example of the

plagiarism detection page of ESPA.

Prior to using this plagiarism investigation system,

we determined that around 5% of all enrolled students

(60–80 for a class) seemed to have tried to cheat in

their programming assignment by plagiarizing another

person’s code. But, after notifying that ESPA would

check for code plagiarism, the number of cheating

students decreased dramatically, to nearly zero for a

semester. Especially, we found that merely showing

an evolutionary tree for the cheating program group to

students was quite successful at determining dishonest

behavior. We finally established that this kind of

automated grading system with anti-plagiarism

features is quite effective and efficient in introductory

programming education.

7. CONCLUSION

In this paper, we proposed a phylogenetic forest

generation algorithm based on bio-inspired local

alignments. The local alignment algorithm is modified

to generate an asymmetric similarity score for two

source codes. According to the experimental results,

the proposed algorithm is quite good at inferring

evolutionary directions of programs. We summarize

the main contributions of our work as follows:

• We proposed an evolutionary distance measure

with a direction to infer the degree and direction

of evolution among source codes.

• Our experiment showed that this measure

archived more than 67% accuracy at recon-

structing the evolutionary direction among

homogeneous codes.

• This result implies that our evolutionary

measure can be successfully applied to detection

of plagiarized pairs of programs among

heterogeneous codes.

• So, our measure can be used to investigate

cheating by dishonest students in a programm-

ing assignment. The authors have empirically

confirmed that plagiarism detection and evalua-

tion analysis based on this work are very

efficient and effective means to deter dishonest

students.

Bio-inspired evolutionary analysis can be widely

exploited in numerous types of software analysis,

such as code maintenance, source clustering, plagia-

rism detecting. Currently, we are developing an

authorship analysis scheme based on the proposed

phylogeny generation algorithm. We hope this type of

evolutionary analysis for source codes will become an

integral part of future digital forensic work.

REFERENCES

[1] N. Forbes, Imitation of Life: How Biology is

Inspiring Computing, MIT Press, 2004.

[2] L. A. Goldberg, P. W. Goldberg, C. A. Phillips,

and G. B. Sorkin, “Constructing computer virus

phylogenies,” J. of Algorithms, vol. 26, no. 1, pp.

188-208, January 1998.

[3] J.-H. Ji, G. Woo, and H.-G. Cho, “A source code

linearization technique for detecting plagiarized

programs,” ACM SIGCSE Bulletin, vol. 39, no. 3,

pp. 73-77, June 2007.

[4] J.-H. Ji, G. Woo, S.-H. Park, and H.-G. Cho, “An

intelligent system for detecting source code

plagiarism using a probabilistic graph model,”

Proc. of the 5th International Conference on

Machine Learning and Data Mining in Pattern

Recognition, MLDM Posters 2007, pp. 55-69,

July. 2007.

[5] J.-H. Ji, S.-H. Park, G. Woo, and H.-G. Cho,

“Evolution analysis of homogenous source code

and its application to plagiarism detection,” Proc.

of the FBIT2007, pp. 813-818, October 2007.

[6] J.-H. Ji, G. Woo, S.-H. Park, and H.-G. Cho,

“Understanding evolution process of program

source for investigating software authorship and

plagiarism,” Proc. of the 2nd International

Conference on Digital Information Management,

pp. 98-103, October 2007.

[7] M. E. Karim, A. Walenstein, A. Lakhotia, and L.

Parida, “Malware phylogeny generation using

permutations of code,” J. in Computer Virology,

vol. 1, no. 1, pp. 13-23, 2005.

[8] C. F. Kemerer and S. Slaughter, “An empirical

approach to studying software evolution,” IEEE

Trans. on Software Engineering, vol. 25, no. 4,

pp. 493-509, 1999.

[9] S. Meyer zu Eissen and B. Stein, “Intrinsic

plagiarism detection,” Proc. of ECIR 2006,

Lecture Notes in Computer Science, vol. 3936,

pp. 565-569, 2006.

[10] L. Prechelt, G. Malpohl, and M. Philippsen,

Fig. 6. The screenshot for plagiarism test procedure

in ESPA.

Generating Pylogenetic Tree of Homogeneous Source Code in a Plagiarism Detection System

817

“Finding plagiarisms among a set of programs

with JPlag,” J. of Universal Computer Science,

vol. 8, no. 11, pp. 1016-1038, 2002.

[11] J. H. Johnson, “Identifying redundancy in source

code using fingerprints,” Proc. of the Conference

of the Centre for Advanced Studies on

Collaborative Research, pp. 171-183, IBM Press,

1993.

[12] S. Brin, J. Davis, and H. García-Molina, “Copy

detection mechanisms for digital documents,”

Proc. of the ACM SIGMOD Annual Conference,

pp. 398-409, 1995.

[13] K. L. Verco and M. J. Wise, “Software for

detecting suspected plagiarism: Comparing

structure and attribute-counting systems,” Proc.

of the 1st Australian Conference on Computer

Science Education, Sydney, Australia, pp. 130-

134, July 1996.

[14] S. D. Stephens, “Using metrics to detect

plagiarism (student paper),” Proc. of the 7th

Annual Consortium for Computing in Small

Colleges, pp. 191-196, Consortium for

Computing Sciences in Colleges, USA, 2001.

[15] I. D. Baxter, A. Yahin, L. M. D. Moura, M.

Sant’Anna, and L. Bier, “Clone detection using

abstract syntax trees,” Proc. of the International

Conference on Software Maintenance, pp. 368-

377, 1998.

[16] J.-W. Son, S.-B. Park, and S.-Y. Park, “Program

plagiarism detection using parse tree kernels,”

Proc. of the 9th Pacific Rim International

Conference on Artificial Intelligence, Lecture

Notes in Computer Science, Springer, vol. 4099,

pp. 1000-1004, Aug. 2006.

[17] M. J. Wise, “YAP3: Improved detection of

similarities in computer program and other

texts,” Proc. of SIGCSE ’96, pp. 130-134, 1996.

[18] A. Aiken, Moss (Measure of Software

Mimilarity) Plagiarism Detection System,

Available: http://theory.stanford.edu/~aiken/moss/,

1998.

[19] D. Gitchell and N. Tran, “Sim: A utility for

detecting similarity in computer programs,” Proc.

Of the Thirtieth SIGCSE Technical Symposium

on Computer Science Education, pp. 266-270,

ACM Press 1999.

[20] S. F. Altschul, W. Gish, W. Miller, E. W. Myers,

and D. J. Lipman, “Basic local alignment search

tool,” J. Molecular Biology, vol. 215, pp. 403-

410, 1990.

Jeong-Hoon Ji received the B.S.

degree in 2003 from Kyungsung

University, Korea and the M.S. degree

in 2005 from Kyungsung University,

Korea. Since 2005 he has been a

doctoral candidate student in Pusan

National University, Korea. His

research interests are programming

language and software plagiarism

detection.

Su-Hyun Park received the B.S.

degree in 2007 from Pusan National

University, Korea. Since 2007 she has

been a master course student in Pusan

National University, Republic of Korea.

Her research interests are scientific

visualization and bioinformatics.

Gyun Woo received the B.S., M.S.,

and Ph.D. degrees from Korea

Advanced Institute of Science and

Technology, Korea in 1987, 1991, and

2000 respectively. Since 2004 he has

been a Professor in Pusan National

University, Korea. His research

interests are functional programming

and program analysis.

Hwan-Gue Cho received the B.S.

degree in 1984 from Seoul National

University, Korea, the M.S. degree in

1986 from Korea Advanced Institute of

Science and Technology, Korea, and

the Ph.D. degree in 1990 from Korea

Advanced Institute of Science and

Technology, Korea. Since 1990 he has

been a Professor in Pusan National

University, Korea. His research interests are graphics

(visualization) and bioinfor-matics (sequence alignment and

bionetwork analysis).

