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Abstract: Program plagiarism is widespread due to intelligent software and the global Internet 

environment. Consequently the detection of plagiarized source code and software is becoming 

important especially in academic field. Though numerous studies have been reported for 

detecting plagiarized pairs of codes, we cannot find any profound work on understanding the 

underlying mechanisms of plagiarism. In this paper, we study the evolutionary process of source 

codes regarding that the plagiarism procedure can be considered as evolutionary steps of source 

codes. The final goal of our paper is to reconstruct a tree depicting the evolution process in the 

source code. To this end, we extend the well-known bioinformatics approach, a local alignment 

approach, to detect a region of similar code with an adaptive scoring matrix. The asymmetric 

code similarity based on the local alignment can be considered as one of the main contribution of 

this paper. The phylogenetic tree or evolution tree of source codes can be reconstructed using this 

asymmetric measure. To show the effectiveness and efficiency of the phylogeny construction 

algorithm, we conducted experiments with more than 100 real source codes which were obtained 

from East-Asia ICPC (International Collegiate Programming Contest). Our experiments showed 

that the proposed algorithm is quite successful in reconstructing the evolutionary direction, which 

enables us to identify plagiarized codes more accurately and reliably. Also, the phylogeny 

construction algorithm is successfully implemented on top of the plagiarism detection system of 

an automatic program evaluation system. 

 

Keywords: Asymmetric local alignment, evolution process, phylogeny of source codes, 

plagiarism detection, source code similarity. 

 

1. INTRODUCTION 
 

Recently, bio-inspired computing has become a hot 

issue in general computer science and engineering. 

Especially concepts from the artificial life model give 

interesting insights and a new methodology for 

computer scientists [1]. Evolution, the most 

fundamental concept of biology, also represents a 

useful modeling framework for many computer 

science applications, especially in the software 

evolutionary process. 

Constructing phylogenies of in-silico creatures is a 

very interesting means to understand the basic 

evolutionary process of these artificial creatures. For 

example, it is very important to reconstruct the 

phylogeny of computer viruses, since this enables 

anti-virus scanners to function efficiently. According 

to recent work, the number of new computer viruses 

released per week is more than 30 in the world [2]. 

Computer virus classification enables us to manage 

numerous computer viruses in a sizable library. 

Tracking the evolution of computer viruses should 

inevitably be performed on a binary level. A group of 

homologous viruses is generally detected in a single 

query for a conserved string (in executable code) 

among several computer viruses. Kalim et al. 

proposed a new method for constructing the malware 

phylogeny using permutations of code [7]. 

Another direction for tracking the evolution of 

software is on a macroscopic level. Kemerer and 

Slaughter discussed how to trace and measure 

improvements of software structure [8]. A simple 

definition of software evolution is that it is the 

dynamic behavior of programming systems as they 

are maintained and enhanced over their life-times. Fig. 

1 shows the phylogenetic graph for a set of UNIX 

system software to make an understanding the 

hierarchical structure of UNIX easily. 

In this paper, we focus on the microscopic process 

of evolution at the source level rather than macro-
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scopic studies by Kemerer and Slaughter [8]. The 

basic idea of the authors is that plagiarism of source 

code can be regarded as an evolutionary process for 

an artificial life form. In a similar manner to the 

means by which parts of a virus DNA are deleted, 

mutated, or inserted, parts of a source code (including 

reserved words in a high-level programming language, 

i.e., for, if, and while) are inserted, deleted, or 

modified while developing or improving the software. 

 

2. MAIN PROBLEMS 
 

In this section, we review previous work on 

plagiarism detection of source codes and summarize 

the remaining problems. The plagiarism detection 

methods can be categorized into two groups: non-

structural methods and structural methods. The non-

structural methods do not consider the structural 

characteristics of programs. For instance, comparing 

the number of words in two programs is a kind of 

non-structural methods. A well-known non-structural 

method is called attribute counting [11-14]. 

In the attribute counting methodology, the vector of 

program properties, viz., the attribute vector, is 

defined for each program. Then the attribute vectors 

of programs are compared. This method can be 

effective for categorizing programs but not so 

effective for detecting plagiarism since it cannot 

locate the exact plagiarized region. 

Structural methods compare the structures of 

programs. Typical examples of structures of programs 

are the sequences of tokens [3,10,19], the syntax tree 

kernels [15,16], and call graphs of programs. 

Structural methods are relatively difficult to imple-

ment, but more effective at detecting plagiarism of 

sources.  

The aforementioned previous work only addresses 

the similarity of two given programs, but these 

methods have difficulties with inferring the evolu-

tionary direction. In some cases, the evolutionary 

direction can be more important than the degree of 

code similarity. For instance, let us assume that a 

source code is stolen and reproduced. Then any digital 

forensic tool should be able to report ‘who copied 

what.’ So, in order to infer the evolutionary direction, 

an asymmetric similarity metric is required. Let us 

summarize the two main problems unraveled in this 

paper. 

 

Problem 1: Computing Asymmetric Similarity 

Distance between Two Different Source 

Codes 

Input: Programs A and B are given. We know that 

program B has evolved (or been plagiarized) 

from program A at the source code level. To 

infer the evolutionary direction, the 

similarity between A and B, based on B, 

should be computed differently from the 

similarity between B and A, based on A. 

Output: Two asymmetric similarity values 

indicating the degree to which A is similar 

to B, and vice versa. 

 

Problem 2: Evolutionary Phylogeny Construction 

for Homogenous Codes 

Input: A set of homogeneous codes which are 

derived from an original code is given. One 

typical homogenous code set includes all 

intermediate codes submitted in any 

programming contest as a solution code for 

a specific problem. 

Output: A phylogenetic forest, to show the 

derivation history of input source codes. 

 

One important aspect of the two problems 

explained above is how to measure the reliability of 

the solution. For a pair of given arbitrary programs, 

the solution to Problem 1 always returns two 

asymmetric similarity values. So we need to infer the 

evolutionary direction by comparing the similarity 

distances of one to another and vice versa. However, 

if two input programs are not related to each other in 

the development procedure of them, then the 

evolutionary direction could be inaccurate. So, that is 

the reason the input sources should be homogenous 

codes. Here, we explain the means to compute the 

asymmetric similarity metric for two different codes.  

 

3. ASYMMETRIC SIMILARITY MEASURE 

FOR CODE PLAGIARISM 
 

It is generally accepted that all kinds of evolu-

Fig. 1. A typical evolution graph of UNIX systems.

Vertical direction denotes the time lines from

1969 to 1987 (years). 
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tionary processes imply a direction for adaptation. 

Most previous work about plagiarism detection only 

focused on the means to compute the similarity 

between programs A and B in terms of global aspects. 

So, they try to answer these kinds of questions: “Is 

program A is similar to B? If so, how similar are 

they?” This simple symmetric approach does not give 

any clues on the question of whether A is derived from 

B or vice versa.  

But, in order to trace the evolutionary (plagiarism) 

history of a source code, the similarity measure must 

provide not only the degree of similarity, but also its 

direction. Here, this section explains the means to give 

a similarity measure with a direction, using the plain 

local alignment algorithm, which is a basic tool such 

as BLAST [20] for biological sequence (i.e., DNA, 

RNA, and protein) analysis. 

Since our method involves exploiting local 

alignment for two linear keyword sequences obtained 

from target programs, we must construct a 

representative linear sequence of keywords [3]. Let La 

and Lb be the linear sequences of keywords obtained 

from Pa and Pb, respectively. Then we can regard the 

linear sequence Lx of program keywords as the 

“DNA” sequence of program Px based on the analogy 

of the DNA sequence of a biological organism. There 

are several procedures for extracting the DNA of a 

program, but we do not consider this issue further in 

this paper. 

As mentioned previously, local alignment has been 

widely applied to finding a similar region in two 

linear strings [9]. Local alignment is also our basic 

framework of plagiarism detection. Every local 

alignment method has its own scoring matrix, which 

generally determines the means to compute the 

similarity thus locating the exact similar aligned 

region. 

The general local alignment algorithm uses a fixed 

scoring matrix (e.g., +1 denotes a match, –1 denotes a 

mismatch, and –2 denotes a gap insertion or deletion) 

which is a diagonally symmetric matrix [17]. The 

scoring matrix we used has two different features. 

First, our alignment scoring matrix is not symmetric, 

which implies that the matching score between two 

characters a and b is dependent on its direction. So, 

MatchScore(a,b) ≠ MatchScore(b,a). This enables us 

to evaluate asymmetric alignment scores. 

Second, our scoring matrix WD is adaptively 

constructed from the frequency of keywords in a 

program group D. Let D be a group of the functional-

equivalent programs such as a set of programs 

submitted for an assignment task. Let the normalized 

frequency of a keyword Ki be fi in D. For scoring 

matrix, we set –α · (log2 fi · fi) for matched keywords 

Ki, +β · (log2 fi · fi) for mismatched keywords, γ · log2fi 

for gap insertion, and δ for gap deletion, where α, β, γ, 

and δ are the control parameters for optimizing the 

detection performance. In summary, the scoring 

matrix can be defined as: 
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This adaptive scoring matrix implies that the 

insertion or the deletion of a frequent keyword does 

not have less weight than those of infrequent 

keywords, since we believe that infrequent terms or 

keywords in a programming language are more 

crucial to the functional aspects of programs [4]. 

Our experiment validated that our adaptive scoring 

matrix is more effective than a simple plagiarism 

technique such as inserting meaningless/dummy 

keywords. This adaptive scoring matrix ensures that 

the matching score (and mismatching penalty) of 

important keywords (keywords with the lowest 

frequency) is higher than that of frequent ones. As 

shown in Table 1, inserting an uncommon switch 

results in a penalty that is 4 times higher than for 

inserting abundant keywords such as ‘=’ and ‘{’. 

Table 1 clearly shows that the adaptive scoring 

matrix is entirely dependent on the characteristics of 

each program group. These four control parameters, α, 

β, γ, and δ, are determined empirically from several 

experiments. We expect that γ < δ, since it is more 

difficult to delete a keyword than to insert a keyword, 

without understanding the logical structure of a 

program to maintain the same function. Computing 

the optimal values for these four parameters is also an 

interesting problem. The tuning result is described in 

Section 5. Here, we propose an asymmetric similarity 

score, AsymScore( ) to compute the similarity of 

programs. 

Definition 1: AsymScore(Pa,Pb) is the score of a 

maximal local alignment using WD (the asymmetric 

scoring matrix) between two keyword strings of La 

and Lb that are obtained from the programs Pa and Pb. 

The evolutionary distance is defined in terms of the 

matching score AsymScore( ). Usually, the normalized 

Table 1. High/low frequency keywords in a program 

group submitted in ICPC 2006. The total 

number of keywords is 9993. 

Highest Frequency Lowest Frequency

“=” 14.00% “switch” 0.01% 

“{” 11.83% “-=” 0.02% 

“}” 11.83% “void” 0.02% 

“++” 6.76% “goto” 0.03% 

“if” 6.44% Bit OR “|” 0.03% 
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similarity of two programs Pa and Pb is defined by the 

ratio of the matching score of the aligned region to the 

maximum possible matching score. So we newly 

define Asym(Pa,Pb), which is a normalized 

asymmetric measure for the similarity of the program 

Pa and Pb based on Pb. 

( )

( )

( ) ( )
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It is clear that Asym(Pa,Pb) ~ [0,1]. Here, using the 

Asym( ) function, we can define the evolutionary 

distance as follows: 

( ) ( ), 1 , .a b a bEvolDist P P Asym P P= −  

EvolDist(Pa,Pb) can be considered as the estimated 

amount of manual work needed to transform program 

Pa into Pb by keyword insertion, deletion, and 

exchange, while maintaining the same functionality. 

We adjust four weighting constants α, β, γ, and δ for 

match, mismatch, insertion, and deletion, respectively, 

in order to maximize the success rate of the phylogeny 

inference. 

Our local alignment has two features that are 

different from the previous standard symmetric local 

alignment algorithm; (1) it uses an adaptive scoring 

matrix and (2) it attributes different weights for gap 

insertions and deletions in local alignment, thus, 

EvolDist(Pa,Pb) ≠ EvolDist(Pb,Pa) for two different 

programs Pa and Pb. So, it is quite natural to assume 

that Pb is derived from Pa if EvolDist(Pa,Pb) < 

EvolDist(Pb,Pa). This is the most important 

contribution of our paper to establishing the evolution 

of programs. So, we address the following claim. 

Claim 1: If EvolDist(Pa,Pb) < EvolDist(Pb,Pa) then 

we assert that it is more likely that Pb is plagiarized 

from Pa than Pa is plagiarized from Pb. 

The basic idea of our evolutionary analysis for 

source codes is that we try to construct a most likely 

evolutionary tree, using all pair-wise EvolDist(Pi,Pj) 

values. The correctness of this claim for evolutionary 

direction is tested and analyzed in Section 5. 

 

4. INFERRING ALGORITHM FOR 

PHYLOGENETIC TREE 

 

In order to reconstruct the phylogeny of source 

codes, two important data elements should be 

determined: (1) the similarity distance between two 

source codes and (2) the direction of the influence 

from one to the other, given two similar source codes. 

The similarity distance is described in Section 3, using 

the function EvolDist( ). 

The evolutionary direction can be determined 

directly and easily from the evolutionary distances. 

Given two programs Pa and Pb, we compute two 

asymmetric evolutionary distances EvolDist(Pa,Pb) 

and EvolDist(Pb,Pa). If EvolDist(Pa,Pb) < 

EvolDist(Pb,Pa), then it is reasonable to assert that Pb 

has evolved from Pa than the converse since 

EvolDist(Pa,Pb) indicates how easily Pb can be 

derived from Pa. We take the shorter of two 

evolutionary distances between the two source codes. 

The evolutionary direction is a natural result of this 

selection, for example, if EvolDist(Pa,Pb) is used, then 

Pb has evolved from Pa, in short .a bP P�  Note that 

the evolutionary distance can be zero, if two programs 

are identical and these cases can be easily excluded. 

Once the evolutionary directions and distances are 

computed, the evolutionary graph can be constructed. 

The phylogeny should be a subgraph of this 

evolutionary graph. After the evolutionary directions 

of all pairs of programs have been determined, we 

have a directed graph for which the undergraph is 

complete. We can define the phylogenetic tree as the 

minimum spanning tree of the undergraph without 

removing the directions of edges [5]. Once the 

phylogenetic tree has been obtained, it can be further 

improved by removing multiple entries. Since it is 

unnatural to assume that a program is derived from 

multiple programs, the multiple entries for a node are 

Algorithm 1: Phylogenetic Forest Construction 
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removed. As a result, the phylogenetic forest is 

obtained from the program evolutionary graph [6]. 

Algorithm 1 shows the steps of phylogenetic forest 

construction. 

Algorithm 1 reconstructs the phylogenetic forest T̂  

inferred from the given set of programs 1 2{ , ,V v v=  

, }.
n
v…  To summarize, the phylogenetic tree T is the 

minimum spanning tree of the undergraph G(V,E) 

where E is the set of edges for which the evolutionary 

distances are defined using M; and the phylogenetic 

forest T̂  is an improved phylogeny, obtained by 

removing multiple entries from T. Fig. 2 illustrates the 

entire step by step procedure in our phylogeny 

construction algorithm (Algorithm 1). 

 

5. EXPERIMENTS 

 

In order to evaluate the correctness of our 

phylogeny inferring algorithm, we tested our 

algorithm, using a set of artificially plagiarized 

programs. We collected 20 sets of programs. Each set 

contains one root program (the original code) and four 

other programs derived from it by 20 graduate 

students manually. In some groups, derived programs 

were constructed via sequential modifications such 

that 0 1 2 3 4.P P P P P A B� � � � �  denotes that 

program B was derived via modification of program A. 

Another test groups contain five programs, where 

{ } { }0 1 2 2 3 4, , , .P P P P P P� �  These derivation pro-

cedures can be completely described in a tree model, 

viz., phylogenetic tree. So we can construct the “true 

phylogenetic tree” for each group of artificially 

plagiarized codes. Here, we are ready to test the 

phylogenetic tree construction algorithm. 

The simplest criteria for evaluating the correctness 

of a phylogenetic tree is the count of the number of 

inversion tree edges. There is one correct (real) 

phylogenetic tree with five nodes and four directed 

edges, for each program group. Therefore, the total 

number of evolutionary edges in the 20 test groups 

should be 80. The inversion edge is defined as the 

directed edge with the wrong time direction. For each 

test program, the subscript t of Pt means the time-

index for program generation. This implies that the 

appearance time of P0 precedes that of P1, P2, P3, and 

P4; and P2 also precedes P3 and P4 etc. So, for a tree 

generated by our algorithm, if we obtaining a directed 

edge i jP P� , where i < j, then we consider this 

edge to be correct with respect to the evolutionary 

procedure. Otherwise, if we obtaing an edge i jP P�  

where i > j, then we call this edge an inversion edge 

or simply an “inversion.” Thus, the objective function 

for inferring the phylogenetic tree can be reduced to 

minimizing the number of inversion edges. 

 

5.1. Control parameter tuning for phylogenetic tree 

optimization 

The performance of local alignment is completely 

dependent on a few control parameters. So, prior to 

applying the phylogenetic tree generation algorithm, 

we must find the nearly optimized control parameters, 

to compute the asymmetric similarity. Since this 

problem is a kind of multi-variable, non-linear 

optimization, there is no sound optimization 

procedure for local alignment. 

In this work, we implemented a very simple method, 

sequential parameter optimization. We only consider 

three control parameters: α for the matching gain, δ 

for the gap insertion penalty, and γ for the gap 

deletion penalty (refer to Section 2). In this procedure, 

we fixed the penalty value for a mismatch β = 0.35, 

which was obtained empirically by experiments in the 

authors’ previous work [3,4]. 

The order of tuning parameters was α, δ, and γ. For 

each parameter, we tried to minimize the number of 

correctly inferred evolutionary edges by increasing the 

parameter value by a small unit amount. The 

(a) Step 1.         (b) Step 2.         (c) Step 3.         (d) Step 4.         (e) Step 5. 

Fig. 2. Step 1 shows the 10 given programs. Step 2 involves computing the bi-directional evolutionary distances 

between node a and b, which is represented by double edges. Step 3 involves selecting a more plausible

evolutionary edge. Step 4 involves constructing a minimal spanning tree in the under-graph of the directed 

graph given in (c). Step 5 involves applying our Spanning Forest Construction Algorithm to the minimal

spanning tree obtained in (d). In Step 5, this forest is the final output of this work. 
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parameter tuning result is shown in Fig. 3. Subsequent 

to tuning α, we tuned γ. And, with the previously 

determined values for α and γ, we tried to optimize δ. 

Via this sequence of optimization we finally obtained 

α = 0.65, δ  = 2.0, and γ = 7.2. 

 

5.2. Constructing program phylogeny 

Table 2 shows the basic statistics for the four test 

program groups. Four root (origin) source codes were 

selected from the source code submitted as correct 

solutions in ICPC 2006. In order to construct 

homogeneous groups, the origin source P1 is 

transformed into two different programs P2, P3, and 

one of P2 and P3 is selected and transformed again 

into other two programs P4 and P5. Therefore we 

could construct four evolution edges by this derivation, 

which could be a true edge set. 

By adopting the tuned parameters, our asymmetric 

measure could correctly infer about 67% of 

evolutionary directions, among 80 evolutionary direc-

tions. The estimation ratio differs according to the 

program group. For program group P01, P02, P03, 

and P04, 80%, 55%, 70%, and 55% of directions were 

correctly estimated, respectively. 

Fig. 4 shows some examples of phylogenetic trees 

of homogeneous test codes. In the phylogenetic tree, 

each node denotes the corresponding source code and 

the edge direction implies the evolutionary direction 

computed. The node labels of the tree in Fig. 4(a) 

denote the time index, in terms of the evolutionary 

procedure. The prefix of the node label denotes the 

ancestry of the program. For example, the program 

labeled 11 is evolved from the program labeled 1 and 

the program labeled 112 is evolved from the program 

labeled 11. In Fig. 4(a), it is clear that the evolutionary 

direction is completely correct; but in Figs. 4(b) and 

(c), there are some incorrect directions, which are 

denoted by dashed edges.  

The edge weight shown in Fig. 4 implies that the 

normalized evolutionary distance metric, and the 

distance ranges from zero (completely identical) to 

one (completely different).  

 

5.3. Application: Detecting code plagiarism  

We used the phylogeny construction algorithm to 

perform, plagiarism detection among source codes 

submitted in an International Collegiate Programming 

Contest (ICPC). Since the ICPC final competition 

took place in a highly secure environment, we did not 

find any plagiarized codes. Rather than just obtaining 

the final codes submitted, we obtained numerous 

homogenous codes (a set of tried codes that were 

submitted as a solution program to a designated 

contest problem). These homogenous test codes were 

successfully clustered and their sequence of 

(a) Optimizing parameter α. 

(b) Optimizing parameter γ. 

(c) Optimizing parameter δ. 

Fig. 3. Parameter tuned result α = 0.65, γ = 2.0, and 

δ = 7.2. 

Table 2. Test data for testing the correctness of in-

ferred phylogeny by the proposed algorithm.

Lines of Source Code 
Groups Codes Trees

Min Max µ σ 

P01 25 5 91 234 120.40 27.95

P02 25 5 39 110 86.20 17.81

P03 25 5 65 213 103.44 29.08

P04 25 5 72 227 111.20 30.36
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submission was successfully inferred by our algorithm.  

Since the preliminary round of every ICPC take 

place in a distributed environment, due to the huge 

number of participants, some plagiarism is likely to 

occur. So, every participant can access the contest 

problem and submit the solution programs from their 

home or university computer lab, or even from a 

commercial Internet cafe. So, since the preliminary 

round of ICPC is unmonitored by a supervisor, we 

expect a few cases of cheating (plagiarism) to occur 

during ICPC.  

Table 3 shows the entire set of test data (source 

code) obtained from ICPC. In the preliminary Internet 

competition of ICPC 2005: Problem-E, our 

asymmetric code similarity measure reported that 

there were eight program pairs with very high 

similarity scores. We manually investigated each pair 

of similar programs, then, we finally exposed real-

world code plagiarism, where the participants that 

cheated confessed that one student had sent the correct 

solution using an instant Internet messenger.  

Surprisingly, this year, in the ICPC 2007 final 

round, our algorithm detected one instance of Internet-

based cheating. One team had hacked the competition 

system (PC
2
, which was developed and released by 

IBM) using packet sniffing during the competition. 

The dishonest team modified the stolen code and 

submitted it to the judge. Our tool was quite 

successful in isolating such a group of dishonest 

students. 

 

6. APPLICATION: AUTOMATED  

EVALUATING SYSTEM FOR  

PROGRAMMING ASSIGNMENT WITH  

ANTI-PLAGIARISM FEATURES 

 

We developed a web-based automated Evaluating 

System for Programming Assignments (ESPA), which 

is actually used in introductory C/C++ and Java 

programming language courses in our department. 

This system executes the programs submitted by the 

students and evaluates them automatically, by compar-

ing the results of the students’ program with the 

correct solution given by the professor. The ESPA 

system also checks if there are suspected plagiarized 

program pairs after the submission dead-line is over. 

Fig. 5 shows an example of the submission tracking 

Fig. 4. Reconstructed evolutionary trees with plagia-

rized homogeneous codes: a correct phylog-

eny (a) and two incorrect phylogenies (b) and

(c). The tree node denotes a source code, and

an edge denotes the direction of evolution.

Edge labels denote the evolutionary dis-

tances. 

Table 3. Experimental codes for detecting program 

plagiarism by our algorithm. 

Group Programs Pairs Avg. Lines 

ICPC2004-B 48 2256 89.18 

ICPC2004-C 22 462 55.17 

ICPC2004-E 35 1190 44.44 

ICPC2005-A 153 23256 65.30 

ICPC2005-B 109 11772 67.49 

ICPC2005-E 38 1406 44.14 

ICPC2005-G 44 1892 47.60 

ICPC2006-A 180 32220 43.77 

ICPC2006-B 175 30450 54.29 

ICPC2006-C 157 24492 58.98 

 

Fig. 5. A screenshot of the Evaluating System for 

Programming Assignments. The submission 

time, the number of submission, and the 

score of each assignment are displayed. 
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page of ESPA and Fig. 6 shows an example of the 

plagiarism detection page of ESPA. 

Prior to using this plagiarism investigation system, 

we determined that around 5% of all enrolled students 

(60–80 for a class) seemed to have tried to cheat in 

their programming assignment by plagiarizing another 

person’s code. But, after notifying that ESPA would 

check for code plagiarism, the number of cheating 

students decreased dramatically, to nearly zero for a 

semester. Especially, we found that merely showing 

an evolutionary tree for the cheating program group to 

students was quite successful at determining dishonest 

behavior. We finally established that this kind of 

automated grading system with anti-plagiarism 

features is quite effective and efficient in introductory 

programming education.  

 

7. CONCLUSION 

 

In this paper, we proposed a phylogenetic forest 

generation algorithm based on bio-inspired local 

alignments. The local alignment algorithm is modified 

to generate an asymmetric similarity score for two 

source codes. According to the experimental results, 

the proposed algorithm is quite good at inferring 

evolutionary directions of programs. We summarize 

the main contributions of our work as follows: 

 

•  We proposed an evolutionary distance measure 

with a direction to infer the degree and direction 

of evolution among source codes.  

•  Our experiment showed that this measure 

archived more than 67% accuracy at recon-

structing the evolutionary direction among 

homogeneous codes. 

•  This result implies that our evolutionary 

measure can be successfully applied to detection 

of plagiarized pairs of programs among 

heterogeneous codes. 

•  So, our measure can be used to investigate 

cheating by dishonest students in a programm-

ing assignment. The authors have empirically 

confirmed that plagiarism detection and evalua-

tion analysis based on this work are very 

efficient and effective means to deter dishonest 

students. 

 

Bio-inspired evolutionary analysis can be widely 

exploited in numerous types of software analysis, 

such as code maintenance, source clustering, plagia-

rism detecting. Currently, we are developing an 

authorship analysis scheme based on the proposed 

phylogeny generation algorithm. We hope this type of 

evolutionary analysis for source codes will become an 

integral part of future digital forensic work. 
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