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Abstract

Random regular graphs play a central role in combinatorics and theoretical computer
science. In this paper, we analyze a simple algorithm introduced by Steger and Wormald
[10] and prove that it produces an asymptotically uniform random regular graph in a
polynomial time. Precisely, for fixed d and n with d = O(n1/3−ε), it is shown that the
algorithm generates an asymptotically uniform random d-regular graph on n vertices in
time O(nd2). This confirms a conjecture of Wormald. The key ingredient in the proof
is a recently developed concentration inequality by the second author.

The algorithm works for relatively large d in practical (quadratic) time and can be
used to derive many properties of uniform random regular graphs.

1 Introduction

One of the most important and interesting models for random graphs is the model of random
regular graphs. The study of this model has been pursued by a large number of researchers
for decades. Random regular graphs have been playing a crucial role in theoretical computer
science, especially in the theory of expanders. For instance, it is now known that a uniform
random d-regular graph has asymptotically the best possible expansion rate, namely, the
second eigenvalue of it is almost surely (2+o(1))

√
d, for any constant d (see [3]). For more

information, the reader is referred to a recent survey by Wormald [12], which contains lots
of results, questions, and more than one hundred references. Here and later, by graphs we
always mean simple graphs, that is, without loops and parallel edges.

Fix a pair of positive integers 1 ≤ d < n and let S(n,d) be the set of all simple d-regular
graphs on a set of n vertices. The uniform random d-regular graph Gn,d is obtained by
sampling with respect to the uniform distribution from S(n,d). The probability of each
simple d-regular graph is thus 1/|S(n,d)|. Since nd is twice the number of edges in Gn,d,
we always assume nd is even.

Despite an extensive study, a very fundamental, and perhaps practically the most impor-
tant, question concerning random regular graphs has not yet been answered in a satisfactory
way:
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Question. How do we generate a uniform random regular graph?

Besides its obvious practical importance, the above question is also critical from the theo-
retical point of view, as it is difficult to study properties of random regular graphs (or any
random objects) without knowing how to generate them.

By definition, the most straightforward method is making a list of all (simple) regular
graphs and then choosing one uniformly at random from the list. This, unfortunately, could
never be done in practice, as the number of regular graphs is huge (see Section 3 for an
asymptotic estimate).

A better approach is to follow the configuration model proposed by Bollobás [1], and
Bender and Canfield [2]. In order to generate a uniform random d-regular graph on n
vertices, we consider a family of n sets of size d. Each set may be regarded as a set of
d copies of each vertex. All together there are nd points, or nd copies of the vertices.
Draw a uniform random perfect matching on these copies and connect two vertices i and
j if the matching contains an edge consisting of copies of i and j. It is easy to see that
the resulting multigraph is d regular and the distribution, conditioned on the graph being
simple, is uniform. It is known that if d is a constant then the probability of being simple
is bounded by a positive constant, uniformly in n. This, however, is no longer true if d is
large, for instance logn or na, so that most of the time one gets a non-simple graph. More
precisely, it has been shown [12] that the probability is about exp(−d2

4 ) , which tends to 0
extremely fast in d. Even for a modest parameter such as d = 14, one, in expectation, has
to try e49 > 1020 times until he or she obtains a simple graph. This clearly rules out the
possibility of using this approach in practice unless d is very small. From the theoretical
point of view, the configuration model is not very useful if d À logn, as one has to beat the
failure probability exp(−d2

4 ). For more discussion about this point, we refer to Wormald’s
survey [12]. In [7], McKay and Wormald gave an algorithm with polynomial running time
which generates uniform random regular graph with degree d = O(n1/3). However, Steger
and Wormald [10] pointed out that this algorithm is rather complicated to implement.

For many practical and theoretical purposes, it is usually sufficient to generate random
d-regular graphs which are asymptotically uniform. After all, most statements we want to
prove about a random model are of an asymptotic nature. It has turned out that allowing
asymptotically uniform distributions makes the problem more feasible.

A natural way to generate an asymptotically uniform random regular graph is to use the
Markov chain technique. This was done by Jerrum and Sinclair [4], using their algorithm
for generating random perfect matchings in dense graphs. On the other hand, although
the algorithm is proved to be in P, its running time is Ω(n10), which is only theoretically
polynomial. Moreover, it seems to us that it is very hard to prove properties of random
regular graphs based on this algorithm.

More recently, a faster and very practical algorithm was analyzed by Steger and Wormald
[10], following an earlier work of Ruciński and Wormald [9]. This algorithm is a natural
refinement of the configuration model algorithm of Bollobás, and Bender and Canfield.
Again let us consider a set V of nd points which is the union of n disjoint sets of size d. We
want to construct a perfect matching which does not give rise to loops and parallel edges.
We achieve this by building the matching one edge at a time. First of all, we never pick
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an edge which creates a loop. Namely, we never pick an edge with both ends in the same
set of size d. Assume that a bunch of edges are picked. In the next step, we only pick an
edge which does not create a parallel edge, namely, we ignore all the edges connecting two
sets I and J after some i ∈ I and j ∈ J are connected for the first time. An edge is called
suitable if it creates neither a loop nor a parallel edge. When we pick an edge, we pick it
with respect to the uniform distribution over the set of all suitable edges. At the end, we
obtain a random perfect matching, which provides a simple, d-regular random graph. The
implementation of the algorithm is straightforward and its running time is only O(nd2) (see
[10]), which is sub-quadratic for d ¿ n1/2. The only matter here is the distribution of this
random graph.

Steger and Wormald [10] proved that if d = o(n1/28), then the distribution in question
is asymptotically uniform. Wormald [12] conjectured that the distribution is still asymp-
totically uniform for any d significantly less than n1/3.

The first purpose of this paper is to prove this conjecture. This way, we obtain a very
fast method to generate asymptotically uniform random regular graphs with degree up to
n1/3−ε, for any positive constant ε. Our result also has a considerable theoretical value,
as we can rely on the algorithm to prove many highly non-trivial properties of uniform
random regular graphs. In fact, it was shown, using a weaker version of this result, that
if logn ¿ d ≤ n1/3−ε, then the random regular graph Gn,d behaves very much like the
(non-regular) Erdős-Rényi’s random graph G(n,p) of the same density [6]. Among others,
it follows immediately that in this range of d, Gn,d almost surely contains a hamiltonian
cycle, since the Erdős-Rényi graph with density significantly larger than logn/n has this
property. The interested reader is referred to [6] for a precise statement.

The other purpose of the paper is to introduce a further application, via the proof,
of a recently developed concentration inequality by the second author [11] , which can be
applied for functions with large Lipchitz coefficients, a situation where standard tools such
as Azuma’s and Talagrand’s are ineffective. This concentration result plays a critical role
in the proof. We will partly follow the somewhat natural approaches in [10] and then use
the concentration result together with more sophisticated analysis.

In the whole paper, Pr denotes probability and E denotes expectation. 1X is the
characteristic function of the event X: 1X = 1 if X occurs and 1X = 0 otherwise. The
asymptotic notation is used under the assumption that n tends to infinity. All logarithms
have the natural base.

2 The algorithm and the result

Let N(d,n) be the number of d-regular graphs on n vertices. McKay and Wormald [8] have
shown that for d = o(n1/2)

N(d,n) =
(nd)!

(1
2nd)!2nd/2(d!)n

exp
(1−d2

4
− d3

12n
+O(

d2

n
)
)

Consider the set S(n,d) of all d-regular graphs on n points equipped with the uniform
distribution. The (uniform) probability of each graph in S(n,d) is pu = 1/N(d,n).

3



Let us now describe the algorithm:

Algorithm A.
(I) Start with a set U of nd points (nd even) partitioned into n groups of size d.
(II) Repeat the following until no suitable pair can be found. Choose two random points i
and j in U and if ij is suitable, pair i with j and delete them from U.
(III) Create a graph G with an edge from r to s if and only if there is a pair containing
points in the rth and sth groups. If G is regular, output it, otherwise return to step (I).

Throughout the paper, PrA(G) denotes the probability that the output of A is a par-
ticular graph G. In [10], Steger and Wormald analyzed the above algorithm and proved the
following theorem.

Theorem 2.1 If d = o(n1/28), then for every simple d-regular graph G on n vertices

PrA(G) = (1+o(1))pu.

Our goal is to extend the above result for larger d. We shall prove

Theorem 2.2 For any positive constant ε < 1/3 the following holds. For any d ≤ n1/3−ε

and any simple d-regular graph G on n vertices

PrA(G) = (1+o(1))pu.

The rest of the paper is devoted to the proof of Theorem 2.2. The next two sections
describe the main ideas of the proof. In particular, we shall state a series of properties
which imply Theorem 2.2 (see Section 4). The essential technical ingredient, the new large
deviation inequality, will be presented in Section 5. The remaining sections of the paper
are devoted to the proofs of the properties stated in Section 4.

3 Preliminaries

It is well-known (and easy to check) that for each d-regular graph G, there are exactly (d!)n

different simple perfect matchings on U which give rise to G. (A perfect matching is simple
if it gives rise to a simple regular graph.) So to prove Theorem 2.2, it suffices to show that
if d satisfies the assumption of the theorem, then for any simple perfect matching M

PrA(M) = (1+o(1))
(1
2nd)!2nd/2

(nd)!
exp

(d2−1
4

)
. (1)

Consider an ordering M = x1, . . . ,xnd/2 where xm are the edges of M . Assume that the
first m edges of M are obtained and let Gm(M) be the graph formed by the projection of
these edges. Thus Gm(M) is a subgraph of G. To count the number of suitable edges, notice
that there are

(
nd−2m

2

)
ways to form an edge. However, an edge is suitable if and only if it

does not join two vertices that come from the same group or two vertices that come from two
already adjacent groups. The number of edges of the first type is ∆[1]

m (M) =
∑

u

(
d−du

2

)
and

the number of unsuitable edges of the second type is ∆[2]
m (M) =

∑
u∼Gm(M)v

(d−du)(d−dv),
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where du is the degree of u in Gm(M). Set ∆m(M) = ∆[1]
m (M)+∆[2]

m (M). Then the number
of suitable edges is

(
nd−2m

2

)−∆m(M). It follows that

PrA(M) =
nd/2−1∏

m=0

1(
nd−2m

2

)−∆m(M)
. (2)

Set δ
[1]
m = 1

2(nd−2m)2 (d−1)
nd and δ

[2]
m = (nd−2m)2 m(d−1)2

n2d2 . It will be useful to think of δ
[i]
m

as a sort of expectation of ∆[i]
m with respect to a random choice of M. Define δm = δ

[1]
m +δ

[2]
m .

A routine, but somewhat tedious, calculation shows that for d = o(n1/3) (one may refer
Lemma 3.6 of [10] for the details)

nd/2−1∏

m=0

(
nd−2m

2

)
(
nd−2m

2

)−δm

= exp
(d2−1

4
+o(1)

)
. (3)

Also notice that
nd/2−1∏

m=0

(
nd−2m

2

)
=

(nd)!
2nd/2

. (4)

Define

f(M) =
nd/2−1∏

m=0

(
nd−2m

2

)−δm(
nd−2m

2

)−∆m(M)
.

Using (2, 3, 4), it is clear that to prove (1) it suffices to show

∑

M∈S(M)

f(M) = (1+o(1))(nd/2)!, (5)

where S(M) denotes the set of all orderings of the edges of M . Notice that S(M) has
exactly (nd/2)! elements, so (5) is equivalent to saying that the expectation of f(M) with
respect to the uniform distribution on S(M) is 1+o(1), that is,

E
(
f(M)

)
= 1+o(1). (6)

In [10], this is shown for d = O(n1/28). To prove (6) for d = o(n1/3), we shall show the
upper bound and the lower bound separately;

E
(
f(M)

)
≤ 1+o(1) (7)

and
E

(
f(M)

)
≥ 1−o(1). (8)

The proof of (7) is rather difficult and occupies most of the rest of the paper, including
Sections 3,4 and 5. The proof of (8) follows easily from a lemma developed for the proof of
(7) and is presented in Section 7.

The general idea for proving (7) is the following: we first partition S(M) into many
classes according to the order of magnitude of f(M). Next, we upper bound the measures
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of these classes with respect to the uniform distribution on S(M). There will be one main
class which contributes 1−o(1); all other classes together contribute o(1).

The partition is non-trivial and bounding the measures is not at all easy. We need
very strong tools and the key one is a recent concentration result, proved in [11]. This
result provides a very tight control on the deviation tail ∆m(M)−δm, where M is sampled
randomly from Ω(M). Consequently, we obtain a sufficiently good bound on the measures
of the classes in the partition.

4 Partition

Let ω = log0.01 n. Set λ0 = ω logn and λi = 2λi−1 for all i = 1,2, . . . ,L, where L is the
smallest integer such that λL ≥ cd2 logn, where c is a sufficiently large constant. For each
0 ≤ m ≤ nd/2, we will define a function Tm so that the sequence {Tm(λ0) < Tm(λ1) ≤ . . . ≤
Tm(λL)} satisfies certain properties. We first present the properties and then define Tm.

Let ε ≤ 1/3 be an arbitrarily small positive constant and let S∗(M) be the set of all
orderings M with ∆m(M) ≤ (1−ε/2)

(
nd−2m

2

)
for all m = 1,2, ...,nd/2. In order to prove

(6), we will show that

E
(
f(M)1S∗(M)

)
= 1−o(1). (9)

and
E

(
f(M)1S(M)\S∗(M)

)
= o(1), (10)

where the expectations are taken over the uniform random ordering of M .
Here and later 1S∗(M) is the characteristic function of the event M ∈ S∗(M): 1S∗(M) = 1
if M ∈ S∗(M) and 1S∗(M) = 0 otherwise. Similarly, 1S(M)\S∗(M) is the the characteristic
function of the event M∈ S(M)\S∗(M).

To bound the contribution of S∗(M), we partition S∗(M) as follows. For i = 1,2, . . . ,L,
let Ai be the set of all orderings M satisfying

∆m(M)−δm < Tm(λi) for all m,

and A∞ be the set of M such that there is some m such that ∆m(M)−δm ≥ Tm(∆L).
We further partition A0: For each j = 0,1,2, . . . ,K, where K is the smallest integer satisfying
2K ≥ λ0 logn+1, let Bj be the set of all orderings M ∈ A0 with ∆m(M) < 2j for all
m ≥ (nd−ωλ0)/2. Let C = B0. Then M∈ C yields ∆m(M) = 0 for all m ≥ (nd−ωλ0)/2
since ∆m(M) is a nonnegative integer. The desired properties of Tm are as follows.

Property 4.0 For all m,

Tm(λ0) ≤ λ0 logn ∀m ≥ (nd−ωλ0)/2.

This property implies that

∆m(M) ≤ Tm(λ0)+δm ≤ λ0 logn+δm,
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for M∈ A0 and m ≥ (nd−ωλ0)/2. Since A0 =
(
∪K

j=1 Bj

)
∪C, we have

S∗(M) = A∞∪
(
∪L

i=1 Ai \Ai−1

)
∪

(
∪K

j=1 Bj \Bj−1

)
∪C. (11)

For (9), let us consider

E
(
f(M)1S∗(M)

)
= E

(
f(M)1A∞

)
+

L∑

i=1

E
(
f(M)1Ai\Aj−1

)

+
K∑

j=1

E
(
f(M)1Bj\Bj−1

)
+E

(
f(M)1C

)
. (12)

We will show that E
(
f(M)1C

)
≤ 1+o(1) and the other terms are o(1). These estimates

are direct consequences of the following properties for the uniform random ordering of M :

Property 4.1 For all M∈ C, f(M) ≤ 1+o(1).

Property 4.2 (a) Pr(Ai \Ai−1) ≤ exp(−Ω(λi)), for all 1 ≤ i ≤ L
(b) f(M) ≤ exp(o(λi)) for M∈ Ai \Ai−1.

Property 4.3 (a) Pr(Bj \Bj−1) ≤ exp(−Ω(2j/2 logn)) for all 1 ≤ j ≤ K
(b) f(M) ≤ exp(O(23j/4)) for M∈ Bj \Bj−1.

Property 4.4 (a) Pr(A∞) ≤ exp(−5d2 logn),
(b) f(M) ≤ exp(4d2 logn) for all M∈ A∞.

Now we define the critical parameters Tm(a). The heart of the proof is to show that Tm(a)’s
satisfy certain properties that easily imply Properties 4.1-4.4.

Definition 4.5 First set qm = (nd−2m)/nd and pm = 1−qm for all m = 0,1, . . . ,nd/2−1.
Next, let

αm(a) = c
√

a(nd2q2
m +a2)(dqm +a)

βm(a) = c
√

a(nd3q2
m +a2)(d2qm +a)

γm(a) = c
√

a(nd3q3
m +a3)(d2q2

m +a2)
νm = 8nd3q3

m,

where c is a sufficiently large constant. Define

Tm(a) =

{
min

(
αm(a)+βm(a)+γm(a),αm(a)+βm(a)+νm

)
if nd−2m ≥ ωa

a2/ω otherwise
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Property 4.0 follows from the definition. The function Tm arises naturally from the large
deviation consideration in the next section. Technically speaking, Tm has been set so that
we can conveniently derive the large deviation parts, or parts (a), of Properties 4.2-4.4 from
a general concentration result. On the other hand, it turns out that this definition of Tm

does satisfy the second parts of the properties (see Section 5).

The proofs of the properties will be presented in the next two sections. These properties
together with (12) imply that E(f(M)1S∗(M)) ≤ 1+o(1). In Section 8, we prove (10) and
(7). The proof of (8) is presented in Section 7. This proof follows relatively easily from
certain estimates in Section 6.

5 Large deviation

In this section, we prove the large deviation part of Properties 4.2-4.4. The most difficult
proof is that of Property 4.2 and the vital tool for this proof is the following concentration
result, proved by the second author in [11]. This result refines an earlier result by the
authors in [5].

Consider independent random variables t1, . . . , tn with arbitrary distributions on the
interval [0,1]. For a polynomial Y = Y (t1, . . . , tn) of degree k and a multi-set A of size
at most k, ∂AY denotes the partial derivative of Y with respect to A. For instance, if
Y = t21t

2
2t3 + t54 and A1 = {1,2}, A2 = {1,1,3}, then ∂A1(F ) = 4t1t2t3 and ∂A2(F ) = 2t22,

respectively. If the set A is empty then ∂AY = Y . For all 0 ≤ j ≤ k, let

Ej(Y ) = max
|A|≥j

E(∂A(Y ))

be the maximum expectation of a partial derivative of order at least j of Y .

Theorem 5.1 Let Y be a polynomial of degree k with positive coefficients at most 1. For
any collection of positive numbers E0 > E1 > .. . > Ek = 1 and λ satisfying

• Ej ≥ Ej(Y )
• Ej/Ej+1 ≥ λ+4j logn, 0 ≤ j ≤ k−1,

the following holds
Pr

(
|Y −E(Y )| ≥

√
λE0E1

)
≤ 2e−Ω(λ),

where the constant in Ω(λ) depends on k.

In our present application, ti’s are i.i.d binary random variables and each monomial
in the polynomials of interest is a product of distinct ti’s. While partial derivatives are
convenient to use symbolically, the reader could also interpret the quantities Ej(Y ) in a
combinatorial way as follows. For j ≥ 1, Ej(Y ) is the maximum average effect of a group
of at least j atom variables. In other words, changing the value of any group of at least j
variables would change Y , in expectation with respect to the random variables outside the
group, by at most Ej(Y ).

The crucial advantage of Theorem 5.1 is that the average effects are usually much less
than the maximum effect (or maximum martingale difference) one needs to consider when
apply an Azuma type inequality. This advantage thus enables us to often derive a tighter
concentration result, compared to what one has from Azuma’s. (It would be useful for
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the reader to try to use Azuma’s inequality instead of Theorem 5.1 and see what he or
she obtains.) Theorem 5.1 and many variants are discussed in details in [11], which also
contains a variety of applications.

Since a sum of independent random variables can be seen as a polynomial of degree one,
one can also view Theorem 5.1 as an extension of Chernoff’s bound.

5.1 Proof of Property 4.2, part (a)

We need to show

Pr(Ai \Ai−1) ≤ exp(−Ω(λi)).

Since λi = 2λi−1, Tm(λi) ≤ 8Tm(λi−1) by definition. Given the definition of the set Ai

and the fact that λi À logn, it suffices to prove the following two lemmas

Lemma 5.2 For any m such that nd−2m ≥ ωλi

Pr
(
∆m(M)−δm ≥ 1

8
min

(
αm(λi)+βm(λi)+γm(λi),αm(λi)+βm(λi)+νm

))
≤ exp(−Ω(λi)).

Lemma 5.3 For any m such that nd−2m < ωλi

Pr
(
∆m(M) ≥ λ2

i /4ω
)
≤ exp(−Ω(λi)). (13)

Part (a) of Property 4.4 also follows instantly from Lemma 5.2 by adjusting the constant
c in the definition of λL.

Proof of Lemma 5.2 It is more convenient to consider the following model: Gpm is the
random subgraph of G = Gnd/2(M) obtained by keeping each edge of G with probability
pm = 2m/nd, independently. A standard calculation shows that with probability at least
1/nd, Gpm has exactly m edges. Since λi À lognd, to prove the lemma, it suffices to show
that for each m

PrGpm

(
∆m(M)−δm ≥ 1

8
min

(
αm(λi)+βm(λi)+γm(λi),αm(λi)+βm(λi)+νm

))
≤ exp(−Ω(λi)).

(14)
Till the end of this proof, we fix m and i and ignore the subscripts i and m in all other
relevant quantities; Pr means PrGpm

, and λ means λi.
Notice that δ has been defined (on purpose) to be exactly the expectation of ∆(Gp) (and

δ[1], δ[2] the expectations of ∆[1](Gp),∆[2](Gp), respectively). Therefore, (14) is a corollary
of the following fact

Lemma 5.4 We have

Pr
(
∆[1](Gp)−E(∆[1](Gp)) ≥ α/8

)
≤ exp(−Ω(λ)) (15)

Pr
(
∆[2](Gp)−E(∆[2](Gp)) ≥ min(

β+γ

8
,
β+ν

8
)
)
≤ exp(−Ω(λ)).
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For each edge e of G, define a random variable te as follows: te = 1 if e is not chosen
in Gp and 0 otherwise. Obviously, the te’s are i.i.d. binary random variables with mean
q = qm = (nd−2m)/nd. Clearly,

∆[1] =
1
2

∑
u

∑
e3u,f3u

e6=f

tetf .

First, we have E(∆[1]) ≤ 1
2nd2q2; there are n choices for u, each u provides at most(

d
2

)
< d2/2 pairs e,f and each product tetf has expectation q2. Next, for each te, ∂te∆[1] =∑

f :f∩e 6=∅,f 6=e tf ; there are 2(d−1) < 2d terms in the sum, so the expectation of a partial
derivative of order 1 is less than 2dq. Finally, any partial derivative of order 2 of ∆[1] is 0
or 1. So

E0(∆[1]) ≤ max(
1
2
nd2q2,2dq,1), E1(∆1) ≤ max(2dq,1)

and E2(∆[1]) = 1. Now set E0 = nd2q2+2λ2, E1 = 2dq+λ and E2 = 1. Since λ À logn, it is
easy to show that the conditions of Theorem 5.1 are satisfied. On the other hand, setting the
constant c in Definition 4.5 large enough, one can guarantee that

√
λE0E1 ≤ α/8. Theorem

5.1 yields

Pr
(
|∆[1](Gp)−E(∆[1](Gp))| ≥ α/8) ≤ Pr

(
|∆[1](Gp)−E(∆[1](Gp))| ≥

√
λE0E1

)

≤ exp(−Ω(λ)),

completing the proof of (15).
For the proof of the second statement, we need to verify the following two inequalities

Pr
(
∆[2](Gp)−E(∆[2](Gp)) ≥ β+γ

8

)
≤ exp(−Ω(λ)). (16)

and
Pr

(
∆[2](Gp)−E(∆[2](Gp)) ≥ β+ν

8

)
≤ exp(−Ω(λ)). (17)

Consider the set X of all triples (e,g,f) where e,g,f are edges of G and they (in this order)
form a path of length 3 in G. A short consideration shows that ∆[2] =

∑
u∼Gpv(d−du)(d−dv)

can be expressed as ∑

(e,g,f)∈X

tetf (1− tg) = Y1−Y2,

where Y1 =
∑

(e,g,f)∈X tetf and Y2 =
∑

(e,g,f)∈X tetf tg. (Cf. Lemma 3.5 of [10]). A routine
argument (similar to the one presented for ∆[1]) shows that E0(Y1) ≤ max (nd3q2,2d2q,1)
and E1(Y1) ≤ max(2d2q,1). Set E0 = nd3q2+2λ2, E1 = 2d2q+λ and verify that they satisfy
the conditions of Theorem 5.1. By adjusting the constant c in Definition 4.5, we can assume
that

√
λE0E1 ≤ β/8 (where λ is the constant in Theorem 5.1). Theorem 5.1 yields

Pr
(
|Y1−E(Y1)| ≥ β/8

)
≤ Pr

(
|Y1−E(Y1)| ≥

√
λE0E1

)

≤ exp(−Ω(λ)). (18)

For Y2, one can show that E0(Y2) ≤ max(nd3q3,2d2q2,dq, 1), E1(Y2) ≤ max(2d2q2,dq,1)
and E2(Y2) ≤ max(dq,1). We define E0 = nd3q3 +3λ3, E1 = 2d2q2 +2λ2 and E2 = dq+λ

10



and verify the conditions in Theorem 5.1. Again by adjusting the constant c in Definition
4.5, we can assume that

√
λE0E1 ≤ γ/8 (where is the constant in Theorem 5.1). Similarly

to (18), we have

Pr
(
|Y2−E(Y2)| ≥ γ/8

)
≤ Pr

(
|Y2−E(Y2)| ≥

√
λE0E1

)

≤ exp(−Ω(λ)). (19)

(18) and (19) imply (16); (17) follows from (18) and the following simple observation

∆[2]−E(∆[2]) ≤ |Y1−E(Y1)|+E(Y2)
≤ |Y1−E(Y1)|+nd3q3

= |Y1−E(Y1)|+ν/8

Our proof of Lemma 5.3 is thus completed. ¤

Proof of Lemma 5.3. In this lemma, nd−2m is small so that Gp is very dense. Consider
its complement Gq. Let N0(u) = NGp(u)∪{u}. Then

∆(Gp) ≤
∑

u

dGq(u)
∑

v∈N0(u)

dGq(v).

If ∆(Gp) ≥ λ2/4ω then one of the following should hold

Gq has more than
1
4
ω2λ edges (20)

For some u,
∑

v∈N0(u)

dGq(v) ≥ λ/ω3. (21)

The probability that (20) holds is at most
(

nd/2
1
4ω2λ

)
q

1
4
ω2λ ≤

(2end

ω2λ
q
) 1

4
ω2λ

. (22)

Recall that q ≤ ωλ/nd; it follows that the right hand side in (22) is at most

exp(−1
4
ω2λ) = exp(−Ω(λ)) (23)

For (21), notice that there are at most d2 edges in G that contain at least one vertex in
N0(u), and each edge contributes at most two in the sum

∑
v∈N0(u) dGq(v). In particular,

Pr(
∑

v∈N0(u)

dGq(v) ≥ λ/ω3) ≤
(

d2

λ/2ω3

)
qλ/2ω3

≤ n
( ed2

λ/2ω3
q
)λ/2ω3

≤ n
(2edω4

n

)λ/2ω3

≤ exp(−Ω(
λ

ω3
logn))

= exp(−Ω(λ)), (24)

as we have chosen ω ¿ log1/3 n. ¤

11



5.2 Proof of Properties 4.3 and 4.4, parts (a)

This proof is more or less identical to the proof of Lemma 5.3. Again we omit the sub-index
m, but let us remark that we are interested in only those m in the range nd−2m ≤ ωλ0.
Since ωλ0 = ω2 logn ¿ log2 n, there are only o(log2 n) such indices. Therefore, it is enough
to prove the bound for each individual m.

Similarly to (20) and (21), if ∆(Gp) ≥ 2j−1 then one of the following should hold

Gq has more than 2j/2/2 edges

For some u,
∑

v∈N0(u)

dGq(v) ≥ 2j/2.

The rest of the proof can be easily worked out along the lines of (22, 23, 24). ¤
By repeating the proof of Property 4.2 for the special case i = L, we have that

Pr(A∞) ≤ exp(−Ω(λL)) = exp(−Ω(c̄d2 logn)).

where c̄ is the constant in the definition of λL. The hidden constant in Ω does not depend
on c̄, so by setting c̄ sufficiently large, we can have Ω(cd2 logn)) ≥ 5d2 logn and

Pr(A∞) ≤ exp(−5d2 logn),

as claimed. ¤
Remark. In fact, by increasing c̄ we can have that

Pr(A∞) ≤ exp(−ad2 logn),

for any constant a. This fact will be important in the proof of (10).

6 Bounds

In this section, we prove the second half of Properties 4.1, 4.2, 4.3 and 4.4. All the proofs
here are quite elementary and are presented here for the sake of completeness.

Recall

f(M) =
nd/2−1∏

m=0

(
1+

∆m(M)−δm(
nd−2m

2

)−∆m(M)

)
.

Since
(
nd−2m

2

) ≥ (1−ε/2)−1∆m(M) for M∈ S∗(M), we have

f(M) ≤
nd/2−1∏

m=0

(
1+

(3/ε)max(∆m(M)−δm,0)
(nd−2m)2

)
. (25)

12



6.1 Property 4.2, part (b)

It is sufficient to show that for any M∈ Ai

nd/2−1∑

m=0

max(∆m(M)−δm,0)
(nd−2m)2

= o(λi)

To this end, we omit the sub-index i and use the short hand g(m) for max(∆m(M)−δm,0)
(nd−2m)2

.

Since g(m) = O(1) for any m,
∑λ/ω1/2

nd−2m=2 g(m) = o(λ), so we only have to consider the
sub-sum starting from nd−2m = λ/ω1/2. Notice that the numerator in g(m) is at most
Tm(λ), so due to the definition of Tm(λ) we have

nd∑

nd−2m=λ/ω1/2

g(m) ≤
ωλ∑

nd−2m=λ/ω1/2

λ2

ω(nd−2m)2
+

ωλ2∑

nd−2m=ωλ

αm(λ)+βm(λ)+νm

(nd−2m)2
+

nd/2∑

nd−2m=ωλ2

αm(λ)+βm(λ)+γm(λ)
(nd−2m)2

. (26)

To bound the three sums on the right hand side, we require a series of elementary estimates,
presented below. The need for these estimates will be justified in the rest of the proof. In
the following we use the fact that qm = (nd−2m)/nd

nd∑

nd−2m=2

(λnd3q3
m)1/2

(nd−2m)2
=

λ1/2

n

nd∑

nd−2m=2

1√
nd−2m

= O
(λ1/2

n

∫ nd/2

x=2

1√
x

∂x
)

= O
(λ1/2

n

√
nd

)
. (27)

nd∑

nd−2m=2

λ(nd2q2
m)1/2

(nd−2m)2
= O

( λ

n1/2

nd∑

nd−2m=2

1
nd−2m

)

= O
( λ

n1/2
lognd

)
(28)

nd∑

nd−2m=2

(λ3dqm)1/2

(nd−2m)2
= O

(λ3/2

n1/2

nd∑

nd−2m=2

1
(nd−2m)3/2

)

= O
(λ3/2

n1/2

)
(29)

nd∑

nd−2m=ωλ

λ2

(nd−2m)2
≤ λ2

∫ nd

x=ωλ
x−2 = o(λ). (30)

(27, 28, 29) imply the next three estimates, respectively.

13



nd∑

nd−2m=2

(λnd5q3
m)1/2

(nd−2m)2
= O

(
λ1/2

√
d3

n

)
(31)

nd∑

nd−2m=2

λ(nd3q2
m)1/2

(nd−2m)2
= O

(
λ

d1/2 lognd

n1/2

)
(32)

nd∑

nd−2m=2

(λ3d2qm)1/2

(nd−2m)2
= O

(λ3/2d1/2

n1/2

)
(33)

Furthermore,
nd∑

nd−2m=2

(λ3nd3q3
m)1/2

(nd−2m)2
O

(
λ3/2

√
d

n

)
(34)

by (27), and

nd∑

nd−2m=2

λ2dqm

(nd−2m)2
= O

(λ2

n

∑ 1
nd−2m

)

= O
(λ2 logn

n

)
(35)

nd∑

nd−2m=wλ2

λ3

(nd−2m)2
= O

(
λ3

∫ ∞

wλ2

x−2∂x
)

= O
( λ3

ωλ2

)
= o(λ) (36)

wλ2∑

nd−2m=2

nd3q3
m

(nd−2m)2
=

wλ2∑

nd−2m=2

nd−2m

n2
= O

(ω2λ4

n2

)
. (37)

Important remark. Notice λ ≤ λL = O(d2 logn), so for d = o(n1/3/ω1/3 log1/2 n) the
right most formula in (27)-(37) is o(λ). In fact, only in (37) we need this bound on d. The
stronger assumption d ≤ n1/3−ε is required only for an estimate in Section 8.

Due to the basic inequality
√

A+B ≤ √
A+

√
B for any two non-negative numbers A

and B, we have

αm(λ) = O
(
(λnd3q3

m)1/2 +λ(nd2q2
m)1/2 +(λ3dqm)1/2 +λ2

)

βm(λ) = O
(
(λnd5q3

m)1/2 +λ(nd3q2
m)1/2 +λ(λd2qm)1/2 +λ2

)

γm(λ) = O
(
(λ(nd5q5

m)1/2 +(λ3nd3q3
m)1/2 +(λ4d2q2

m)1/2 +λ3
)
.
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It follows from (27, 28, 29, 30) that

nd/2∑

nd−2m=ωλ

αm

(nd−2m)2
= o(λ). (38)

Similarly, it follows from (30, 31, 32, 33) that

nd/2∑

nd−2m=ωλ

βm

(nd−2m)2
= o(λ). (39)

Notice that in (38, 39), the sum start from ωλ. We need the bound nd−2m ≥ wλ2 only
for γ (see (36)). Using (34, 35, 36), we have that

nd/2∑

nd−2m=ωλ2

γm

(nd−2m)2
= o(λ). (40)

(38, 39, 40) shows that last sum of (26) is o(λ). To handle the second sum, given (38) and
(39), we need only show

ωλ2∑

nd−2m=ωλ

νm

(nd−2m)2
= o(λ).

This follows trivially from (37) and the fact that we can set ω so that ω2λ3 = o(n2).

Clearly, the first sum of (26) is O(λ2

w
ω1/2

λ ) = o(λ), which completes the proof. ¤

6.2 Property 4.1

By the definition of the set C,
∑ωλ0

nd−2m=2 g(m) = 0. It remains to show that if ∆m(M)−
δm ≤ Tm(λ0) for all m such that nd−2m ≥ ωλ0 then

nd/2∑

nd−2m=ωλ0

g(m) = o(1).

Clearly it is sufficient to prove that

nd/2∑

nd−2m=ωλ0

Tm(λ0)
(nd−2m)2

= o(1). (41)

The proof of this is similar to the proof in the previous subsection, with a slight modi-
fication. Instead of (36) and (37), we shall use

nd∑

nd−2m=wλ3
0

λ3
0

(nd−2m)2
= O

(
λ3

0

∫ ∞

wλ3

x−2∂x
)

= O
( λ3

0

ωλ3
0

)
= o(1)
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wλ3
0∑

nd−2m=2

nd3q3

(nd−2m)2
=

∑ (nd−2m)
n2

= O
(ω2λ6

0

n2

)
= o(1),

respectively. In all other estimates, the right most formula is o(1) for λ = λ0. We invite the
reader to work out the rest of the proof. ¤

6.3 Properties 4.3 and 4.4 , parts (b)

By the definition of the set Bj ,

ωλ0∑

nd−2m=2

g(m) ≤
ωλ0∑

nd−2m=2

2j

(nd−2m)2
≤ 2j ,

completing the proof. ¤
Part (b) of Property 4.4 was proved in [10].

7 Proof for the lower bound

In this section we prove (8). Due to (13, 18, 19)

Pr
(
|∆m−δm| ≥ αm(λ0)+βm(λ0)+γm(λ0)

)
= o(1) (42)

(recall δm = 1
2(nd−2m)2 (d−1)

nd +(nd−2m)2 m(d−1)2

n2d2 ), for all m such that nd−2m ≥ ωλ0.
Consider an ordering M where |∆m− δm| ≤ αm(λ0)+βm(λ0)+γm(λ0) for these m. We
have

f(M) ≥
nd∏

nd−2m=ωλ3
0

(
1−(3/ε)

αm(λ0)+βm(λ0)+γm(λ0)
(nd−2m)2

)

×
nd−2m=ωλ3

0∏

nd−2m=2

(
1−(3/ε)

δm

(nd−2m)2
)

(43)

Part of the proof of (41) shows that
∑nd

nd−2m=ωλ3
0

αm(λ0)+βm(λ0)+γm(λ0)
(nd−2m)2

= o(1). This
implies that the first product is 1−o(1). The second product is also 1−o(1) since δm =
O

(
(nd−2m)2( 1

n + m
n2 )

)
and ωλ0 = o(log2 n). These together with (42) yield that

E(f(M)) ≥ 1−o(1), (44)

completing the proof. ¤
Remark. The proofs in this and the previous sections yield the following corollary, which
will be useful in the next section.
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Corollary 7.1 By setting the constant c̄ in the definition of λL sufficiently large, we have

E
(

exp
(10

ε2

nd/2−1∑

m=0

max(∆m−δm(M),0)
(nd−2m)2

))
= 1+o(1). (45)

In fact, 10
ε2 can be replaced by any constant.

To prove (45), it suffices to notice the following:

• In the proofs of the (b) part of the Property 4.2, we actually bound

exp(
nd/2−1∑

m=0

max(∆m−δm(M),0)
(nd−2m)2

)

instead of f(M). We first upper bound f(M) by
∏nd/2−1

m=0

(
1+ (3/ε)max(∆m(M)−δm,0)

(nd−2m)2

)

(see (25)). Next, we upper bound this product by

exp
(
(3/ε)

nd/2−1∑

m=0

max(∆m−δm(M),0)
(nd−2m)2

)
.

Then we actually prove that the sum in the exponent is o(λi). This, together with
the (a) part of Property 4.2, implies that the contribution of the sets Ai\Ai−1 in
the expectation in (45) is o(1). The extra factor 10/ε2 does not really matter since
10/ε2×o(λi) is still o(λi).

• Similarly, one can show that the contribution from the sets Bi\Bi−1 is also o(1) and
the contribution from C is 1+o(1). Here the factor 10/ε2 is swallowed by the extra
logn term in the (a) part of Property 4.3.

• To bound the contribution from A∞, it is not enough to use the stated bounds in
Property 4.4, because of the extra factor 10/ε2. To handle this extra factor, we
invoke the remark at the end of subsection 5.3. This remark allows us to replace the
bound exp(−5d2 logn) in part (a) of Property 4.4 by exp(−50

ε2 d2 logn). Following the
proof of the (b) part of this property we have that

exp
(10

ε2

nd/2−1∑

m=0

max(∆m−δm(M),0)
(nd−2m)2

)
≤ exp(

40
ε2

d2 logn).

Thus, the contribution of A∞ is at most exp(−50
ε2 d2 logn+ 40

ε2 d2 logn) = o(1).

8 Proof of (10)

Let us recall the definition of S∗(M): S∗(M) is the set of all orderings M with ∆m(M) ≤
(1−ε/2)

(
nd−2m

2

)
for all m = 1,2, ...,nd/2, where ε is an arbitrarily small positive constant.

We assume that d ≤ n1/3−ε. In this section, we deal with the set S(M)\S∗(M) which
contains those M where the condition ∆m(M) ≤ (1−ε/2)

(
nd−2m

2

)
is violated for some m.
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It is known ([10] p.383) and not hard to prove that

∆m(M) ≤ d2(nd−2m)/2.

In particular, if nd−2m ≥ (1−ε/2)−1d2 +1, then ∆m(M) ≤ (1−ε/2)
(
nd−2m

2

)
. Thus, the

condition ∆m(M) ≤ (1−ε/2)
(
nd−2m

2

)
could be violated only when m is relatively close to

nd/2, namely, m ≤ nd/2− (1−ε/2)−1d2. Let Si(M), i = 1, ...,(1−ε/2)−1d2, be the set of
all orderings M of M such that

∆m(M) ≤ (1−ε/2)
(

nd−2m

2

)
∀ m < nd/2− i

and

∆m(M) > (1−ε/2)
(

nd−2m

2

)
for m = nd/2− i.

Since
∑∞

i=1 n−εi = o(1), in order to prove (10), it suffices to show that

E(f(M)1Si) ≤ (1+o(1))n−εi for all i = 1, ...,(1−ε/2)−1d2.

Notice that
(
nd−2m

2

)−∆m(M) is at least nd/2−m, for nd/2−m edges in M remain to
be selected. This yields (

nd−2m
2

)
(
nd−2m

2

)−∆m(M)
≤ nd−2m

and hence
nd/2−1∏

m=nd/2−i

(
nd−2m

2

)
(
nd−2m

2

)−∆m(M)
≤ 2ii! ≤ 2ii,

where the last inequality 2ii! ≤ 2ii can be verified by induction. Moreover, the fact that
∆m(M) ≤ (1−ε/2)

(
nd−2m

2

)
for all m < nd/2− i yields

nd/2−i−1∏

m=0

(
nd−2m

2

)−δm(
nd−2m

2

)−∆m(M)
=

nd/2−i−1∏

m=0

(
1+

∆m(M)−δm(
nd−2m

2

)−∆m(M)

)

≤ exp
(5

ε

nd/2−i−1∑

m=0

max(∆m(M)−δm,0)
(nd−2m)2

)
.

Therefore,

f(M)1Si = 1Si

nd/2−1∏

m=0

(
nd−2m

2

)−δm(
nd−2m

2

)−∆m(M)

≤ 2ii1Si exp
(5

ε

nd/2−i−1∑

m=0

max(∆m(M)−δm,0)
(nd−2m)2

)
,

and Hölder’s inequality gives

E(f(M)1Si) ≤ 2iiE
(
1Si exp

(5
ε

nd/2−i−1∑

m=0

max(∆m(M)−δm,0)
(nd−2m)2

))

≤ 2iiE(1Si)
1−ε/2E

(
exp

(10
ε2

nd/2−i−1∑

m=0

max(∆m(M)−δm,0)
(nd−2m)2

))ε/2
.
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Since (45) gives

E
(

exp
(10

ε2

nd/2−i−1∑

m=0

max(∆m(M)−δm,0)
(nd−2m)2

))ε/2
= 1+o(1),

we only need to show that

2iiPr(Si)1−ε/2 ≤ (1+o(1))n−εi.

Let m = nd/2− i and Γ(u) = ΓM,m(u) be the set of all neighbors of u (excluding u) in the
graph generated by first m edges of M. Since

∆m(M) =
1
2

∑
u

(d−du)
∑

v∈Γ(u)∪{u}
(d−dv−1{u=v})

and (
nd/2−m

2

)
=

1
2

∑
u

(d−du)
∑

v

(d−dv−1{u=v}),

∆m(M) > (1−ε/2)
(
nd/2−m

2

)
implies that there is a vertex u with d−du > 0 such that

∑

v∈Γ(u)∪{u}
(d−dv−1{u=v}) ≥ (1−ε/2)

∑
v

(d−dv−1{u=v}),

or equivalently
∑

v 6∈Γ(u)∪{u}
(d−dv) ≤ ε

2

∑
v

(d−dv−1{u=v})

=
ε

2
(nd−2m−1) ≤ εi. (46)

Notice that du = |Γ(u)| and d−du > 0 means |Γ(u)| < d. Moreover, any of the last i edges
of M that is not entirley in Γ(u) contributes at least 1 in the first sum of (46). Hence
the number of such edges is at most εi, or all but at most εi of the last i edges of M are
entirely in Γ(u). Let j = d−|Γ(u)| and l be the number of edges entirely in Γ(u). Then it
is required that j ≥ 1 and l ≥ (1−ε)i. The probability that d−du > 0 and (46) without
the two middle steps occur for a (fixed) vertex u is upper bounded by

∑

j≥1

∑

l≥(1−ε)i

(
d
j

)((d−j
2 )
l

)(nd/2−d−(d−j
2 )

i−j−l

)
(
nd/2

i

) ,

and hence

Pr(Si) ≤ Pr
(
∃such a u

)
≤ n

∑

j≥1

∑

l≥(1−ε)i

(
d
j

)((d−j
2 )
l

)(nd/2−d−(d−j
2 )

i−j−l

)
(
nd/2

i

) .

Using (
d

j

)
≤ dj

j!
,

((
d−j
2

)

l

)
≤ (d2/2)l

l!
,
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(
nd/2−d−(

d−j
2

)

i−j− l

)
≤ (nd/2)i−j−l

(i−j− l)!

and, as i = O(d2) = o((nd)1/2),
(

nd/2
i

)
= (1+o(1))

(nd/2)i

i!
,

we have that

Pr(Si) ≤ (1+o(1))n
∑

j≥1

∑

l≥(1−ε)i

(
i

j l

)( 2d

nd

)j( d2

nd

)l

= (1+o(1))n
∑

j≥1

∑

l≥(1−ε)i

(
i

j l

)( 2
n

)j(d

n

)l
,

where
(

i
j l

)
= i!

j!l!(i−j−l)! . Since the summand decreases at least geometrically in the ratio
O(id/n) = o(1) as j or l increases, the last double sum asymptotically equals the (first)
term with j = 1 and l = (1−ε)i. So

Pr(Si) ≤ (2+o(1))i
(

i−1
(1−ε)i

)(d

n

)(1−ε)i
.

Since ε ≤ 1/3, we have
(

i−1
(1−ε)i

)(d

n

)(1−ε)i
≤ 2i−1

(d

n

)(1−ε)i
≤

(23/2d

n

)(1−ε)i
,

which together with i ≤ (1−ε/2)−1d2 and d ≤ n1/3−ε implies that

2iiPr(Si)1−ε/2 ≤ (4+o(1))i
( d2

1−ε/2

(23/2d

n

)(1−3ε/2))i

≤ (4+o(1))i
( 23/2

1−ε/2
n1−3ε−(1−3ε/2)

)i

≤ (1+o(1))n−εi,

completing the proof. ¤

9 Remarks and Open Questions

To start this section, we would like to make some remark concerning the sharpness of our
analysis. The assumption d ¿ n1/3 was used at two places. The first is in the proof of (37)
(see the remark in Section 6), where we need to assume that d = o(n1/3/ log1/2 n). The
second place is the end of the proof of (10) (see the last paragraph of Section 8), where
we need to assume that d ≤ n1/3−ε. Our feeling is that the arguments in Section 8 are
somewhat more flexible, so there might be a chance to improve the calculation here. On the
other hand, improving the analysis in Section 6 seems like a bigger challenge. Thus, while
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we think that our current analysis might be tightened to yield a slightly better bound, say
d ≤ n1/3/polylogn, we do not see how one can obtain d ≤ n1/3+ε.

The next, and natural issue is whether one could really expect the bound d ≤ n1/3+ε

from by the proposed algorithm (Algorithm A). Wormald [12] conjectures that n1/3 may
be the right threshold for this algorithm. Except Jerrum-Sinclair result (mentioned in the
introduction) there is no other result, as far as we know, about generating random regular
graphs with degree larger than n1/3.

In many cases (in both theory and practice), one would be satisfied with a random sample
whose probability is comparable to the uniform probability. In other words, the distribution
is not uniform, but has a constant torsion factor. Technically, we want PrA(G)/pu = Θ(1)
for any d-regular graph G. In fact, it is already useful to have PrA(G)/pu = Θ(1) for most
d-regular graphs G. The formal question we would like to pose is:

Question. For which d does PrA(G)/pu = Θ(1) hold for all d-regular graph G on n vertices,
with a possible exception of a set of measure o(1).

Finally, the random graphs created by Algorithm A, regardless their distribution, form
a quite reasonable model for random regular graphs. The study of this model has been
suggested by several researchers [9, 12]. In a recent paper [6], the present authors proved
that random graphs created by Algorithm A behave very much like Erdős-Rényi graphs
G(n,p) of the same density, for all logn ¿ d ¿ n1/3/ log2 n. By comparing with Erdős-
Rényi graphs, one can easily compute several parameters (such as the chromatic number)
of the random graphs in the new model.
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