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Abstract 
Simulation based on standard models is often used 

as part of the engineering design process to test 

theories and exercise new concepts before actually 

placing them into operation.  In order to tackle the 

problem of likely widespread catastrophic failures of 

electric power grids, an autonomously reconfigurable 

power system will have to rely on wide-area 

communication systems, networked sensors, and 

restorative strategies for monitoring and control. 

Standard practice is to use simulation of a small 

number of certain historical test systems to test the 

efficacy of any proposed design.  We believe this 

practice has shortcomings when examining new 

communication system ideas.  

In this paper we develop the means for producing 

power grids with scalable size and randomly generated 

topologies.  These ensembles of networks can then be 

used as a statistical tool to study the scale of 

communication needs and the performance of the 

combined electric power control and communication 

networks. The topological and system features of the 

randomly generated power grids are compared with 

those of standard power system test models as a 

“sanity check” on the method. 

 

 

1. Introduction  

 
In the United States the bulk electric power system 

is operating ever closer to its reliability limits. During 

the past decade there have been numerous efforts 

aimed at finding preventive and/or restorative methods 

that would prove effective in dealing with likely 

widespread catastrophic failures caused either by 

unanticipated disturbances, such as the blackout on 

August 14 2003, or intentional attacks [1~9].  It is 

widely believed that there are inseparable 

interdependencies between reliable operations of 

electric power grids and the efficient placement and 

operation of related telecommunication networks. By 

an autonomously reconfigurable power grid we mean 

one that contains an appropriate level of operational 

strategies, either automatic or human-intervened, such 

that during and after unexpected natural or man-made 

events essential system functions are restored and/or 

preserved.  Clearly, an autonomously reconfigurable 

power grid must rely on wide-area measurements and 

controls, networked sensors, and adaptive 

autonomously configurable strategies. 

During the process of our research to study the 

control mechanism for power grids with a related 

communication system, we found that, due to the 

requirement of statistical analysis in the research 

problem, it is fundamental to have a large number of 

test power grids with appropriate topologies and 

scalable network size, in order to design, examine or 

justify any proposed implementation. For example, it is 

desirable to know how the communication needs (such 

as. bandwidth, or delay requirements, etc) grow with 

regard to the power grid size, given a specific control 

scheme, contingency sets and communication resource 

settings. If the growth is sub-linear, the design of the 

scheme will be able to take advantage of this property 

and choose an appropriate communication 

implementation accordingly.  

However, due to various reasons, it is usually 

difficult to obtain a lot of “real” power systems for 

study of control & communication problems described 

as above. Existing standard synthetic test systems, such 

as IEEE test cases, cannot provide a sufficiently large 

group of samples neither.  

Interestingly, we have noticed similar needs of 

scalable-size power grid test cases in the work by other 

researchers. For example, in [17] the author used “ring-

like” power grids to study the pattern and speed of 

contingency or disturbance propagation. In [18] the 

author studied critical points and transitions in 

electrical power transmission network by using a “tree-

like” power network model to generate power girds 

with scalable size. Both the models can provide some 

help to generate test power grids for studying our 

research problems. But the topologies of generated 

power grids from them, i.e., ring-like or tree-like 

structures, could not fully represent the topological 

characteristics of realistic power system.  

We also noted that there is substantial work 

reported in the literature on topological characteristics 

of complex large networks ranging from social, 
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natural, to man-made networks, such as human 

acquaintances, neural networks, the World-Wide Web, 

and the power grids [11,12,13,14].  There is very little 

work we are aware of that aimed at generating random 

topology power networks not only suitable for study of 

the topological features but also for the electrical 

dynamics of the system. As stated in [12] a large-scale 

power grid reveals some characteristics of a “small 

world” network. That is, despite their often-large size, 

there is a relatively short path between any two nodes 

(i.e., buses in power grids). Here the path length is 

measured as the number of hops along the shortest 

route from one end to the other. The most famous 

model for generating a small-world network, termed a 

WS model, begins with a ring lattice with N nodes in 

which every node is connected to its first k neighbors 

(k/2 on either side of the node). Then each edge of the 

lattice is randomly rewired with probability p in a way 

such that self-connections and duplicate edges are 

forbidden. In order to have a sparse but connected 

network it is required that  

 

1)ln( >>>>>> NkN      (1) 

 

Obviously the average nodal degree of the resulting 

topology is still k.  Empirical results of power grids 

indicate that the average nodal degree <k> is about 

2.67 for WSCC system and 4.78 for NYISO system, 

which is quite small.  Note that (1) requires N be far 

larger than 2.67 (or 4.78) while at the same time far 

less than 1467.2 ≈e  (or 11978.4 ≈e ). Therefore, it is 

very hard if not impossible to create a connected power 

grid topology by using a WS-small world model. 

Additionally, the random network models discussed in 

[12] are concerned with only the topological features 

of the network with little attention given to specific 

system features, such as bus locations, transmission 

line length and impedance, generation/load settings etc. 

Therefore, in this paper we propose a new model for 

generating sparse and connected topologies associated 

with realistic power grids while preserving their “small 

world” characteristics.  

In this model the first generating step of a grid is 

to form a random topology that preserves simpleness1 

and connectedness. That is, the nodal locations, which 

represent buses in a power grid, are specified according 

a probalisitc distribution function. The branches, which 

represent the transmission lines, are selected according 

to distance criterion and a corresponding random 

                                                           
1 An undirected graph is called “simple” if the graph has no self-

loops and no duplicate links between a same pair of nodes.  

distribution function.  In the second step, transmission 

line impedances, generation and load set-points, and 

generator parameters are all determined randomly for 

further eigenvalue analysis. The advantage of this 

proposed model is that it can produce a large number 

of test power grids with appropriate topology and 

scalable size, which could be used to study statistical 

characteristics of system performance. In addition to 

the design of control and communication networks for 

power grids, this model can also be applied to study 

other research problems such as evaluation of 

communication protocols for power grids or other 

theoretical study of power grids, which is related with 

scalable network size.  

In section II we present the model for generating 

random-topology power grids. In section III and IV we 

characterize the topological features and electrical 

system features of simulated power grids. A 

comparison is provided between power grids generated 

with our technique and conventional power grid 

simulation models. Section V introduced Maximum 

Likelihood experiments to vilify the effectiveness of 

the proposed model and section VI concludes the 

paper.  

 

2. Random-topology power grids  

 
The proposed model was created in order to form 

randomly generated but realistic power grids. Currently 

we model only high-voltage transmission networks. 

The system topology and electrical settings are created 

with specific random distribution functions and the 

generated topology preserves both simpleness and 

connectedness. Simpleness means that there are no 

self-loops and connectedness means there are no 

islands. These two requirements are consistent with 

real-world interconnected power networks.  

A.  Formation of Random Topologies 

The process contains three steps.  

(s1) Inside a fixed area, given the expected number 

N
~

of nodal locations, N nodal locations are selected 

according to a random distribution function. For 

example, either Uniform or Poisson distribution works 

well in this case (Corresponding model termed 

Uniform-RT or Poisson-RT respectively). Note that in 

the resulting graph with Poisson distribution applied, it 

is possible that NN
~

≠ . Uniform distribution is 

applied if the buses are considered to be more likely 

evenly spread in the area. Poisson distribution is 

adopted for an unevenly expected distribution.   

(s2) Given the requirement of distance limitation 
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maxmin ddd ≤≤ and the expected link length 

distribution )(dp , the neighboring links of each bus 

are selected. Observation of synthetic model or 

empirical power grids tells that the line impedances of 

a grid approximate either a Gamma distribution or an 

Exponential distribution (with specific parameter 

settings of course). In our model it is assumed that line 

impedance is proportional to its physical length. 

Therefore the expected link length distribution function 

is set as either a Gamma or an Exponential distribution.  

Then a random number k of transmission lines are 

picked at random from each node’s neighboring links 

according to a specified distribution function 

)(kp with expected value equal to <k> (set as 2.67 in 

our simulation). The random distribution of select 

transmission lines can either be Exponential or 

Poisson. The simulation shows that Poisson 

distribution resulting connected topologies with a 

much higher probability than Exponential distribution.  

(s3) The former two steps have guaranteed a simple 

topology. Further inspection is performed to check if 

the resulting topology is connected. If connected, stop; 

otherwise, repeat from step (s1). Finally a connected 

topology will be resulted with N nodes (representing 

buses in the grid) and m links (representing 

transmission lines in the grid), as shown in Fig.1 for an 

example, which is described by network connectivity 

matrix A defined as a m by N binary: 








−=

,0

,1

,1

),( nl iiA               

                    (2) 

 

B.  Assignment of Power Grid Parameters 

The impedance of each transmission line is assumed 

to be proportional to its physical length plus a small 

random deviation.  That is, 

zlinepr LZZ ε+= 0         (3) 

where jxrZ +=0 is the line impedance per unit 

length, is a uniform random variable in the range of 

],[ 00 zz εε +− . With the settings of power base 

100=BS (MVA) and appropriate voltage ratio 

BV (kV), the line impedance is translated into per unit 

value, that is, 2/.).( BBprpr VSZupZ = .  Then the 

network admittance can be formed as: 

}{}{ Ydpr
T

bus diagAYdiagAY ε+⋅⋅=   (4) 

where prpr ZY /1= is the line admittance, A is the 

connectivity matrix, and Ydε represents a random 

grounding admittance, taken as uniform variables in 

the range of ],0[ maxYdε .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Loads with random settings ll jQP + are applied on 

all the buses with Pl and Ql uniformly selected from the 

ranges of ],[ maxmin ll PP  and ],[ maxmin ll QQ  

respectively. Later in further eigenvalue analysis, the 

loads will be translated into constant passive grounding 

admittance as }/{ 2
llll UjQPdiagY −= and integrated 

into the network admittance matrix, that is, 

lbus YYY += .  

With probability pgen generator buses are randomly 

picked from all of the N buses, the first one is chosen 

as the slack-bus which will later be assigned a very 

large inertia. Then the generator inertia M and transient 

impedance jXd can be set from random distribution 

functions, in our simulations, M as a uniform variable 

from the range of ],[ maxmin MM , and Xd from the 

range of ],[ maxmin dd XX . The internal generator 

voltage potential E  is selected uniform randomly from 

the range of ],[ maxmin EE and the internal generator 

rotor angle δ  is set as Gaussian random variable with 

mean δm and deviation δσ . Without loss of 

generality, set δm equal to zero. We use the settings of 

δσ to indicate different operation conditions, namely 

in our simulation, 5=δσ is for the steady-state 

operation, and 90,60,30 or=δσ represents the 

small, medium, or large-disturbance condition 

respectively. 

if il
th link starts from in

th node; 

if il
th link ends from in

th node; 

otherwise. 
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Fig.1.  A connected random topology generated from the proposed 

Random-Topology formation model: initial nodal locations take 

Poisson distribution in a unit-size area, dmin= 0, dmax= 0.3 p.u., the 

selection of links take Poisson distribution with 67.2=λ .  

3



 

 

3. Topological features  

 
The metrics adopted to characterize topological 

features of a power grid include: the network size (i.e, 

number of nodes N, and number of links m), the 

average path length <l>, the average nodal degrees 

<k>, Pearson degree correlation coefficient ρ, and the 

fraction of the nodal degrees which is larger than the 

average degree of a node seen at the end of a randomly 

selected link, i.e. )( kkr i > . Pearson coefficient is 

chosen because Newman [15] observed that for some 

kinds of networks, it is consistently positive while for 

other kinds it is negative; therefore it might be used as 

a tool for graph assortment. However, the work [13] of 

Whitney and Alderson found that in many cases of 

practical interest, an observed value of ρ may be 

explained simply by the constraints imposed by its 

deviance, and empirically such constraints are often the 

case for observed ρ < 0. In other cases, most often for 

ρ > 0, the possible values of ρ expand into a much 

larger range and other explanations must be sought. In 

our simulations we wish to verify if Pearson degree 

correlation coefficient is an appropriate metric to 

classify power grid topology. For a topology of N 

nodes and m links, suppose the nodal degree sequence 

is },,,{ 21 Nkkk which has been ordered in ascending 

sequence as Nkkk ≤≤≤ 21 ; lij is counted in number 

of hops along the shortest path between any pair of 

nodes. The definition of the metrics or terms 

mentioned above are listed as follows: 
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Table I presents the topological characteristics of 

several empirical power networks such as IEEE 

standard test model system, WSCC and NYISO power 

grids. Further examination of Table I shows that the 

average nodal degree <k> and the fraction of 

)( kkr i >  exhibit quite stable values regardless of 

network size. While the average path length <l> grows 

proportionally with )ln(/)ln( >< kN , consistent with 

the results indicated in [11]. The Pearson correlation 

coefficients may take positive or negative values, but 

very close to zero. As stated in [13], the possible range 

of Pearson coefficient ρ of WSCC-4941 bus system, 

with random rewiring applied in a way so as to keep its 

degree sequence unchanged, is quite wide, as ρmin= -

0.69 and ρmax= 0.90. Table II displays the topological 

characteristics of random-topology power grids, 

averaged over 100 samples for each case, with same or 

similar network size as those in Table I, generated 

from proposed Random-Topology model and WS-

small world model. 

 
TABLE I 

TOPOLOGICAL CHARACTERISTICS OF EMPIRICAL POWER NETWORKS  

 

 
(N,m) <l> < k > ρ )( kkr i >

IEEE-30 (30, 41) 3.31 2.73 -0.0868 0.2333 

IEEE-57 (57, 80) 4.95 2.80 0.1895 0.2281 

IEEE-118 (118, 186) 6.31 3.15 -0.0518 0.1949 

IEEE-300 (300, 411) 9.94 2.74 -0.2137 0.2467 

NY-2935 (2935,13136) 16.43 4.78 0.4593 0.1428 

WSCC (4941, 6954) 18.70 2.67 0.0035 0.2022 

  
TABLE II 

TOPOLOGICAL CHARACTERISTICS OF SIMULATED POWER NETWORKS 

FROM THE PROPOSED RANDOM-TOPOLOGY MODELS AND WS-

SMALL WORLD MODEL 

 

 
(N,m) <l> < k > ρ )( kkr i >

 

Poisson-30 (30, 40.3) 3.60 2.69 -0.1013 0.2883 

Uniform-30 (30, 40.7) 3.52 2.71 -0.0953 0.2967 

Poisson-57 (57,76.5) 4.44 2.69 -0.0498 0.2596 

Uniform-57 (57, 75.8) 4.49 2.66 -0.0630 0.2798 

Poisson-118 (118, 195.6) 4.22 3.32 -0.0174 0.3389 

Uniform-118 (118, 194.8) 4.25 3.30 -0.0220 0.3368 

Poisson-300 (300, 457.1) 5.56 3.05 -0.0012 0.3273 

Uniform-300 (300, 456.4) 5.59 3.04 -0.0091 0.3252 

WSsw-300* (300, 423.0) 24.42 2.82 0.0703 0.1978 
* WSsw-300 denotes the 300-bus power grids generated by Watts-Strogatz 

small-world model. 

 

Comparison on the topological metrics of power 

grids with similar network size in Table I and Table II 

shows that: (a) the random-topology power grids 

generated by the proposed Poisson-RT or Uniform-RT 

model approximate very well the IEEE standard 

systems and WSCC power grid when the metrics as 

follows considered: total number of links m, average 

path length <l>, average nodal degree <k>, and the 

fraction of )( kkr i > ; (b) The Pearson coefficients ρ of 
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random-topology power grids exhibit very close-to-

zero negative values most of the time; and (c) While 

the WS-“small world” model generates the topologies 

with much larger average path length than that of IEEE 

standard test systems with comparable network size. 

Another prominent disadvantage of WS-“small world” 

model is that the probability is extremely low for this 

model to generate a connected power grid topology 

with an expected small average nodal degree. 

 

4. Electrical system features  

 
The eigenvalues of the power grids dynamics and 

in particular, the percentage and scale of those, falling 

in the left half plane, that produces unstable modes are 

important signatures of system dynamics. In [10] 

Tatikonda and Mitter provide a lower bound on the 

communication rate R (in bits/second) required for the 

asymptotic observability and stability of a linear 

discrete time-varing system.  This rate is given 

by ∑≥
)(

|})(|log,0max{
C

CR
λ

λ ,where C is the 

characteristic matrix of the system, assumed to be 

linear, and λ(C)  are the eigenvalues of C. Obviously, 

in above formula, only the eigenvalues with magnitude 

greater than 1, i.e., corresponding to unstable mode, 

contribute to the require rate. Generally speaking, 

power grids dynamics is a nonlinear system. 

Equivalent linearization of the system equation can be 

applied at each running state to obtain its time-varying 

characteristic matrix and make eigen-analysis possible 

for the resulting equivalent time-varying linear system.  

In this paper we choose to use the statistical 

distribution of the eigenvalues to characterize the 

system features of the generated power grids by the 

proposed random-topology model. Without 

consideration of damping effects, the inertial model of 

the synchronous machines can be described as:  

g

eimi
i

R

i

i
i

ni

PP
dt

dM
dt

d

,,2,1, =










−=

=

ω
ω

ω
δ

    (10) 

The electrical power output of machine i can be 

expressed as: 

∑ ++=
≠ij

ijijijijjiiiiei GBEEGEP )cossin(2 δδ  (11) 

where jiij δδδ −= , iE is the constant internal voltage 

potential of machine i, iiiiii jBGY += and 

ijijij jBGY += are respectively the diagonal element 

and the off-diagonal elements of reduced-network 

admittance matrix Y obtained from network 

admittance matrix Y after the application of Kron 

reduction so that the resulting equivalent network only 

contains generator buses. With linearization of Pei at a 

set of given generator angle variables denoted by 
T

ng
][ 020100 δδδδ = , we get the set of linearized 

differential equations for the system: 

0)sincos( 002

2

=−+ ∑
≠

∆
∆

ij
ijijijijijji

i

R

GBEE
dt

dM δδδ
δ

ω
  

                                   gni ,,2,1=      (12) 

where ∆iδ is the increment from the initial given value 

0iδ of the generator angle for machine i.  From (12) the 

characteristic matrix can be derived and corresponding 

eigenvalues can be calculated at given 0δ . 

In order to take into account different contingency 

disturbances, a set of Gaussian random variables with 

δδ σ,(m ) are given to 0δ . As mentioned in Section 

II.B, the settings of 90,0 == δδ σm represents large 

angel disturbance occurs in the system. Consequently 

system eigenvalues of (12) can be obtained for a large 

number of disturbance conditions to form a statistical 

distribution.  

The eigenvalues distribution of IEEE-30, 118, 300 

system, over several thousand cases of large 

disturbances, are respectively displayed in Fig. 2, Fig. 

3 and Fig. 4. In each figure, (a) exhibits the distribution 

range of all the eigenvalues in the complex plane: x-

axis is for real part, y-axis is imaginary part; (b) 

presents the distribution histogram of the collection of 

eigenvalues. It can be seen that the eigenvalue 

distributions of these systems are very similar to each 

other and demonstrate strongly characterized modality. 

 

 

 

 

 
 

                       

 

 

(a)            (b) 

Fig. 2.  Distribution of eigenvalues of IEEE-30 system : 

(a) the distribution range in the complex plane; (b) the distributed 

histogram 
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(a)            (b) 

 

Fig. 3.  Distribution of eigenvalues of IEEE-118 system : 

(a) the distribution range in the complex plane; (b) the distributed 

histogram 

 

 

 

 

 

 

 
                 

(a)            (b) 

Fig. 4.  Distribution of eigenvalues of IEEE-300 system : 

(a) the distribution range in the complex plane; (b) the distributed 

histogram 

 

The eigenvalues distribution of random-topology 

power grids generated by our proposed RT model are 

shown in Fig. 5 through Fig.7. In each figure, (a/b-

Poisson) denotes that the power grid is created by 

Poisson-RT model, (a/b-Uniform) denotes the power 

grid is created by Uniform-RT model. Comparison 

between Fig. 2~4 and Fig 5~7 demonstrate that for 

IEEE 30-bus system or 118-bus system, Poisson-RT 

model generates the power grids with better 

approximate of eigenvalue distributions than Uniform-

RT model. While for IEEE  300-bus  system,  both  

Poisson-RT  and  Uniform-RT create the random-

topology power grids with very close approximates of 

eigenvalue distribution. One possible reason to explain 

this is that IEEE 30-bus or 118-bus has a topology with 

bus locations very close to a Poisson distribution; 

while the bus locations in the topology of IEEE 300-

bus system get closer in the direction of Uniform 

distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 5.  Distribution of eigenvalues of Poisson-RT 35-bus system and 

Uniform-RT 30-bus system :(a) the distribution range in the complex 

plane; (b) the distributed histogram 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
Fig. 6.  Distribution of eigenvalues of Poisson-RT 103-bus system 

and Uniform-RT 118-bus system :(a) the distribution range in the 

complex plane; (b) the distributed histogram 

 

 

5. Maximum likelihood  

 
In order to objectify the selection of random 

topology models for power grids, we choose to use 

Maximum Likelihood to evaluate the validity of a 

model. That is, given a specific power grid topology 

(G) which in fact can be fully expressed by its 

connectivity matrix A(G), the Maximum Likelihood 

function of a random model (R) is defined as the 

probability of G assigned by R, denoted as p(A(G)|R). 

(a-Poisson)                                   (b-Poisson) 

(a-Uniform)                                   (b-Uniform) 

(a-Poisson)                                   (b-Poisson) 

(a-Uniform)                                   (b-Uniform) 
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In other words, the ML tells that by using R as a 

topology-generation tool, by how much probability, we 

can get a topology same as G. Please note that if the 

random model (R) has parameter(s) α , then ML is 

defined as the largest ML given the best parameter 

settings of R, i.e., ( ))R(|p(A(G) ** αp . 

In our experiments the nodal degree sequence K 

instead o f A is chosen to represent a system topology. 

As stated in section II, the nodal degree is defined as 

an ascending vector of node degrees in the resulting 

topology termed as: 

][ 21 NkkkK = .         (13) 

Nodal degree sequence K is selected because first, K is 

much easier to compute and manipulate than the 

topology connectivity matrix A, and second, all the 

topological metrics used /defined in section II is either 

a function of K (such as m, <k>, ρ, )( kkr i > ) or 

closely related with it (such as the average path length 

<l>).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 7.  Distribution of eigenvalues of Poisson-RT 323-bus system 

and Uniform-RT 300-bus system :(a) the distribution range in the 

complex plane; (b) the distributed histogram 

 

Besides, K is in fact a function of A.  Because an 

equivalent of A is system’s association matrix A
~

, 

expressed as below, and each item in K equals to the 

sums of each row in A
~

.  And A
~

 directly shapes 

system’s admittance matrix busY thence is closely 

related with the characteristic matrix of the system. 

 




=
,0

,1
),(

~
jiA               (14) 

 

For the model of Poisson-RT or Uniform-RT 

proposed in this work, it is difficult to get an analytical 

expression of the ML for a given topology (G). 

Therefore we run Monte Carlo experiments based on a 

specific parameter setting, termed as 0α , to estimate 

the statistical distribution of nodal degree sequences K 

in the resulting topologies, 

( ))(,),(),()( 21 NkpkpkpKp =       (15) 

Then for a given specific power grid topology (G), 

such as IEEE 30-bus system, supposing its nodal 

degree sequence is GK , the corresponding likelihood 

from the RT model based on parameter settings of 0α  

can be written as  

( ) )()(| 0 iG
i

G kpRTKp Π=α         (16) 

Since here we only choose an empirically selected 

parameter setting, the ML based on optimistic 

parameter setting should be at least that as expressed in 

(16), that is, 

( ) )()(| **
iG

i
G kpRTKp Π≥α        (17) 

We take Erdos-Renyi (ER) random graph model as 

comparison to the proposed model. For ER model, to 

generate a topology with a specific nodal degree 

sequence ][ 21 NkkkK = , with N nodes and m 

links, where N is the size of K and m equals to 

∑
i

ik
2

1
, the corresponding probability is  

( ) )|Pr()1()(|Pr )1( mKqqqERK mNNm ⋅−= −−

  

  (18) 

where q is the probability of link selection in ER 

model, and )|Pr( mK is the probability to form a 

degree sequence as K by selecting the starting and 

ending nodes for m links in a N-node system, which is 

independent of q  . It is obvious that the best parameter 

setting of ER is 
)1(

*

−
=

NN

m
q . For a nodal degree 

sequence set as 
2

N
k N ≤ , which is true for power grids 

topologies, it is known that   








 −








 −

≤ +−

−

=
Π

m

NN
N

k

iN

mK
iNG

N

i

)1(
!

)|Pr(
1

1

1
       (19) 

with the specification of knif
k

n
<=








,1 . 

Therefore for a specific power grid topology (G), with 

its nodal degree sequence GK  the corresponding ML 

from the ER model would be  

(a-Uniform)                                   (b-Uniform) 

(a-Poisson)                                   (b-Poisson) 

if the link (i-j) exists in the graph; 

otherwise. 
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In this work we run the experiments on IEEE 30, 57, 

118, 300-bus systems based on the random models of 

Poisson-RT, Uniform-RT, and ER. The results are 

shown in Table III.  For clearer expression, 

(Pr)log10− is shown as score instead of (Pr) in the 

table. Therefore, the smaller the score, the bigger the 

Maximum Likelihood of the random topology model.  

 
  

TABLE III 

MAXIMUM LIKELIHOOD COMPARISON OF RANDOM TOPOLOGY 

MODELS  

 

(ML)log10−  Poisson-RT Uniform-RT ER 

IEEE-30 ≤ 7.8 ≤ 7.6* ≥ 103.23 

IEEE-57 ≤ 18.3* ≤ 20.4 ≥ 217.43 

IEEE-118 ≤ 106.7 ≤ 97.4* ≥ 507.16 

IEEE-300 ≤ 210.7* ≤ 237.6 ≥ 1308.5 

* denotes the best ML score in the line. 

 

The results in Table III shows that as long as IEEE 

power system is considered, models of Poisson-RT and 

Uniform-RT perform similarly well, much better than 

ER model. In fact for ER random graph model, when 

the network size increases, it quickly turns almost 

impossible to generate a desired topology with 

specified nodal degree sequence.  

 

6. Conclusion  

 
Adequate and efficient monitoring and 

communication supports are essentially important to 

enable an autonomous reconfigurable power system, 

which responds in an optimal way toward 

unanticipated disturbances or even catastrophic 

failures. In search of ways to design effective and 

efficient communication architecture for a large-scale 

power grid, it is necessary to study how the required 

communication capacities scale as the network size 

grows. For this purpose, the standard practice for 

power system models to be simulated using a relatively 

small number of historical test systems is no longer 

sufficient. A simulation tool, which is able to generate 

large numbers of realistic power grids with random 

topologies, becomes greatly useful to assess the 

communication needs and the performance of the 

combined electric power and communication network. 

The model proposed in this paper to generate 

random-topology power grids is shown to be effective 

in two ways – 1) the topological features of the 

generated power grids approximate closely those of 

IEEE standard systems and the empirical power system 

of WSCC and NYISO; 2) the eigenvalues distribution 

of the generated power grids is very similar to that of 

IEEE standard system. Between the two varieties of the 

model, Poisson-RT works better than Uniform-RT in 

the selected standard systems. 

The Maximum Likelihood experiments also verify 

that the model of Poisson-RT and Uniform-RT can 

generate a desired topology power grid with a much 

higher probability than Erdos-Renyi random graph 

model. 
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