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Abstract This paper presents a novel method of generation

of random realistic sand grains for use in three dimensional

(3D) DEM simulations. Based on the concept of Fourier

descriptors for sand grains proposed recently by the same

authors, we first randomly generate three 2D contours of

cross-section for a real sand particle in three orthogonal

planes, and then develop a morphing technique to construct

the external 3D surface of the particle to match these cross-

sections. The proposed method is examined by application

to the generation of six sands reported in the literature using

the Fourier spectrums available for these sands. We show that

with a proper correction on the smoothness and roundness of

the orthogonal projection calibrated from the six sands, the

method can generate fairly consistent results as compared

to the real sands. Further validation of the proposed method

on another three sands shows satisfactory performance. The

advantages and limitations of the method, as well as relevant

future applications of the work to granular material modelling

are discussed.

Keywords Granular media · 3D particle shape ·

Fourier descriptors · 3D morphing technique · DEM

1 Introduction

Accurate characterization of the shape of cohesionless

particles is pivotal to gain better understanding towards the
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complex behavior of granular materials for many scientific

and industrial applications, such as civil and geotechnical

engineering, powders and pharmaceutical industries, mining

and energy industry as well as geophysics. Particle shape

may affect considerably both the mechanical behavior (such

as friction, dilatancy and strength) and the flow behavior

(e.g., jamming transition, avalanche and pattern formation)

of a granular medium. The interlocking observed in granular

sand, for example, has been considered primarily attribut-

able to irregular particle shape and particle angularity, and

is closely related to the dilatancy and strength of sand [1,2].

The packing of complex-shaped particles is also of primary

interest in the research of nanoparticles and colloïds [3].

Recent granular physics and granular mechanics research

has witnessed an increasing interest in using discrete numer-

ical modeling approaches. In particular, the Discrete Ele-

ment Method (DEM) pioneered by Cundall and Strack [4]

has been particularly popular for many researchers. Early

studies by DEM have considered circular or spherical par-

ticles, due mainly to the great simplicity and computational

efficiency it may offer. More recent investigations, however,

reveal the profound influence of particle shape on the simu-

lation results in DEM modeling which cannot otherwise be

captured by using circular/spherical particles. A variety of

different attempts have hence been made to consider parti-

cle of more complex shapes, exemplified by using clumps

or clusters of discs/spheres [5–11] polygons [12], polyhe-

drons, sphero-polygons [13] or sphero-polyhedrons [14–22],

or ellipses and ellipsoids [23–27] among others. As compared

to the circular/spherical case, the consideration of complex

particle shapes in DEM simulation has been shown to capture

the behavior of granular media better in many aspects, includ-

ing the packing density [14], shear strength [5,9,14,21], fab-

ric anisotropy [15,24], shear banding and critical state [27]

and the reproduction of observation on chute flow [11] and
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Fig. 1 a Illustrative discrete Fourier spectrum; b random sampling of

phase angles; c corresponding r(θ) discrete signal; d particle contour in

a Cartesian frame

rock avalanche [18,19]. However, the choice of particle shape

in the different studies mentioned above has been rather arbi-

trary. At best they can be regarded limited improvements over

the simple sphere/circle approximation in modeling the real

particle shape qualitatively. It is more desirable to develop a

systematic approach to identify the quantitative information

that differentiates the unique particle shape characteristics of

one material from the other, and to provide faithful reference

for generating more realistic packing of a granular mater-

ial for DEM simulation. In this paper, we present a general

method aiming at generating a random population of par-

ticles with some prescribed features reproducing the target

real granular material. This method is a 3D extension of a

recent 2D framework proposed by the authors [28] based on

the concept of Fourier Descriptors. In essence, this method

features the reproduction of three cross-sections of a realistic

3D particle using the 2D approach proposed in [28], and then

combines these cross-sections to generate the external sur-

face of the particle. As will be shown, the proposed method

is robust and efficient in reproducing the salient features that

represent a realistic granular particle. It hence offers a possi-

ble way for more realistic DEM modeling of granular media.

2 Brief introduction of the 2D Fourier approach

Fourier Descriptors were first introduced in [29] for parti-

cle shape characterization, and were further applied by sev-

eral authors to sand characterization [30–33]. It was shown

in these studies that the average normalized Fourier spec-

trum of the 2D contours (obtained by projection) of a pop-

ulation of particles may embody a relevant signature of the

shape features of these particles. Specifically, the normalized

Fourier spectrum of a 2D contour for a particle is denoted by a

collection of numbers, also called Fourier descriptors:

Dn =

√

A2
n + B2

n

r0
(0 ≤ n ≤ N/2) (1)

where the terms An, Bn and r0 can be obtained by Discrete

Fourier Transform of the contour expressed in polar (r, θ )

coordinates and discretized in N points:

An =
1

N

N
∑

i=1

[ri cos (i · θi )] (2)

Bn =
1

N

N
∑

i=1

[ri sin (i · θi )] (3)

r0 =
1

N

N
∑

i=1

[ri ] (4)

The normalization (division by r0) ensures that the mode D0

(average particle radius) is equal to 1, and a proper choice of

the particle centre ensures that the mode D1 (corresponding

to some shift of the particle from its centre) is equal to 0. An

example of Fourier Spectrum with N/2 = 64 is provided in

Fig. 1a. A given particle can be reconstructed from the two

collections of numbers, An and Bn, as a sum of individual

modes, via the following expression:

ri (θi ) = r0 +

N
∑

n=1

[An cos (nθ) + Bn sin (nθ)] (5)

This method has been widely used for the characterization

of sand particle shapes, since there is a direct correlation

between the normalized Fourier spectrum {Dn} and some

intrinsic properties of the grains. It was indeed shown that the

mode D2 controls the particle elongation, the modes D3 to D7

control the main irregularities of the overall particle shape,

and the modes Dn for n > 7 (which most often follow a linear

decrease with n in a log-log frame and can thus be described

using only a slope and an intercept) are good descriptors of

the particle surface roughness. Das [33] used this approach

to derive the average normalized Fourier spectrums for six

sands based on the microscope pictures of a sufficient number

of grains of each sand.

Novel to the approach developed by Mollon and Zhao

[28] is the employment of the normalized Fourier spectrum
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Fig. 2 a Unit sphere; b description of this sphere in spherical and Cartesian coordinates; c cross-sections in three orthogonal planes

as a tool to perform the reverse operation, i.e. to generate

random grains with prescribed shape features. As can be seen

from Eq. (5), the Fourier Descriptors {Dn} by themselves

are not sufficient to generate a grain contour, since a part of

the information on the initial contour is lost in Eq. (1). More

precisely, the lost information is the phase angle of each mode

n, expressed by:

δn = tan−1

(

Bn

An

)

(6)

Thus, a random particle with a prescribed amplitude spec-

trum {Dn} can be generated by randomly assigning a phase

angle δn to each mode of order greater than one. Each of

these random angles is supposed to follow a uniform distrib-

ution on the interval [−π;π ]. The discretized contour of the

considered particle is obtained using Eq. (5) by:

An = Dn · cos δn (7)

Bn = Dn · sin δn (8)

The generation of a typical 2D grain with the above Fourier

spectrum method is illustrated in Fig. 1. The study reported

in [28] has provided several examples of such generations

as well as relevant correspondences between the Fourier

descriptors and some more common shape descriptors (such

as elongation, roundness, circularity, regularity). A fully

working version of the MATLAB code of this 2D method is

available for free download at the url http://guilhem.mollon.

free.fr.

3 Extension of the Fourier approach to the 3D case

3.1 Numerical manipulation of 3D shapes

It is instructive to show how the 3D shapes of a sand grain

may be handled numerically. Let us consider the unit sphere

of Fig. 2a. The position of a point P at the surface of this

sphere can be defined in two classical ways (Fig. 2b), i.e.

by either using the Cartesian system of axis (O, x, y, z) or

using the spherical system of axis (O, R, θ, ϕ), where the

two approaches can be interchangeable via:

⎧

⎪

⎨

⎪

⎩

x = R · cos θ · sin ϕ

y = R · sin θ · sin ϕ

z = R · cos ϕ

(9)

When dealing with a sphere, the distance O P = R is

constant. In this paper, we will only deal with 3D shapes

delimited by closed surfaces such that, for a given direc-

tion (θ, ϕ), there is only one value of R. Such shapes are

called “star-like” shapes in [32]. Although there are a few

exceptions (such as the crushed shells mentioned in [34]),

it is generally believed that star-like shapes are capable of

describing the majority of natural geomaterials. Thus, in this

framework, a shape will be entirely defined by a continuous

function R(θ, ϕ) with 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π . How-

ever, manipulating such a continuous function in a numerical

environment is not easy where a discretization of these sur-

faces is frequently required. One may elect to discretize each

angular coordinate θ and ϕ in equal intervals. This approach

however is not recommended since it may result in uneven

distribution of the discretized points on the shape surface

(more specifically, there would be a much larger density of

points at the poles than at the equator). We herein choose

an alternative approach based on the concept of geodesic

structures which are widely used in architecture, as shown

in Fig. 3. These structures allow a rather even discretization

of the surface of a sphere with a large number of triangu-

lar facets. A simple way to generate such a structure is to

consider the icosahedron (Fig. 3a), which is also known as

the fifth Platonic solid. This classical shape is composed of

20 triangular faces and 12 vertices which all belong to the

circumscribed sphere of the solid. A more complex geodesic

structure can be generated from the icosahedron in a rather
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Fig. 3 Generation of geodesic structures. a Regular icosahedron (20

faces); b–f Geodesic structures of increasing complexities (respectively

80, 320, 1,280, 5,120 and 20,480 faces). The Isoperimetric Quotient (IQ)

for each generation is given to illustrate the convergence towards the

value IQ = 1 which corresponds to a perfect sphere

simple way. One simply has to consider the middle points of

each of the 30 edges of the shape, and to project these middle

points onto the circumscribed sphere of the solid. Then, each

triangular facet is replaced by four facets (which are no longer

coplanar), with all the vertices of the solid still lying on the

sphere. This method is applied 5 times successively to define

a solid composed of 10,242 vertices and 20,480 triangular

facets (Fig. 3f). Such a polyhedron is a good approximation

of a sphere (for example in terms of volume and of external

surface) if the radial distance R of each point is kept constant,

but can also be used to approximate any “star-like” shape by

assigning a proper value of R to each of the 10,242 vertices.

A given shape will thus be entirely defined by a collection

Ri (1 ≤ i ≤ 10242) of real positive numbers (the correspond-

ing angles θi and ϕi being always the same as for the initial

geodesic structure). This method will be used in conjunction

with the 10,242 couples of angles so defined and the vary-

ing collections of radial distances to generate all the particle

shapes presented in the sequel of this article. For the sake

of simplicity, the radial distances will be called “radiuses”

hereafter.

3.2 Cross sections

To generate random 3D surfaces, it may be interesting to con-

sider first its three cross sections in the planes (x, y), (x, z),

and (y, z) (Fig. 2c). Indeed, a complete method of generat-

ing random 2D contours has been proposed in [28] and was

briefed in the previous section. In the present paper such 2D

contours will be employed as a starting point for the gen-

eration of a 3D shape. As a demonstrative example, let us

consider the three contours plotted in Fig. 4. Each of these

contours was obtained using the Fourier spectrum of Toyoura

sand which is well known in soil mechanics [33], with a ran-

dom distribution of the phase angles. Each of these contours

consists of 100 points defined in a local polar frame r(θ)

with a subscript A, B, or C for each contour (Fig. 4a–c). In

their current state, these 2D shapes cannot yet be considered

as the three cross-sections of the same 3D shape in the three

planes (x, y), (x, z), and (y, z), because some compatibility

conditions are not fulfilled. Indeed, when projected onto their

respective planes in space, these shapes should meet the fol-

lowing conditions along their common axis:
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Fig. 4 Random 2D contours and their local systems of axis. a (x, y) plane; b (x, z) plane; c (y, z) plane; d scaled 2D contours in 3D space

O A1 = O B1 and O A3 = O B3 (x axis) (10)

O A2 = OC1 and O A4 = OC3 ( y axis) (11)

O B2 = OC2 and O B4 = OC4 (z axis) (12)

Obviously, these conditions are not fulfilled by the ran-

domly generated contours, and a scaling process is neces-

sary. Moreover, this scaling should be as smooth as possible

to limit the disturbance to the contours, since we wish them to

keep the features inherited from their original Fourier spec-

trum. A rather simple method is chosen here. The points A1

to A4 are kept unchanged, i.e. the (x, y) cross section is not

modified (Fig. 4a). Then, the (x, z) contour is isotropically

dilated (or contracted) to verify O A1 = O B1. This operation

does not have any influence on the Fourier spectrum of the

contour. However, to achieve the condition O A3 = O B3,

a small modification of the shape is necessary. A correction

of each radius (i.e. of each radial distance from O to one of

the 100 points of the contour) is applied by multiplying it by

a correcting factor δB which depends on the local angle θB

(see Fig. 4b):

{

δB = 1 +
θB

π
·

O A3−O B3
O B3

if 0 ≤ θB ≤ π

δB = 1 +
2π−θB

π
·

O A3−O B3
O B3

if π ≤ θB ≤ 2π
(13)

Such a correction is sufficient to verify Eq. (10). To further

verify Eqs. (11) and (12), a similar correcting factor δC must

be applied to each radius of the (y, z) contour as a function

of the local angle θC, such that (Fig. 4c):

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

δC =δ1+
θC

π/2
· (δ2 − δ1) i f 0 ≤ θC ≤ π/2

δC =δ2+
θC −π/2

π/2
· (δ3 − δ2) i f π/2 ≤ θC ≤ π

δC =δ3+
θC −π
π/2

· (δ4 − δ3) i f π ≤ θC ≤ 3π/2

δC =δ4+
θC −3π/2

π/2
· (δ1 − δ4) i f 3π/2 ≤ θC ≤ 2π

(14)

where δ1, δ2, δ3, and δ4 are the local correction factors at

points C1, C2, C3, and C4, respectively:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

δ1 = O A2/OC1

δ2 = O B2/OC2

δ3 = O A4/OC3

δ4 = O B4/OC4

(15)

After these corrections, the three 2D contours are compatible

and can be considered as the three cross-sections of the same

solid (so far unspecified) in the 3D frame, as shown in Fig. 4d.

3.3 From the cross-sections to the solid particle

The scaling procedure described in the previous subsection

is sufficient to generate three orthogonal cross sections of a

hypothetic solid particle, but a generation of the complete 3D

shape from these cross-sections is far from straightforward.

Ideally, we wish any random cross section of the final solid

particle to reflect the true features of a real particle as the three

original cross-sections do in terms of frequencies and ampli-

tudes of the irregularities, in order for these irregularities to be

somehow “isotropically distributed” on the particle surface.

Some kind of interpolation scheme is thus needed in order to

reproduce these irregularities out of the planes (x, y), (x, z),

and (y, z). An attempt to develop such a method is proposed

hereafter, with its limitations being discussed at the end of

this article.

The major schematic steps of this method are shown in

Fig. 5, using the three cross sections described in the previ-

ous subsection (after scaling) as an example. We first con-

sider the two cross-sections in the vertical planes (x, z) and

(y, z) (Fig. 4b, c, respectively). Each of the two cross sections

can be divided into two halves (located on either side of the

z-axis), and each of these four half-sections can be used to

generate a revolution solid (around the z-axis) as shown in

Fig. 4d. Each of these solids actually corresponds to one of the

four points A1–A4 (i.e. one of the four directions in the (x, y)

system of axis). By analogy, they will be called solids S1 to

S4, and defined by the radiuses R1,i (θi , ϕi ) to R4,i (θi , ϕi )

in the framework of the geodesic structure presented earlier

(Fig. 5d). Since they are built by revolution, these radiuses

Ri are independent on θi and are defined by:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

R1,i (θi , ϕi ) = rB (θB) with

{

θB = π/2−ϕi i f ϕi ≤π/2

θB = 5π/2−ϕi i f ϕi ≥π/2

R2,i (θi , ϕi ) = rC (θC ) with

{

θC = π/2−ϕi i f ϕi ≤π/2

θC = 5π/2−ϕi i f ϕi ≥π/2

R3,i (θi , ϕi ) = rB (θB) with θB = ϕi +π/2

R4,i (θi , ϕi ) = rC (θC ) with θC = ϕi +π/2

(16)
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Fig. 5 Principle of the 3D generation method. a (x, y) cross-section; b (y, z) cross-section; c (x, z) cross-section; d solids S1 to S4 obtained by

revolution of half-cross-sections; e solids S′
1 to S′

4 obtained by horizontal stretching of S1 to S4; f final solid S

These expressions are simple changes of the coordinate

system from the local frames (O, rB, θB) and (O, rC, θC) to

the global frame (O, R, θ, ϕ).

The second step involves the generation of four new solids

called S′
1 to S′

4, which are, respectively derived from S1 to S4

by somehow “stretching” them horizontally, accordingly to

the horizontal cross-section previously defined in the plane

(x, y) (Fig. 5a). Each of the solids S′
1 to S′

4 is thus defined by

the collections of radiuses R′
1,i (θi , ϕi ) to R′

4,i (θi , ϕi ) (Fig. 5e)

which are derived from R1,i (θi , ϕi ) to R4,i (θi , ϕi ) by the

following expressions:

R′
1,i (θi , ϕi ) = R1,i (θi , ϕi ) ·

[

1 +

(

1 −
|ϕi −π/2|

π/2

)

·
rA(θA)−rA(0)

rA(0)

]

R′
2,i (θi , ϕi ) = R2,i (θi , ϕi ) ·

[

1 +

(

1 −
|ϕi −π/2|

π/2

)

·
rA(θA)−rA(π/2)

rA(π/2)

]

R′
3,i (θi , ϕi ) = R3,i (θi , ϕi ) ·

[

1 +

(

1 −
|ϕi −π/2|

π/2

)

·
rA(θA)−rA(π)

rA(π)

]

R′
4,i (θi , ϕi ) = R4,i (θi , ϕi ) ·

[

1 +

(

1 −
|ϕi −π/2|

π/2

)

·
rA(θA)−rA(3π/2)

rA(3π/2)

]

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

with θA = θi (17)

The idea behind these equations is to multiply each radius

Ri by a correcting term, in order for the equator (ϕi = π /2)

of the solid S’ to match with the desired (x, y) cross-section,

and meanwhile to keep the poles (ϕi = 0 and ϕi = π)

undisturbed. Between these limits, the correction depends

linearly on the angle ϕi.

The last step of the generation is the one leading to the

final solid particle S defined by the collection of radiuses

Ri (θi , ϕi ), which are obtained by “morphing” among the

four solids S′
1 to S′

4. This operation, being indeed a sort of
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Fig. 6 Projection of the solid S on the three planes (x, y), (x, z), and (y, z), for comparison with the initial cross-sections

interpolation, is performed with respect to the angle θ , using

the following expressions:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Ri (θi , ϕi ) = R′
1,i (θi , ϕi ) +

(

R′
2,i (θi ,ϕi )−R′

1,i (θi ,ϕi )

)

π/2
· θi i f 0 ≤ θi ≤ π/2

Ri (θi , ϕi ) = R′
2,i (θi , ϕi ) +

(

R′
3,i (θi ,ϕi )−R′

2,i (θi ,ϕi )

)

π/2
· (θi − π/2) i f π/2 ≤ θi ≤ π

Ri (θi , ϕi ) = R′
3,i (θi , ϕi ) +

(

R′
4,i (θi ,ϕi )−R′

3,i (θi ,ϕi )

)

π/2
· (θi − π) i f π ≤ θi ≤ 3π/2

Ri (θi , ϕi ) = R′
4,i (θi , ϕi ) +

(

R′
1,i (θi ,ϕi )−R′

4,i (θi ,ϕi )

)

π/2
· (θi − 3π/2) i f 3π/2 ≤ θi ≤ 2π

(18)

The idea behind these expressions is fairly simple indeed.

Each one of the four solids S′
1 to S′

4 is consistent with the tar-

get cross-sections on exactly one vertical half-profile, since

each of them has been generated after operations on one half

of an initial cross-sections. This is the reason why the final

shape is interpolated in each π/2-interval of θ between the

two solids which are relevant at the two limits of this inter-

val (for example the two solids S′
2 and S′

3 on the interval

[π/2, π ]). The resulting solid S is presented in Fig. 5f. It can

be clearly seen that its left part is similar to the one of S′
3 and

its right part is similar to the one of S′
1, likewise for its front

and back sides when compared to S′
2 and S′

4.

This generation method has been coded in a MATLAB 7

environment. The overall efficiency is reasonable, and the

computational time is close to 5 s to generate a particle.

Figure 6 provides a zoomed view of the solid particle S as

well as its three projections onto the planes (x, y), (x, z),

and (y, z). Evidently, these projections compare reasonably

well with the three initial cross-sections that were used for

the generation. The lack of perfect correspondence is related

to the fact that they are projections rather than exact cross-

sections, as will be entailed later in this paper. We note that

the cross-sections of the solid particle S are actually exactly

identical to the target ones.

4 Calibration of the generation method

As mentioned in the previous section, there is a small

discrepancy between a given cross-section of a generated

particle and the orthogonal projection of the particle on the

same plane. This discrepancy is related to the fact that the

particle under consideration may not be convex, and thus

an orthogonal projection may be affected by certain irreg-

ularities which are “out of the plane” (not belonging to the

cross-section). Meanwhile, the Fourier spectrums of sands

available in the literature were invariably obtained from pic-

tures of the sand grains, which may actually be considered as

orthogonal projections of these grains if the focal length of

the camera is long enough (this is indeed the case when the

pictures are shot through microscopes, as is usually done for

sand grains). Thus, the method proposed in this paper gener-

ates cross-sections of sand grains from Fourier spectrums that

were actually obtained from orthogonal projections, and this

fact may lead to inaccuracies if not properly accounted for.

To evaluate the influence of this discrepancy, we have con-

sidered the Fourier spectrums provided in [33] for six differ-

ent sands (Fig. 7). These spectrums were obtained using a
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Fig. 7 Fourier spectrums provided by [33] for six sands; Inset: log2–

log2 chart of the spectrums tails

semi-automatic procedure involving microscope photogra-

phy and image treatment based on erosion-dilatation tech-

niques as well as contrast enhancement. A good way to

evaluate the accuracy of the proposed generation method is

to reproduce numerically this experimental process. For each

of the six sands, a total number of 1,000 virtual grains were

generated using the method described in the previous sec-

tion, based on the corresponding Fourier spectrums reported

in [33]. Each of these generated particles was then subjected

to a “virtual picturing”, i.e. it was orthogonally projected in

a random direction as shown in the two examples in Fig. 8.

Finally, these 1,000 2D projections were used to compute the

average Fourier spectrum for each sand reported in [33].

Figure 9 depicts the calculating results for two sands,

Michigan Dune Sand and Tecate Beach Sand. The figure

indicates that the measured spectrums of the generated parti-

cles are systematically smaller than the original ones that

were used for the generations. The same trend has been

found for the other four sands (Toyoura sand, Daytona sand,

Kahala sand, and US Silica #1), though the results are not

provided here. The trend implies that the generated grains

are systematically more rounded and smoother than they

should be, and that this error is indeed related to the dis-

crepancy between the projections (used for the computation

of spectrums, both experimentally and numerically) and the

actual cross-sections (used for the particles generations). The

process of orthogonal projection leads to a smoothing effect

of the particle shape. The measured Fourier spectrums are

hence affected by the smoothing and are not suitable to be

used directly to generate the cross-sections. An appropriate

correction of these input spectrums appears to be necessary

to achieve more consistent results.

To calibrate this correction, the ratios Dn,cross/Dn,proj

between the input (i.e. cross-section-related as used in the

generation process) and the measured (i.e. projection-related

as obtained in the previous stage of “virtual photography”)

Fourier descriptors of the six sands are plotted in Fig. 10.

The curves of these ratios with respect to the mode number

suggest that the discrepancy between the projection-related

and the cross-section-related spectrums follows some gen-

eral trend. These ratios seem to be rather small (roughly 1.2)

for the descriptor D2 (which controls the particle elonga-

tion), and increase progressively for D3 to D8 (which control

the main irregularities of the shapes), and reach a somehow

constant value for the modes Dn > 8 (which control the sur-

face roughness). This last observation is consistent with the

results reported in the inserts of Fig. 9, which show that the

input and measured spectrum (for modes larger than 8) follow

some rather parallel evolutions in a log-log plot, suggesting

a constant ratio between them.

Based on these observations, we propose the following

general expression of correcting term αn:

Fig. 8 Two examples of

random orthogonal projection of

the solid S, and the two

corresponding 2D contours
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Fig. 9 Input spectrums (as provided by [33]) and obtained spectrums (as measured on the generated grains); a Michigan Dune sand; b Tecate

River sand

Fig. 10 Ratio Dn,cross/Dn,proj between the input and obtained Fourier

spectrums for the six tested sands, and fitted correcting term αn

⎧

⎪

⎨

⎪

⎩

αn =

(

α8−α2
−36

)

· (n − 2)2 +
(

α8−α2
3

)

· (n − 2) + α2

f or 2 ≤ n ≤ 8

αn = α8 f or n ≥ 8

(19)

where n is the mode number, α2 is the correcting term for

n = 2, and α8 is the correcting term for n = 8. For the six

sands considered here, a mean-square-error fitting leads to

the optimum parameters α2 = 1.205 and α8 = 1.610. The

corresponding correction function αn is plotted in Fig. 10.

This correcting function appears to reconcile reasonably

well the discrepancy between the input and the obtained

spectrums, at least for the six sands on which it was fitted.

Its general trend suggests that there are probably some hid-

den mechanisms which lead to the observation that the influ-

ence of the projection-process on the Fourier spectrum is

smaller for the first number of modes and larger but constant

for the modes larger than 8. The exact geometrical reason

that gives rise to this observation still needs further inves-

tigations. Meanwhile, whether or not this fitted correcting

function may be equally applied to other sands remains ques-

tionable, which demands further rigorous validations. The

following section is devoted to this endeavor.

5 Validation of the proposed method

The corrected generation method described in Sect. 4 will be

validated in this section. Three sands are considered here,

namely, Michigan Beach sand, Niigata sand, and Ottawa

sand. Note that none of them belongs to the six sands which

have been considered in the calibration in last section. To

our best knowledge, the present study is the first attempt on

producing the Fourier spectrums for these sands. We nev-

ertheless note that an interesting collection of grain pho-

tos of the three sands has been obtained by Scanning Elec-

tron Microscope (SEM) in [35] and [36]. An example of

such a “micrograph” is presented in Fig. 11a for a grain of

Michigan Beach sand [36]. As shown in Fig. 11, such a photo

enables us to compute the Fourier spectrum of its contour.

To this end, a semi-automatic MATLAB algorithm has been

developed and employed to process the images (i.e. by con-

verting the initial picture into a binary bitmap file with black

pixels denoting the presence of matter and white pixels its

absence, see Fig. 11b for example), to discretize the contour

(by using a non-convex envelope algorithm presented in [19],
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Fig. 11 Stages of experimental computation of Fourier spectrums. a A photo of sand grain obtained by scanning electron microscope (SEM) (from

[36]), b image processing, c discretization of the non-convex envelope of the particle

Fig. 12 Bitmap images obtained from all the processed SEM pictures.

a Niigata sand (19 grains); b Michigan Beach sand (18 grains); c Ottawa

sand (14 grains)

see Fig. 11c for demonstration), and finally to compute the

discrete Fourier spectrum.

We take three sands reported in [35], namely, Michigan

Beach sand, Niigata sand and Ottawa sand, to demonstrate

the above validation process. These SEM photos of a total

of 18 particles for Michigan Beach sand, 19 particles for

Niigata sand and 14 for Ottawa sand are shown in Fig. 12

after treatment. Although limited, the database is considered

statistically consistent and sufficient for our immediate pur-

pose since it allows a satisfactory computation of the average

Fourier descriptors Dn of each sand. The corrected spectrums

D′
n are obtained by multiplication with the correcting term

calibrated in the previous section:

D′
n = Dn · αn ∀n ≥ 2 (20)

These corrected spectrums D′
n are then introduced in the

method presented in Sect. 3 to generate 1,000 virtual particles

for each sand. As in the previous section, each of these par-

ticles is subjected to random orthogonal projections, and the

average Fourier spectrum of 1,000 projected shapes is com-

puted for the particle. The results of this validation process

are plotted in Fig. 13 where the spectrums measured on the

micrographs and calculated from the generated particles for

the three sands are comparatively presented. Notably, the cor-

respondence is fairly good for the three sands, both for the

first modes (2 ≤ n ≤ 8) and for the spectrum tails (n > 8).

This observation proves that the virtual particles generated

by the proposed method can reproduce reasonably well the

Fourier spectrums measured on pictures of real grains, and

that the correcting term that was calibrated on six different

sands may be considered as confidently satisfactory when

applied to other sands.

6 Discussion and conclusion

To demonstrate the capacity of the proposed method, we fur-

ther present in Fig. 14 the generated virtual particles in com-

parison with the real ones for Michigan Dune sand and Tecate

River sand (Fig. 14a, b, respectively) reported in [33]. Four

particles have been chosen for each sand to generate the vir-

tual sands using their respective (corrected) spectrums. As

shown in Fig. 14, the fundamental shape features of the real

sand grains appear to be reproduced with a good accuracy

by the proposed method. In particular, those shape features

relevant to the Fourier spectrum have been reproduced well.

Indeed, it was shown in [28] that this spectrum is able to quan-

titatively control at least four well-defined geometric descrip-

tors of particles, namely, the elongation, the circularity, the

roundness and the regularity. Since the method reproduces

the Fourier spectrum of a grain well, so does it to these geo-

metric descriptors. We are not sure, however, if the method

may reproduce other descriptors which are not directly linked

to the Fourier spectrums. Nevertheless, the proposed method

appears to open up a door for a wide range of applications,

by allowing the generation of realistic 3D particles to repro-

duce the major properties of sand and to introduce them in

a DEM simulation of a sand assembly. Moreover, as shown

in [28] in the 2D case, such a method offers flexible controls
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Fig. 13 Input spectrums (as computed from the pictures provided in

[35]) and obtained spectrums (as measured on the grains generated with

corrected spectrums). a Michigan Beach sand; b Ottawa sand; c Niigata

sand

for us to tailor the input Fourier spectrums quantitatively to

investigate the influence of a given shape descriptor (e.g.

elongation or roundness) on the mechanical behavior of a

granular material under specific conditions (shearing, flow,

compaction, etc.). This proves to be useful for a variety of

different engineering areas and industries dealing with

granular particles of different nature.

Notwithstanding its merits, the current generation method

does exhibit two minor drawbacks. The first one is directly

related to the method used to create the 3D shape from

the three cross-sections as explained in Sect. 3.3. Since this

method is based on the shapes defined by the revolution of

2D profiles, we can observe in Fig. 14 a number of arti-

facts in the resulting 3D shapes. These artifacts are similar to

holes and/or bumps that are aligned along specific directions,

and form some kind of rifts and ridges in the vertical and

horizontal directions. They are more visible on very irregu-

lar particles (such as the ones generated in Fig. 14b for the

Tecate River sand, which is the one with the largest spectrum

as shown in Fig. 7), and may lead to some limited “irregularity

anisotropy”. This shortcoming may be solved by developing

a completely different generation method which would not

involve any revolution of 2D profiles along an axis. This will

be a focus of future work.

The second drawback can be clearly seen from Fig. 15. In

this figure, two real grains of Niigata sand and Ottawa sand

(Fig. 15a, b, respectively) are compared with four virtual

grains generated with their corrected spectrums. The grains

generated for Ottawa sand are expected to be more rounded

than the ones for Niigata sand (since the spectrum of Ottawa

sand is lower). Whilst a rough comparison of the generated

grains with the real grains seems satisfactorily good, a closer

inspection of the real sand grains reveals that they exhibit

some “facets”, i.e. some planar areas on certain parts of their

surfaces bounded by sharp edges. Such property is not well

reproduced by the generated grains. This is indeed an inherent

drawback of using the Fourier spectrums to represent the sur-

face configuration of a particle, regardless of its being in 2D

or in 3D. This drawback is related to the loss of information

induced by Eq. (1), as already mentioned before. Consider-

ing only the magnitudes of the Fourier modes but disregard-

ing their phase angles is certainly problematic, because it is

based on a presumption that these phase angles are statisti-

cally independent. This is obviously not always true, since

the planar facets existing in real grains may actually cor-

respond to some specific hidden structures and hence give

rise to certain correlations in the phase angles of the Fourier

modes. These features cannot be reproduced by a completely

independent random generation as performed in the proposed

generation method (Fig. 1b). Future work will be dedicated

to finding a method of random sampling of the phase angles

to reproduce such facets. Before this can be done, however,

it is necessary to construct an indicator of this “facetted”
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Fig. 14 Pictures of real sand samples (from [33]) and grains randomly generated with the relevant corrected Fourier spectrums (arrows are added

to point out some fortuitous shape similarities, showing the benefit of the generation method). a Michigan Dune sand; b Tecate River sand

Fig. 15 SEM grain pictures (from [36]) and grains randomly generated with the relevant corrected Fourier spectrums. a Michigan Beach sand;

b Ottawa sand
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character for some particles which may allow a quantita-

tive measurement of this visual property and can be used

as a target value in an upgraded generation method in the

future.

Other than addressing the above limitations, our future

attention will be paid to the development of a technique

(likely based on Constrained Voronoi Tessellation as in

the 2D case described in [28]) to pack the generated 3D

particles in a given container in an efficient manner, ful-

filling some target values for certain quantities i.e., size

distribution, void ratio/solid fraction and fabric anisotropy.

Certain techniques are required to further introduce these

complex shapes into a DEM code for practical simulations,

such as the spheropolyedrons methodology and the Overlap-

ping Discrete Element Clusters framework proposed in [37].

Meanwhile, it is also interesting to compare sand samples

generated with this method with some real samples captured

by more recent experimental works using advanced Micro

Computed Tomography (µCT) or other modern apparatus

(see, e.g., [38–40]).
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